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Lecture 4: Positive Semidefinite Matrices and Variational
Characterizations of Eigenvalues

e positive semidefinite matrices

e application: subspace method for super-resolution spectral analysis

e application: Euclidean distance matrices

e variational characterizations of eigenvalues of real symmetric matrices

e matrix inequalities
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Hightlights
e a matrix A € S” is said to be positive semidefinite (PSD) if
xI'Ax >0, forall x € R",
and positive definite (PD) if
xTAx >0, forall x € R" withx#0

e a matrix A € S” is PSD (resp. PD)

— if and only if its eigenvalues are all non-negative (resp. positive);

— if and only if it can be factored as A = B’ B for some B € R™*"

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term.



Highlights
o let A €S” and let \;(A),..., \,(A) be the eigenvalues of A with ordering
Amax(A) = A(A) 2 A2(A) = -+ = Ay (A) = Amin(A)
where Apin(A) and Apnax(A) denote the min. and max. eigenvalues of A, resp.

e variational characterizations of A\pin(A) and Apax(A):

Amax(A) =  max  x!Ax, Amin(A) = min  x' Ax
xER™, [|x|[2=1 xER™, [[x[[2=1

e (Courant-Fischer) for k € {1,...,n},

A(A) = min max x!Ax = max min  x’Ax
Sn—k+1ER™ x€S,,_p11,]x][2=1 SEER™ x€8y,[[x[[2=1

where S denotes a subspace of dimension &

e complex case: the same results apply; replace R by C, S by H, and “I" by “"H
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Quadratic Form
Let A € S". For x € R™, the matrix product
xT Ax
is called a quadratic form.

e some basic facts (try to verify):

- x'Ax =301 D Oi Tijai

— it suffices to consider symmetric A since for general A € R"*",

x'Ax =x" [2(A+A")]x

— complex case:
+ the quadratic form is defined as x’ Ax, where x € C"

x for A € H", x" Ax is real for any x € C"
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Positive Semidefinite Matrices

A matrix A € S™ is said to be

e positive semidefinite (PSD) if x Ax > 0 for all x € R”
e positive definite (PD) if x!’ Ax > 0 for all x € R" with x # 0

e indefinite if A is not PSD

Notation:

e A > 0 means that A is PSD
e A > 0 means that A is PD

e A 0 means that A is indefinite
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Example: Covariance Matrices

o let yo,¥o,...y7—1 € R™ be a sequence of multi-dimensional data samples

— examples: patches in image processing, multi-channel signals in signal process-
ing, history of returns of assets in finance [Brodie-Daubechies-et al.’09],

A 1 T—1
e sample mean: My =F2 1—0 Yt

e sample covariance: C, = T tT:_Ol(yt — ) (ye — )"
e a sample covariance is PSD: x7C,x = &3, ' |(y: — ) x> >0

e the (statistical) covariance of y; is also PSD
— to put into context, assume that y; is a wide-sense stationary random process

— the covariance, defined as C, = E[(y; — py)(y: — )] where p, = E[y,],
can be shown to be PSD
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Example: Hessian

o let f:R™ — R be a twice differentiable function

e the Hessian of f, denoted by V?f(x) € S”, is a matrix whose (i, 7)th entry is

given by
0% f

4] 890@8:53

V()]

o Fact: f is convex if and only if V2f(x) = O for all x in the problem domain

e example: consider the quadratic function

1
f(x) = §XTRX +qlx+c

It can be verified that V2f(x) = R. Thus, f is convex if and only if R = 0
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lllustration of Quadratic Functions
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(b) indefinite A.
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PSD Matrices and Eigenvalues

Theorem 4.1. Let A € S”, and let A\{,..., )\, be the eigenvalues of A. We have
1. A>0<«<= )\, >0fori=1,...,n

2. A>0<= )\, >0fort=1,...,n

e proof: let A = VAV be the eigendecomposition of A.

A0 <«— x!VAVIx>0, forall xeR"
«— z'Az>0, forallze R(VT) = R"
— > N|zi[*>0, forallzeR"

<— \; >0 forallz

The PD case is proven by the same manner.
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Example: Ellipsoid
e an ellipsoid of R™ is defined as
E={xeR"|x'"P'x<1},

for some PD P € §S™

o let P = VAV be the eigendecomposition
— V determines the directions of the semi-axes

— A1,...,\, determine the lengths of the semi-axes
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Example: Multivariate Gaussian Distribution

e probability density function for a Gaussian-distributed vector x € R™:

1 1 Ty —1(y _
00 = e (e WS o)

NS

where p and X are the mean and covariance of x, resp.

