
ENGG 5781: Matrix Analysis and Computations 2022-23 First Term

Lecture 5: Singular Value Decomposition

Instructor: Wing-Kin Ma

In this note we give the detailed proof of some results in the main slides.

1 Proof of SVD

Recall the SVD theorem:

Theorem 5.1 Given any A ∈ Rm×n, there exists a 3-tuple (U,Σ,V) ∈ Rm×m × Rm×n × Rn×n

such that
A = UΣVT ,

U and V are orthogonal, and Σ takes the form

[Σ]ij =

{
σi, i = j
0, i 6= j

,

with σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 and with p = min{m,n}.

The proof is as follows. First, consider the matrix product AAT . Since AAT is real symmetric
and PSD, by eigendecomposition we can express AAT as

AAT = UΛUT =
[
U1 U2

] [Λ̃ 0
0 0

] [
UT

1

UT
2

]
= U1Λ̃UT

1 , (1)

where we assume that the eigenvalues are ordered such that λ1 ≥ . . . ≥ λr > 0 and λr+1 = . . . =
λp = 0, with r being the number of nonzero eigenvalues; U ∈ Rm×m denotes a corresponding
orthogonal eigenvector matrix; we partiton U as U = [ U1 U2 ], with U1 ∈ Rm×r and U2 ∈
Rm×(m−r); Λ̃ = Diag(λ1, . . . , λr). It is easy to verify from the decomposition above that

UT
2 A = 0. (2)

To see this, we note from UT
2 U1 = 0 that UT

2 A(UT
2 A)T = 0. By the simple result that BBT = 0

implies B = 0 (which is easy to show and whose proof is omitted here), we conclude that UT
2 A = 0.

Second, construct the following matrices

Σ̃ = Λ̃1/2 = Diag(
√
λ1, . . . ,

√
λr), V1 = ATU1Σ̃

−1 ∈ Rn×r.

One can easily see from (1) that

VT
1 V1 = I.

Furthermore, let V2 ∈ Rn×(n−r) be a matrix such that V = [ V1 V2 ] is orthogonal; we know from
Lecture 1 that such a matrix always exists. It can be verified that

UT
1 AV1 = Σ̃, UT

1 AV2 = 0. (3)
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Third, consider the matrix product UTAV. We have

UTAV =

[
UT

1 AV1 UT
1 AV2

UT
2 AV1 UT

2 AV2

]
=

[
Σ̃ 0
0 0

]
.

where (2) and (3) have been used. By multiplying the above equation on the left by U and on the
right by VT , we obtain the desired result A = UΣVT . The proof is complete.

2 Sensitivity Analysis of the Linear System Solution

Recall the perturbed linear system problem: Let A ∈ Rn×n be nonsingular and y ∈ Rn, and denote
x as the solution to the linear system y = Ax. The actual A and y we deal with are perturbed.
To be specific, we have

Â = A + ∆A, ŷ = y + ∆y,

where ∆A and ∆y are errors. Let x̂ denote a solution to the perturbed linear system

ŷ = Âx̂.

The problem is to analyze how the solution error x̂− x scales with ∆A and ∆y.
This analysis problem can be tackled via SVD. To put into context, define

κ(A) =
σmax(A)

σmin(A)
,

which is called the condition number of A. Note that if A is close to singular, then σmin(A) will
be very small and we would expect a very large κ(A). We have the following result.

Theorem 5.2 Let ε > 0 be a constant such that

‖∆A‖2
‖A‖2

≤ ε, ‖∆y‖2
‖y‖2

≤ ε.

If ε is sufficiently small such that εκ(A) < 1, then

‖x̂− x‖2
‖x‖2

≤ 2εκ(A)

1− εκ(A)
.

Theorem 5.2 suggests that for a sufficiently small error level ε, the relative solution error ‖x̂−
x‖2/‖x‖2 tends to increase with the condition number κ(A). In particular, if εκ(A) ≤ 1/2, we may
simplify the relative solution error bound in Theorem 5.2 to

‖x̂− x‖2
‖x‖2

≤ 4εκ(A),

where we can see that the error bound above scales linearly with κ(A).
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Proof of Theorem 5.2: For notational convenience, denote ∆x = x̂− x. The perturbed linear
system can be written as

(A + ∆A)(x + ∆x) = y + ∆y.

The above equation can be re-organized as

A∆x = ∆y −∆Ax−∆A∆x,

and then
∆x = A−1(∆y −∆Ax−∆A∆x).

Let us take 2-norm on the above equation:

‖∆x‖2 ≤ ‖A−1‖2‖∆y −∆Ax−∆A∆x‖2
≤ ‖A−1‖2(‖∆y‖2 + ‖∆Ax‖2 + ‖∆A∆x‖2)
≤ ‖A−1‖2(‖∆y‖2 + ‖∆A‖2‖x‖2 + ‖∆A‖2‖∆x‖2) (4)

where we have used the norm inequality ‖Ax‖2 ≤ ‖A‖2‖x‖2 and the triangle inequality ‖x+y‖2 ≤
‖y‖2 + ‖y‖2 to obtain (4).

Next, we apply the assumptions ‖∆A‖2/‖A‖2 ≤ ε and ‖∆y‖2/‖y‖2 ≤ ε to (4). We have

‖∆y‖2 ≤ ε‖y‖2 = ε‖Ax‖2 ≤ ε‖A‖2‖x‖2, (5)

and substituting (5) and ‖∆A‖2 ≤ ε‖A‖2 into (4) results in

‖∆x‖2 ≤ ‖A−1‖2‖A‖2(2ε‖x‖2 + ε‖∆x‖2)
= 2εκ(A)‖x‖2 + εκ(A)‖∆x‖2,

where the result ‖A−1‖2 = maxi=1,...,n 1/σi(A) = 1/σmin(A) has been used. The above inequality
can be rewritten as

(1− εκ(A))‖∆x‖2 ≤ 2εκ(A)‖x‖2,

and if 1− εκ(A) > 0 we can further rewrite

‖∆x‖2
‖x‖2

≤ 2εκ(A)

1− εκ(A)
,

as desired. �
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