ENGG 5781 Matrix Analysis and Computations Lecture 4: Positive Semidefinite Matrices and Variational Characterizations of Eigenvalues

Wing-Kin (Ken) Ma

2024-25 First Term

Department of Electronic Engineering The Chinese University of Hong Kong

Lecture 4: Positive Semidefinite Matrices and Variational Characterizations of Eigenvalues

- positive semidefinite matrices
- application: subspace method for super-resolution spectral analysis
- application: Euclidean distance matrices
- variational characterizations of eigenvalues of real symmetric matrices
- matrix inequalities

Hightlights

• a matrix $\mathbf{A} \in \mathbb{S}^n$ is said to be positive semidefinite (PSD) if

$$\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$$
, for all $\mathbf{x} \in \mathbb{R}^n$;

and positive definite (PD) if

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0, \quad ext{for all } \mathbf{x} \in \mathbb{R}^n ext{ with } \mathbf{x}
eq \mathbf{0}$$

- a matrix $\mathbf{A} \in \mathbb{S}^n$ is PSD (resp. PD)
 - if and only if its eigenvalues are all non-negative (resp. positive);
 - if and only if it can be factored as $\mathbf{A} = \mathbf{B}^T \mathbf{B}$ for some $\mathbf{B} \in \mathbb{R}^{m imes n}$

Highlights

• let $\mathbf{A} \in \mathbb{S}^n$, and let $\lambda_1(\mathbf{A}), \dots, \lambda_n(\mathbf{A})$ be the eigenvalues of \mathbf{A} with ordering

$$\lambda_{\max}(\mathbf{A}) = \lambda_1(\mathbf{A}) \ge \lambda_2(\mathbf{A}) \ge \cdots \ge \lambda_n(\mathbf{A}) = \lambda_{\min}(\mathbf{A})$$

where $\lambda_{\min}(\mathbf{A})$ and $\lambda_{\max}(\mathbf{A})$ denote the min. and max. eigenvalues of \mathbf{A} , resp.

• variational characterizations of $\lambda_{\min}(\mathbf{A})$ and $\lambda_{\max}(\mathbf{A})$:

$$\lambda_{\max}(\mathbf{A}) = \max_{\mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\|_2 = 1} \mathbf{x}^T \mathbf{A} \mathbf{x}, \qquad \lambda_{\min}(\mathbf{A}) = \min_{\mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\|_2 = 1} \mathbf{x}^T \mathbf{A} \mathbf{x}$$

• (Courant-Fischer) for
$$k \in \{1, \ldots, n\}$$
,

$$\lambda_k(\mathbf{A}) = \min_{\mathcal{S}_{n-k+1} \subseteq \mathbb{R}^n} \max_{\mathbf{x} \in \mathcal{S}_{n-k+1}, \|\mathbf{x}\|_2 = 1} \mathbf{x}^T \mathbf{A} \mathbf{x} = \max_{\mathcal{S}_k \subseteq \mathbb{R}^n} \min_{\mathbf{x} \in \mathcal{S}_k, \|\mathbf{x}\|_2 = 1} \mathbf{x}^T \mathbf{A} \mathbf{x}$$

where \mathcal{S}_k denotes a subspace of dimension k

• complex case: the same results apply; replace \mathbb{R} by \mathbb{C} , \mathbb{S} by \mathbb{H} , and "T" by "H"

Quadratic Form

Let $\mathbf{A} \in \mathbb{S}^n$. For $\mathbf{x} \in \mathbb{R}^n$, the matrix product

 $\mathbf{x}^T \mathbf{A} \mathbf{x}$

is called a quadratic form.