- 2 is PD

— X determines how x is spread, by the same way as in ellipsoid
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Example: Multivariate Gaussian Distribution
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PSD Matrices and Square Root

Theorem 4.2. A matrix A € S™ is PSD if and only if it can be factored as
A=B'B
for some B € R™*"™ and for some positive integer m.

e proof:
— sufficiency: A = BB = x?TAx = x'B?Bx = [|Bx||3 > 0 for all x

— necessity: let A1/ = Diag()\im, ey )\,,1/2).

A=0= A= (VAY2)(AY2VT), with AV?>VT being real

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term.
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PSD Matrices and Square Root

e the factorization A = B?B has non-unique factor B
— for any orthogonal U € R"*" B = UAY2VT is a factor for A = BTB
e denote
A2 =VAAVT,
— B = A'2 s a factor for A =B”B
— A'/2 s also a symmetric factor

— A2 is the unique PSD factor for A = BTB (how to prove it?)

e A'/2 s called the PSD square root of A

— note: in general, a matrix B € R"*" is said to be a square root of another
matrix A € R*"*" if A = B?
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Some Properties of PSD Matrices

e it can be directly seen from the definition that
— A>0=—q;; >0 for all ¢
— A>0—aqa;; >0 forallz

e extension (also direct): partition A as

A= .
[Agl A22]

Then, A > 0— Ay, EO,AQQEO. Also, A = 0 — Ay >-O,A22>-O

e further extension:

— a principal submatrix of A, denoted by Az, where 7T = {i1,...,im} C
{1,...,n}, m < n, is a submatrix obtained by keeping only the rows and
columns indicated by Z; i.e., [Az]jx = a;, ;, forall j,k € {1,...,m}

— if A is PSD (resp. PD), then any principal submatrix of A is PSD (resp. PD)
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Some Properties of PSD Matrices

Property 4.1. Let A € S, B € R™"*"™, and
C = BTAB.

We have the following properties:
1. A 0—=C>0
2. suppose A > 0. It holds that C = 0 <= B has full column rank

3. suppose B is nonsingular. It holds that A >~ 0 < C > 0, and that A > 0 <—
C > 0.

e proof sketch: the 1st property is trivial. For the 2nd property, observe
C~-0+=2z"Az>0,VzcRB))\{0. ()

If A > 0, (*) reduces to C > 0 <= Bx # 0, V x # 0 (or B has full column
rank). The 3rd property is proven by the similar manner.
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Properties for Symmetric Factorization

Property 4.2. Let A € R™** and B € R**", and suppose that B has full row

rank. Then
R(AB) =R(A)

e proof:
— observe that dim R(B) = rank(B) = k, which implies R(B) = R,
— we have R(AB)={y=Az |z€ R(B)} = {y = Az | z ¢ RF} = R(A).

e corollary: let R be a PSD matrix. Suppose that we factor R as R = BB? for
some full-column rank B. Then, R(R) = R(B).
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Properties for Symmetric Factorization
Property 4.3. Let B € R"** C € R™** be full-column rank matrices. It holds that

BB? = CC?T <« C = BQ for some orthogonal Q € R¥**

e proof: we consider “=" only, as “<=" is trivial
— suppose BBY = CC”.
— from
I=(B'B)B'B)! =B'(BB”)B")’ =Bf(CC”)(B")? = (B'C)(B'C)7,
we see that BTC is orthogonal (note that BTC is square).
— let Q = B'C. We have BQ = BBTC = PgC, or equivalently,
Bq; = lIg®)(c;), i=1,...,k.

— from Property 4.2 we see that R(B) = R(BB?) = R(CC?) = R(C). It
follows that Iz m)(c;) = c; for all 4.
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Application: Spectral Analysis

e consider the complex harmonic time-series

k
ye= et pw,, t=0,1,...,T -1
1=1

where «; € C is the amplitude-phase coefficient of the ith sinusoid; f; € [—%, %)

is the frequency of the ith sinusoid; w; is noise; 1" is the observation time length

e Aim: estimate the frequencies f1,..., fr from {y; th_Ol
— can be done by applying the Fourier transform

— the spectral resolution of Fourier-based methods is often limited by T°

e our interest: study a subspace approach which can enable “super-resolution”

e suggested reading: [Stoica-Moses’97]
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Application: Spectral Analysis

Fourier Spectrum
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An illustration of the Fourier spectrum. T = 64, k = 5 Afi,---,fx} =