• some basic facts (try to verify):

- $\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n x_i x_j a_{ij}$

– it suffices to consider symmetric \mathbf{A} since for general $\mathbf{A} \in \mathbb{R}^{n imes n}$,

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \left[\frac{1}{2} (\mathbf{A} + \mathbf{A}^T) \right] \mathbf{x}$$

- complex case:

* the quadratic form is defined as $\mathbf{x}^H \mathbf{A} \mathbf{x}$, where $\mathbf{x} \in \mathbb{C}^n$

$$*$$
 for $\mathbf{A} \in \mathbb{H}^n$, $\mathbf{x}^H \mathbf{A} \mathbf{x}$ is real for any $\mathbf{x} \in \mathbb{C}^n$

Positive Semidefinite Matrices

A matrix $\mathbf{A} \in \mathbb{S}^n$ is said to be

- positive semidefinite (PSD) if $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$
- positive definite (PD) if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \neq \mathbf{0}$
- \bullet indefinite if ${\bf A}$ is not PSD

Notation:

- $\mathbf{A} \succeq \mathbf{0}$ means that \mathbf{A} is PSD
- $\bullet \ \mathbf{A} \succ \mathbf{0}$ means that \mathbf{A} is PD
- $\bullet \ \mathbf{A} \nsucceq \mathbf{0}$ means that \mathbf{A} is indefinite

Example: Covariance Matrices

- let $\mathbf{y}_0, \mathbf{y}_2, \dots \mathbf{y}_{T-1} \in \mathbb{R}^n$ be a sequence of multi-dimensional data samples
 - examples: patches in image processing, multi-channel signals in signal processing, history of returns of assets in finance [Brodie-Daubechies-et al.'09],
 ...
- sample mean: $\hat{\boldsymbol{\mu}}_y = \frac{1}{T} \sum_{t=0}^{T-1} \mathbf{y}_t$
- sample covariance: $\hat{\mathbf{C}}_y = \frac{1}{T} \sum_{t=0}^{T-1} (\mathbf{y}_t \hat{\boldsymbol{\mu}}_y) (\mathbf{y}_t \hat{\boldsymbol{\mu}}_y)^T$
- a sample covariance is PSD: $\mathbf{x}^T \hat{\mathbf{C}}_y \mathbf{x} = \frac{1}{T} \sum_{t=0}^{T-1} |(\mathbf{y}_t \hat{\boldsymbol{\mu}}_y)^T \mathbf{x}|^2 \ge 0$
- the (statistical) covariance of \mathbf{y}_t is also PSD
 - to put into context, assume that \mathbf{y}_t is a wide-sense stationary random process
 - the covariance, defined as $C_y = E[(y_t \mu_y)(y_t \mu_y)^T]$ where $\mu_y = E[y_t]$, can be shown to be PSD

Example: Hessian

- let $f:\mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function
- the Hessian of f, denoted by $\nabla^2 f(\mathbf{x}) \in \mathbb{S}^n,$ is a matrix whose (i,j)th entry is given by

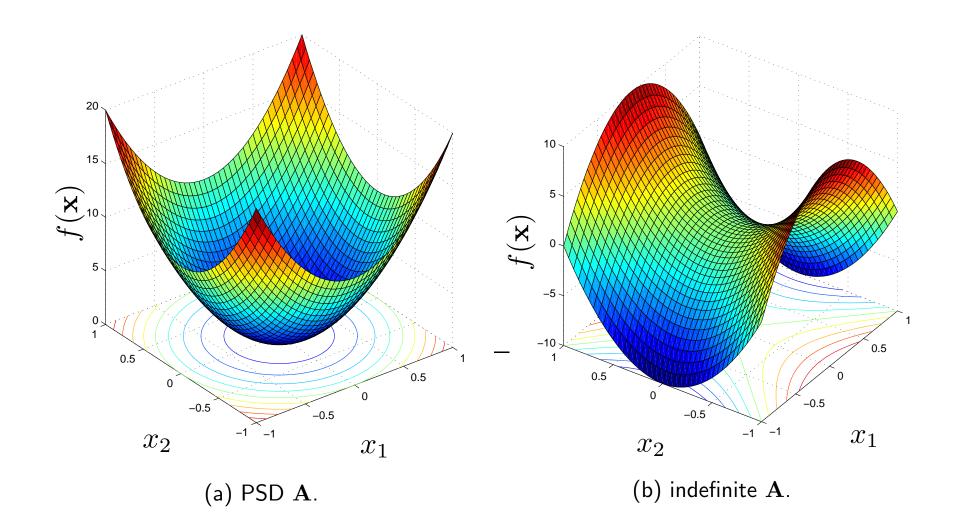
$$\left[\nabla^2 f(\mathbf{x})\right]_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

- Fact: f is convex if and only if $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$ for all \mathbf{x} in the problem domain
- example: consider the quadratic function