{—0.213, 0.1, —0.05, 0.3, 0.315}.
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Spectral Analysis via Subspace: Formulation

o let z; = e327/i_ Given a positive integer d, let

_ _ _ ;- _ _ _ _ _ _
Yt <5 Wt 1 Wy
Yt+1 Zk Zt“ W41 Zk Zq W41
: ; ;
Yt — -I- — 07 7’: —|— :+ — 8% : Zi —|_ :+
: — t+.d_1 . — d.—l :
| Yt—d+1 | | Z; i | Wi+d—1 | |2 L Wt—d+1]
N—— -

o letY =[yo,¥1,-..,y1,—1 | where Ty =T — d + 1. We can write

Y =ADS+ W,
where A = | ay,...,a; |, D = Diag(aq,...,ax), W=[wi,...,wr,_1 |,
1 T zfd_l_
g_ |1 = Z5 ... zgd_l
_i 2k Zp ... ZZ‘;_l_
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Spectral Analysis via Subspace: Formulation

o let R, = Tid 281 yiyH = TidYYH be the correlation matrix of y;. We have

1 1 1 1
R, =A | —DSS”D" ) A" + ~ADSW + —WSHYDYAY + —WWH

\ 7

=%

e (this requires knowledge of random processes) assume that w; is a temporally

white circular Gaussian process with mean zero and variance o%. Then, as

Td — OQ, | |
—SWH 50 —WWH! 5 521
T, T d

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term. 22



Spectral Analysis via Subspace: Formulation

e let us summarize

e Model: the correlation matrix R, = TidYYH Is modeled as
R, = APA" + 071

where 2 > 0 is the noise power; ® = TidDSSHDH; D = Diag(ay, ..., ax);

- - T;—1
1 | | 1 21 2% ... 2¢
2 Ty—1
Z1 Z9 Zk 1 z9 25 ... =z
A — . . . c ((jolxk7 S — | 2 2 2. c (CkXTd’
d—1 d—1 d—1 T,—1
U T 1 oz zi ... 2z

with z; = eJ27/i

e observation: A and S are both Vandemonde
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Spectral Analysis via Subspace: Subspace Properties

e Assumptions: i) a; # 0 for all ¢, ii) f; # f; for all ¢ # 7, iii) d >k, iv) Ty > k
e results:

— A has full column rank, S has full row rank

— & is positive definite (and thus nonsingular)

x proof: x#DSSHD#x = ||SH¥D*#x||3, and S¥D*x = 0 if and only if S¥
does not have full column rank

- R(A®AT) =R(A), by Property 4.2
— rank(APA?) = rank(A) = k, thus A®A has k nonzero eigenvalues
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Spectral Analysis via Subspace: Subspace Properties

e consider the eigendecomposition of A@AY. Let ARAY = VAV and assume
AL > A > 0> A

e since \; >0forte=1,....kand \;,=0fore=k+1,....,d,

A, 0] [VH
APAT = [V, V] [01 0] [V;,] = VA VE
where Vi = [vy,..., vk | € C¥F Vy = [ vpyr,...,vg | € CXUE=R) A} =

Diag(A1, ..., k).
— result: R(APAH) = R(V,), RIAPAHT)L =R(Vy)
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Spectral Analysis via Subspace: Subspace Properties

e consider the eigendecomposition of R,,. Observe

Ai+c%T O \£
R |

e results:

— V(A + o2I)V*# is the eigendecomposition of R,

— V; can be obtained from R, by finding the eigenvectors associated with the
first k largest eigenvalues of R,

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term. 26



Spectral Analysis via Subspace: Subspace Properties

e let us summarize

e compute the eigenvector matrix V € C4*¢ of R,. Partition V = [ V1, Vy ]
where V; € C™** corresponds the first k largest eigenvalues. Then,

R(V1) =R(A), R(Vy)=R(A)"

e |dea of subspace methods: let

a(z) =

Find any f € [—3,3) that satisfies a(e??™/) € R(A).
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Spectral Analysis via Subspace: Subspace Properties

e Question: it is true that f € {f1,... fix} implies a(e9?™/) € R(A). But is it also
true that a(e??™/) € R(A) implies f € {f1,... fx}?

e The answer is yes if d > k. The following matrix result gives the answer.

Theorem 4.3.Let A € C%* any Vandemonde matrix with distinct roots
21, ...,2k and with d > k + 1. Then it holds that

ze€{z,...,2zk} <= a(z) e R(A).
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Spectral Analysis via Subspace: Subspace Properties

e proof of Theorem 4.3: “=" is trivial, and we consider “<—

— suppose there exists zZ ¢ {z1,..., 2} such that a(z) € R(A).
— let A =[a(z) A] e Cixk+),
— a(z) € R(A) implies that A has linearly dependent columns

— however, A is Vandemonde with distinct roots z, 21, . .., 2, and for d > k + 1

A must have linearly independent columns—a contradiction

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term.
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Spectral Analysis via Subspace: Algorithm

e there are many subspace methods, and multiple signal classification (MUSIC) is
most well-known

e MUSIC uses the fact that a(e??™/) € R(A) <= VHa(ed?2™/) = 0

Algorithm: MUSIC

input: the correlation matrix R,, € C%*% and the model order k < d
Perform eigendecomposition R, = VAVH with \{ > X > ... > A\,
Let Vo = | Vgi1,...,Vq ], and compute

1
IVia(es> )3

S(f)

for f € [—%,%) (done by discretization).

output: S(f)
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Spectral Analysis via Subspace: Algorithm

MUSIC Spectrum
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An illustration of the MUSIC spectrum. T = 64, k = 5 {fi,.---, fx}
{—0.213,—0.1, —0.05,0.3,0.315}.
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Application: Euclidean Distance Matrices

o let xq,...,%, € R be a collection of points, and let X = [ x;,...,%, |
e let d;; = ||x; — x;||2 be the Euclidean distance between points ¢ and j
e Problem: given d;;'s for all 4,5 € {1,...,n}, recover X

— this problem is called the Euclidean distance matrix (EDM) problem

e applications: sensor network localization (SNL), molecule conformation, ....

e suggested reading: [Dokmanic-Parhizkar-et al.’15]

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term.
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EDM Applications

X [\\XZ

X3
[d12, min: d12, max]

(b)

(a) SNL. (b) Molecular transformation. Source: [Dokmanié-Parhizkar-et al.’15]
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EDM: Formulation

o let R € R™"*" be matrix whose entries are r;; = d3; for all i, j

e from
rij = di; = ||xil|3 — 2x7 x; + ||%][3,
we see that R can be written as

R = 1(diag(X* X))! — 2X*X + (diag(X* X))1* ()

where the notation diag means that diag(Y) = [y11,...,¥Ynn|’ for any square Y
e observation: (x) also holds if we replace X by

~ X =[x;+b,...,x, +b] forany b € R? (d;; = ||X; — X;]|2 is also true)

— X = QX for any orthogonal Q (XX = XTX)

e implication: recovery of X from R is subjected to translations and rota-
tions/reflections

— in SNL we can use anchors to fix this issue
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EDM: Formulation

e assume x; = 0 w.l.o.g. Then,

x1 — x1|3 0 MEStE
_ 2 2 2

r| = ‘X2 | Xl‘ 2 HX2||2 7 dlag(XTX) _ ‘X2H2 —rq
| |xn — %13 ] 1%,]/5 ] 1EH

e construct from R the following matrix

1
G = —§(R —1r{ —r;1%).

We have
G=X'X

e idea: do a symmetric factorization for G to try to recover X
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EDM: Method

e assumption: X has full row rank

e G is PSD and has rank(G) = d

e denote the eigendecomposition of G as G = VAV, Assuming A\ > ... > \,,
it takes the form

G=[Vi V; [Al O] [V{

o 0| [V = aAVITArAV)
where V € RnXd, A = Diag()\l, ce ey )\d)
e EDM solution: take X = A1/2Vrf as an estimate of X

e recovery guarantee: by Property 4.3, we have X = QX for some orthogonal Q
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EDM: Further Discussion

e in applications such as SNL, not all pairwise distances d;;'s are available
e or, there are missing entries with R
e possible solution: apply low-rank matrix completion to try to recover the full R
e to use low-rank matrix completion, we need to know a rank bound on R
e by the result rank(A + B) < rank(A) + rank(B), we get
rank(R) < rank(1(diag(X? X))?) + rank(—2X*X) + rank((diag(X* X))1%)

<l+d+1=d+2

e other issues: noisy distance measurements, resolving the orthogonal rotation
problem with X. See the suggested reference [Dokmani¢-Parhizkar-et al.’15].
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Variational Characterizations of Eigenvalues of Real Symmetric
Matrices

Notation and Conventions:

e \(A),..., \y(A) denote the eigenvalues of a given A € S™ with ordering
Amax(A) = A (A) > X(A) > ... > A(A) = Ain(A),

where Apin(A) and Apnax(A) denote the smallest and largest eigenvalues, resp.

e if not specified, A1,..., A\, will be used to denote the eigenvalues of A € S™; they
also follow the ordering

)\maX:)\lz)\ZZ---Z)\n:Amin-

Also, VAV™ will be used to denote the eigendecomposition of A € S™
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Variational Characterizations of Eigenvalues

o let A € S".
e for any x € R"™ with x # 0, the ratio

xT' Ax

xI'x

is called the Rayleigh quotient.