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{R}\mathbf{x} + \mathbf{q}^T \mathbf{x} + c$$

It can be verified that $\nabla^2 f(\mathbf{x}) = \mathbf{R}$. Thus, f is convex if and only if $\mathbf{R} \succeq \mathbf{0}$

Illustration of Quadratic Functions



PSD Matrices and Eigenvalues

Theorem 4.1. Let $\mathbf{A} \in \mathbb{S}^n$, and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of \mathbf{A} . We have 1. $\mathbf{A} \succeq \mathbf{0} \iff \lambda_i \ge 0$ for $i = 1, \ldots, n$

- 2. $\mathbf{A} \succ \mathbf{0} \iff \lambda_i > 0$ for $i = 1, \dots, n$
- proof: let $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ be the eigendecomposition of \mathbf{A} .

$$\begin{aligned} \mathbf{A} \succeq \mathbf{0} &\iff \mathbf{x}^T \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T \mathbf{x} \ge 0, \quad \text{ for all } \mathbf{x} \in \mathbb{R}^n \\ &\iff \mathbf{z}^T \mathbf{\Lambda} \mathbf{z} \ge 0, \quad \text{ for all } \mathbf{z} \in \mathcal{R}(\mathbf{V}^T) = \mathbb{R}^n \\ &\iff \sum_{i=1}^n \lambda_i |z_i|^2 \ge 0, \quad \text{ for all } \mathbf{z} \in \mathbb{R}^n \\ &\iff \lambda_i \ge 0 \text{ for all } i \end{aligned}$$

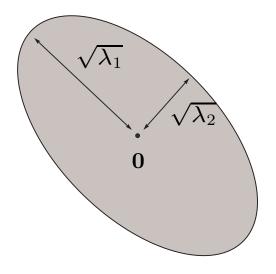
The PD case is proven by the same manner.

Example: Ellipsoid

 \bullet an ellipsoid of \mathbb{R}^n is defined as

$$\mathcal{E} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^T \mathbf{P}^{-1} \mathbf{x} \le 1 \},\$$

for some PD $\mathbf{P} \in \mathbb{S}^n$



- let $\mathbf{P} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ be the eigendecomposition
 - ${\bf V}$ determines the directions of the semi-axes
 - $\lambda_1, \ldots, \lambda_n$ determine the lengths of the semi-axes

Example: Multivariate Gaussian Distribution

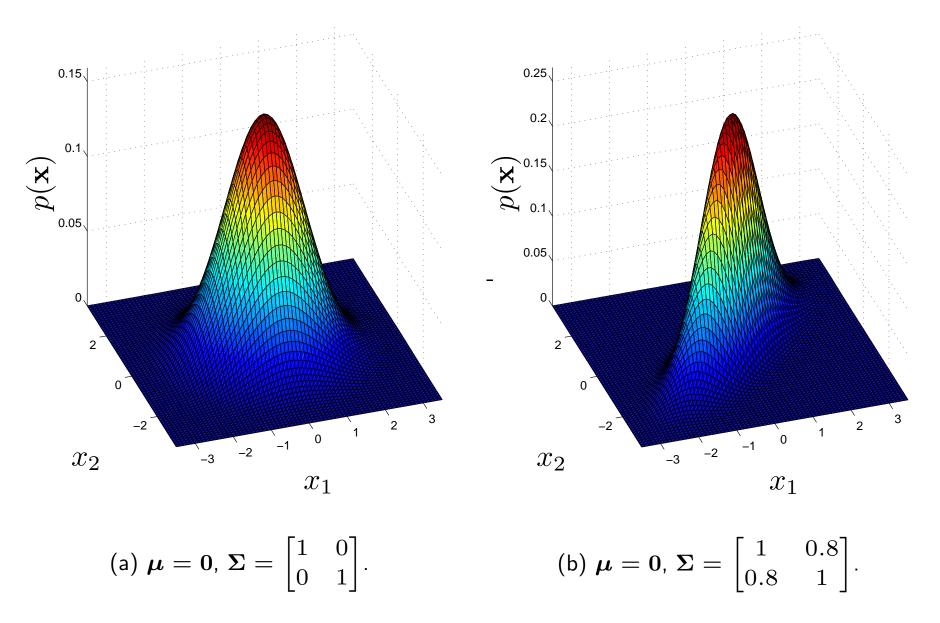
• probability density function for a Gaussian-distributed vector $\mathbf{x} \in \mathbb{R}^n$:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} (\det(\boldsymbol{\Sigma}))^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

where μ and Σ are the mean and covariance of \mathbf{x} , resp.