e our interest: quadratic optimization such as

xT Ax T
max = = max X Ax
xeR" x#0 X' X x€R™,||x]||2=1
, xT Ax , T
min = min X Ax

x€R?"x£0 XIX  x€R",|x|s=1

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term.
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Variational Characterizations of Eigenvalues: Rayleigh-Ritz
Theorem 4.4 (Rayleigh-Ritz). Let A € S™. It holds that

Amin[[%][3 < %" AX < Anac[ ]2

Amin = min XTAX, Amax = max  x!Ax
xER™, [|x[|2=1 x€R™, [|x[[2=1

e proof:

— by a change of variable y = V' x, we have
x'Ax =y Ay = >0 Nilyil? < M T [l = MIVI]3 = Allx|[3

— we thus have maxy,—1 X7 Ax < Ay
— since vavl = A1, the above equality is attained

— the results x' Ax > X, ||x||5 and minjy,—1 X" Ax = A, are proven by the
same way
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Variational Characterizations of Eigenvalues: Courant-Fischer

Question: how about A\; for any k € {1,...,n}? Do we have a similar variational
characterization as that in the Rayleigh-Ritz theorem?

Theorem 4.5 (Courant-Fischer). Let A € S”, and let Si denote any subspace of
R™ and of dimension k. For any k € {1,...,n}, it holds that

AL, = min max xT Ax
Sn—k+1ER" x€S, _g11,[x[2=1
_ : T
= max min x Ax
SECER™ x€8y,[[x[|2=1

e proof: see the accompanying note
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Variational Characterizations of Eigenvalues: More Results

The Courant-Fischer theorem and its variants lead to a rich collection of eigenvalue
inequalities: For A,B € S", z € R",

o (Weyl) Me(A)+X(B) < M(A+B) <X \(A)+M(B), k=1,....,n

e (interlacing) Mi1(A) < M\g(A £zz!) < A\y_1(A) for appropriate k

o if rank(B) < r, then A1 -(A) < M(A 4+ B) < A\;_.(A) for appropriate k
o (Weyl) Nitx—1(A+B) < \;(A)+ \p(B) for appropriate j, k

e for any semi-orthogonal U € R™ ", Ay, »(A) < M(UTAU) < Mg(A) for
appropriate k

® many more...
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Variational Characterizations of Eigenvalues: More Results

An extension of the variational characterization to a sum of eigenvalues:

Theorem 4.6. Let A € S™. it holds that

r T
g N = max E u; Auy; = max tr(UTAU)
UGRnXT —1 UERHXT‘
— —
z luilla=1 Vi, ulu;=0 Vizj ' vl U1

e can be proved by the eigenvalue inequality A\, (UTAU) < A\x(A)
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Variational Characterizations of Eigenvalues: More Results

Some more results (the proofs require more than just the Courant-Fischer theorem):

e (von Neumann) Let A, B € S™. It holds that

™
3’
>
_|_
UU
||Mw
Mw
%
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PSD Matrix Inequalities

e the notion of PSD matrices can be used to define inequalities for matrices
e PSD matrix inequalities are frequently used in topics like semidefinite programming

e definition:
— A > B means that A — B is PSD
— A > B means that A — B is PD
— A % B means that A — B is indefinite

e results that immediately follow from the definition: let A, B, C € S™.
- A>0,a0a>0(resp. A >0, >0) = aA > 0 (resp. aA > 0)
— A B>0(resp. A>0,B>~0)— A+B >0 (resp. A+ B > 0)
- A>B,B>C (resp. A>B,B>C) = A > C (resp. A > C)
— A % B does not imply B = A
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PSD Matrix Inequalities

e more results: let A,B € S™.

— A > B = M(A) > \g(B) for all k; the converse is not always true

— A >1(resp. A>1) <= M\,(A) > 1 forall k (resp. A\x(A) > 1 for all k)
—I> A (resp. I = A) <= M\(A) <1 forall k (resp. A\x(A) < 1 for all k)
—-ifAB>~0thenA>B<<—= B! >A"!

e some results as consequences of the above results:
— for A > B > 0, det(A) > det(B)
— for A > B, tr(A) > tr(B)
—for A=B >0, tr(A™!) <tr(B™1)
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PSD Matrix Inequalities

e the Schur complement: let

= lor ¢
where A € S™, B € R™*", C € S" with C > 0. Let
S=A-BC !B,
which is called the Schur complement. We have
X >0 (resp. X>0) <= S>=0((resp. S>0)

— example: let C be PD. By the Schur complement,

1-b'C'b>0 — C-bbl=0
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