- Σ is PD
- Σ determines how ${\bf x}$ is spread, by the same way as in ellipsoid

Example: Multivariate Gaussian Distribution



PSD Matrices and Square Root

Theorem 4.2. A matrix $\mathbf{A} \in \mathbb{S}^n$ is PSD if and only if it can be factored as

$\mathbf{A} = \mathbf{B}^T \mathbf{B}$

for some $\mathbf{B} \in \mathbb{R}^{m \times n}$ and for some positive integer m.

• proof:

- sufficiency: $\mathbf{A} = \mathbf{B}^T \mathbf{B} \Longrightarrow \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{B}^T \mathbf{B} \mathbf{x} = \|\mathbf{B} \mathbf{x}\|_2^2 \ge 0$ for all \mathbf{x}
- necessity: let $\Lambda^{1/2} = \text{Diag}(\lambda_1^{1/2}, \dots, \lambda_n^{1/2}).$

 $\mathbf{A} \succeq \mathbf{0} \Longrightarrow \mathbf{A} = (\mathbf{V} \mathbf{\Lambda}^{1/2}) (\mathbf{\Lambda}^{1/2} \mathbf{V}^T), \text{ with } \mathbf{\Lambda}^{1/2} \mathbf{V}^T \text{ being real}$

PSD Matrices and Square Root

- the factorization $\mathbf{A} = \mathbf{B}^T \mathbf{B}$ has *non-unique* factor \mathbf{B}
 - for any orthogonal $\mathbf{U} \in \mathbb{R}^{n imes n}$, $\mathbf{B} = \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{V}^T$ is a factor for $\mathbf{A} = \mathbf{B}^T \mathbf{B}$
- denote

$$\mathbf{A}^{1/2} = \mathbf{V} \mathbf{\Lambda}^{1/2} \mathbf{V}^T.$$

- $\mathbf{B} = \mathbf{A}^{1/2}$ is a factor for $\mathbf{A} = \mathbf{B}^T \mathbf{B}$
- $\mathbf{A}^{1/2}$ is also a symmetric factor
- $\mathbf{A}^{1/2}$ is the *unique PSD* factor for $\mathbf{A} = \mathbf{B}^T \mathbf{B}$ (how to prove it?)
- $\mathbf{A}^{1/2}$ is called the PSD square root of \mathbf{A}
 - note: in general, a matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ is said to be a square root of another matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ if $\mathbf{A} = \mathbf{B}^2$

Some Properties of PSD Matrices

- it can be directly seen from the definition that
 - $\mathbf{A} \succeq \mathbf{0} \Longrightarrow a_{ii} \ge 0$ for all i
 - $\mathbf{A} \succ \mathbf{0} \Longrightarrow a_{ii} > 0$ for all i
- \bullet extension (also direct): partition ${\bf A}$ as

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

Then, $\mathbf{A} \succeq \mathbf{0} \Longrightarrow \mathbf{A}_{11} \succeq \mathbf{0}, \mathbf{A}_{22} \succeq \mathbf{0}$. Also, $\mathbf{A} \succ \mathbf{0} \Longrightarrow \mathbf{A}_{11} \succ \mathbf{0}, \mathbf{A}_{22} \succ \mathbf{0}$

- further extension:
 - a principal submatrix of \mathbf{A} , denoted by $\mathbf{A}_{\mathcal{I}}$, where $\mathcal{I} = \{i_1, \ldots, i_m\} \subseteq \{1, \ldots, n\}$, m < n, is a submatrix obtained by keeping only the rows and columns indicated by \mathcal{I} ; i.e., $[\mathbf{A}_{\mathcal{I}}]_{jk} = a_{i_j,i_k}$ for all $j, k \in \{1, \ldots, m\}$
 - if A is PSD (resp. PD), then any principal submatrix of A is PSD (resp. PD)

Some Properties of PSD Matrices

Property 4.1. Let $\mathbf{A} \in \mathbb{S}^n$, $\mathbf{B} \in \mathbb{R}^{n \times m}$, and

$$\mathbf{C} = \mathbf{B}^T \mathbf{A} \mathbf{B}.$$

We have the following properties:

1. $\mathbf{A} \succeq \mathbf{0} \Longrightarrow \mathbf{C} \succeq \mathbf{0}$

- 2. suppose $\mathbf{A}\succ \mathbf{0}.$ It holds that $\mathbf{C}\succ \mathbf{0} \Longleftrightarrow \ \mathbf{B}$ has full column rank
- 3. suppose B is nonsingular. It holds that $A\succ 0 \Longleftrightarrow C\succ 0$, and that $A\succeq 0 \Longleftrightarrow C\succeq 0$.
- proof sketch: the 1st property is trivial. For the 2nd property, observe

$$\mathbf{C} \succ \mathbf{0} \Longleftrightarrow \mathbf{z}^T \mathbf{A} \mathbf{z} > \mathbf{0}, \ \forall \ \mathbf{z} \in \mathcal{R}(\mathbf{B}) \setminus \{\mathbf{0}\}.$$
(*)

If $A \succ 0$, (*) reduces to $C \succ 0 \iff Bx \neq 0$, $\forall x \neq 0$ (or B has full column rank). The 3rd property is proven by the similar manner.

Properties for Symmetric Factorization

Property 4.2. Let $A \in \mathbb{R}^{m \times k}$ and $B \in \mathbb{R}^{k \times n}$, and suppose that B has full row rank. Then

$$\mathcal{R}(\mathbf{AB}) = \mathcal{R}(\mathbf{A})$$

- proof:
 - observe that $\dim \mathcal{R}(\mathbf{B}) = \operatorname{rank}(\mathbf{B}) = k$, which implies $\mathcal{R}(\mathbf{B}) = \mathbb{R}^k$.
 - we have $\mathcal{R}(\mathbf{AB}) = \{\mathbf{y} = \mathbf{Az} \mid \mathbf{z} \in \mathcal{R}(\mathbf{B})\} = \{\mathbf{y} = \mathbf{Az} \mid \mathbf{z} \in \mathbb{R}^k\} = \mathcal{R}(\mathbf{A}).$
- corollary: let **R** be a PSD matrix. Suppose that we factor **R** as $\mathbf{R} = \mathbf{B}\mathbf{B}^T$ for some full-column rank **B**. Then, $\mathcal{R}(\mathbf{R}) = \mathcal{R}(\mathbf{B})$.

Properties for Symmetric Factorization

Property 4.3. Let $\mathbf{B} \in \mathbb{R}^{n \times k}$, $\mathbf{C} \in \mathbb{R}^{n \times k}$ be full-column rank matrices. It holds that

 $\mathbf{B}\mathbf{B}^T = \mathbf{C}\mathbf{C}^T \quad \Longleftrightarrow \quad \mathbf{C} = \mathbf{B}\mathbf{Q}$ for some orthogonal $\mathbf{Q} \in \mathbb{R}^{k imes k}$

 \bullet proof: we consider " \Longrightarrow " only, as " \Longleftarrow " is trivial

- suppose
$$\mathbf{B}\mathbf{B}^T = \mathbf{C}\mathbf{C}^T$$
.

– from

 $\mathbf{I} = (\mathbf{B}^{\dagger}\mathbf{B})(\mathbf{B}^{\dagger}\mathbf{B})^{T} = \mathbf{B}^{\dagger}(\mathbf{B}\mathbf{B}^{T})(\mathbf{B}^{\dagger})^{T} = \mathbf{B}^{\dagger}(\mathbf{C}\mathbf{C}^{T})(\mathbf{B}^{\dagger})^{T} = (\mathbf{B}^{\dagger}\mathbf{C})(\mathbf{B}^{\dagger}\mathbf{C})^{T},$ we see that $\mathbf{B}^{\dagger}\mathbf{C}$ is orthogonal (note that $\mathbf{B}^{\dagger}\mathbf{C}$ is square).

– let $\mathbf{Q} = \mathbf{B}^{\dagger}\mathbf{C}$. We have $\mathbf{B}\mathbf{Q} = \mathbf{B}\mathbf{B}^{\dagger}\mathbf{C} = \mathbf{P}_{\mathbf{B}}\mathbf{C}$, or equivalently,

$$\mathbf{Bq}_i = \Pi_{\mathcal{R}(\mathbf{B})}(\mathbf{c}_i), \quad i = 1, \dots, k.$$

- from Property 4.2 we see that $\mathcal{R}(\mathbf{B}) = \mathcal{R}(\mathbf{B}\mathbf{B}^T) = \mathcal{R}(\mathbf{C}\mathbf{C}^T) = \mathcal{R}(\mathbf{C})$. It follows that $\Pi_{\mathcal{R}(\mathbf{B})}(\mathbf{c}_i) = \mathbf{c}_i$ for all i.

Application: Spectral Analysis

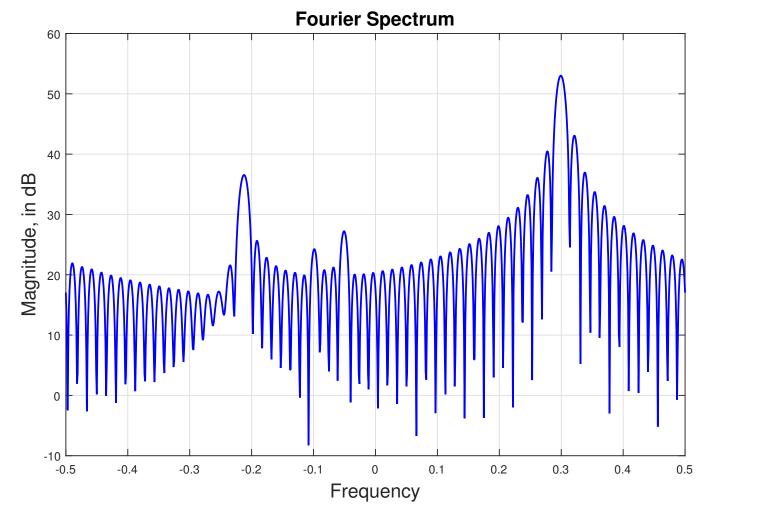
• consider the complex harmonic time-series

$$y_t = \sum_{i=1}^k \alpha_i e^{j2\pi f_i t} + w_t, \quad t = 0, 1, \dots, T-1$$

where $\alpha_i \in \mathbb{C}$ is the amplitude-phase coefficient of the *i*th sinusoid; $f_i \in \left[-\frac{1}{2}, \frac{1}{2}\right)$ is the frequency of the *i*th sinusoid; w_t is noise; T is the observation time length

- Aim: estimate the frequencies f_1, \ldots, f_k from $\{y_t\}_{t=0}^{T-1}$
 - can be done by applying the Fourier transform
 - the spectral resolution of Fourier-based methods is often limited by ${\cal T}$
- our interest: study a subspace approach which can enable "super-resolution"
- suggested reading: [Stoica-Moses'97]

Application: Spectral Analysis



An illustration of the Fourier spectrum. $T = 64, k = 5, \{f_1, \dots, f_k\} = \{-0.213, -0.1, -0.05, 0.3, 0.315\}.$

Spectral Analysis via Subspace: Formulation

• let $z_i = e^{j2\pi f_i}$. Given a positive integer d, let

$$\mathbf{y}_{t} = \begin{bmatrix} y_{t} \\ y_{t+1} \\ \vdots \\ y_{t-d+1} \end{bmatrix} = \sum_{i=1}^{k} \alpha_{i} \begin{bmatrix} z_{i}^{t} \\ z_{i}^{t+1} \\ \vdots \\ z_{i}^{t+d-1} \end{bmatrix} + \begin{bmatrix} w_{t} \\ w_{t+1} \\ \vdots \\ w_{t+d-1} \end{bmatrix} = \sum_{i=1}^{k} \alpha_{i} \underbrace{\begin{bmatrix} 1 \\ z_{i} \\ \vdots \\ z_{i}^{d-1} \end{bmatrix}}_{=\mathbf{a}_{i}} z_{i}^{t} + \underbrace{\begin{bmatrix} w_{t} \\ w_{t+1} \\ \vdots \\ w_{t-d+1} \end{bmatrix}}_{\mathbf{w}_{t}}$$

• let $\mathbf{Y} = [\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_{T_d-1}]$ where $T_d = T - d + 1$. We can write

 $\mathbf{Y} = \mathbf{ADS} + \mathbf{W},$

where $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_k]$, $\mathbf{D} = \text{Diag}(\alpha_1, \dots, \alpha_k)$, $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_{T_d-1}]$, $\mathbf{S} = \begin{bmatrix} 1 & z_1 & z_1^2 & \dots & z_1^{T_d-1} \\ 1 & z_2 & z_2^2 & \dots & z_2^{T_d-1} \\ \vdots & & & \vdots \\ 1 & z_k & z_k^2 & \dots & z_k^{T_d-1} \end{bmatrix}$

Spectral Analysis via Subspace: Formulation

• let
$$\mathbf{R}_{y} = \frac{1}{T_{d}} \sum_{t=0}^{T_{d}-1} \mathbf{y}_{t} \mathbf{y}_{t}^{H} = \frac{1}{T_{d}} \mathbf{Y} \mathbf{Y}^{H}$$
 be the correlation matrix of \mathbf{y}_{t} . We have
 $\mathbf{R}_{y} = \mathbf{A} \underbrace{\left(\frac{1}{T_{d}} \mathbf{D} \mathbf{S} \mathbf{S}^{H} \mathbf{D}^{H}\right)}_{=\mathbf{\Phi}} \mathbf{A}^{H} + \frac{1}{T_{d}} \mathbf{A} \mathbf{D} \mathbf{S} \mathbf{W}^{H} + \frac{1}{T_{d}} \mathbf{W} \mathbf{S}^{H} \mathbf{D}^{H} \mathbf{A}^{H} + \frac{1}{T_{d}} \mathbf{W} \mathbf{W}^{H}$

• (this requires knowledge of random processes) assume that w_t is a temporally white circular Gaussian process with mean zero and variance σ^2 . Then, as $T_d \to \infty$,

$$\frac{1}{T_d} \mathbf{S} \mathbf{W}^H \to \mathbf{0}, \qquad \frac{1}{T_d} \mathbf{W} \mathbf{W}^H \to \sigma^2 \mathbf{I}$$

Spectral Analysis via Subspace: Formulation

- let us summarize
- Model: the correlation matrix $\mathbf{R}_y = \frac{1}{T_d} \mathbf{Y} \mathbf{Y}^H$ is modeled as

$$\mathbf{R}_y = \mathbf{A} \mathbf{\Phi} \mathbf{A}^H + \sigma^2 \mathbf{I}$$

where $\sigma^2 > 0$ is the noise power; $\mathbf{\Phi} = \frac{1}{T_d} \mathbf{D} \mathbf{S} \mathbf{S}^H \mathbf{D}^H$; $\mathbf{D} = \text{Diag}(\alpha_1, \dots, \alpha_k)$;

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_1 & z_2 & & z_k \\ \vdots & \vdots & & \vdots \\ z_1^{d-1} & z_2^{d-1} & \dots & z_k^{d-1} \end{bmatrix} \in \mathbb{C}^{d \times k}, \ \mathbf{S} = \begin{bmatrix} 1 & z_1 & z_1^2 & \dots & z_1^{T_d-1} \\ 1 & z_2 & z_2^2 & \dots & z_2^{T_d-1} \\ \vdots & & & \vdots \\ 1 & z_k & z_k^2 & \dots & z_k^{T_d-1} \end{bmatrix} \in \mathbb{C}^{k \times T_d},$$

with $z_i = e^{j2\pi f_i}$

 \bullet observation: $\, {\bf A} \,$ and ${\bf S} \,$ are both Vandemonde

- Assumptions: i) $\alpha_i \neq 0$ for all i, ii) $f_i \neq f_j$ for all $i \neq j$, iii) d > k, iv) $T_d \ge k$
- results:
 - ${\bf A}$ has full column rank, ${\bf S}$ has full row rank
 - Φ is positive definite (and thus nonsingular)
 - * proof: $\mathbf{x}^H \mathbf{D} \mathbf{S} \mathbf{S}^H \mathbf{D}^H \mathbf{x} = \|\mathbf{S}^H \mathbf{D}^H \mathbf{x}\|_2^2$, and $\mathbf{S}^H \mathbf{D}^H \mathbf{x} = \mathbf{0}$ if and only if \mathbf{S}^H does not have full column rank

-
$$\mathcal{R}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^{H}) = \mathcal{R}(\mathbf{A})$$
, by Property 4.2

- rank $(\mathbf{A} \Phi \mathbf{A}^H)$ = rank $(\mathbf{A}) = k$, thus $\mathbf{A} \Phi \mathbf{A}^H$ has k nonzero eigenvalues

- consider the eigendecomposition of $\mathbf{A} \Phi \mathbf{A}^{H}$. Let $\mathbf{A} \Phi \mathbf{A}^{H} = \mathbf{V} \Lambda \mathbf{V}^{H}$ and assume $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{d}$.
- since $\lambda_i > 0$ for $i = 1, \dots, k$ and $\lambda_i = 0$ for $i = k + 1, \dots, d$,

$$\mathbf{A} \mathbf{\Phi} \mathbf{A}^{H} = \begin{bmatrix} \mathbf{V}_{1} & \mathbf{V}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{\Lambda}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1}^{H} \\ \mathbf{V}_{2}^{H} \end{bmatrix} = \mathbf{V}_{1} \mathbf{\Lambda}_{1} \mathbf{V}_{1}^{H}$$

where $\mathbf{V}_1 = [\mathbf{v}_1, \dots, \mathbf{v}_k] \in \mathbb{C}^{d \times k}$, $\mathbf{V}_2 = [\mathbf{v}_{k+1}, \dots, \mathbf{v}_d] \in \mathbb{C}^{d \times (d-k)}$, $\Lambda_1 = \text{Diag}(\lambda_1, \dots, \lambda_k)$.

- result: $\mathcal{R}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H) = \mathcal{R}(\mathbf{V}_1)$, $\mathcal{R}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H)^{\perp} = \mathcal{R}(\mathbf{V}_2)$

• consider the eigendecomposition of \mathbf{R}_y . Observe

$$\mathbf{R}_{y} = \begin{bmatrix} \mathbf{V}_{1} & \mathbf{V}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{\Lambda}_{1} + \sigma^{2}\mathbf{I} & \mathbf{0} \\ \mathbf{0} & \sigma^{2}\mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1}^{H} \\ \mathbf{V}_{2}^{H} \end{bmatrix}$$

- results:
 - $\mathbf{V}(\mathbf{\Lambda} + \sigma^2 \mathbf{I})\mathbf{V}^H$ is the eigendecomposition of \mathbf{R}_y
 - V_1 can be obtained from R_y by finding the eigenvectors associated with the first k largest eigenvalues of R_y

- let us summarize
- compute the eigenvector matrix $\mathbf{V} \in \mathbb{C}^{d \times d}$ of \mathbf{R}_y . Partition $\mathbf{V} = [\mathbf{V}_1, \mathbf{V}_2]$ where $\mathbf{V}_1 \in \mathbb{C}^{n \times k}$ corresponds the first k largest eigenvalues. Then,

$$\mathcal{R}(\mathbf{V}_1) = \mathcal{R}(\mathbf{A}), \qquad \mathcal{R}(\mathbf{V}_2) = \mathcal{R}(\mathbf{A})^{\perp}$$

• Idea of subspace methods: let

$$\mathbf{a}(z) = \begin{bmatrix} 1\\ z\\ \vdots\\ z^{d-1} \end{bmatrix}$$

Find any $f \in [-\frac{1}{2}, \frac{1}{2})$ that satisfies $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A})$.

- Question: it is true that $f \in \{f_1, \dots, f_k\}$ implies $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A})$. But is it also true that $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A})$ implies $f \in \{f_1, \dots, f_k\}$?
- The answer is yes if d > k. The following matrix result gives the answer.

Theorem 4.3. Let $\mathbf{A} \in \mathbb{C}^{d \times k}$ any Vandemonde matrix with distinct roots z_1, \ldots, z_k and with $d \ge k + 1$. Then it holds that

$$z \in \{z_1, \ldots, z_k\} \quad \Longleftrightarrow \quad \mathbf{a}(z) \in \mathcal{R}(\mathbf{A}).$$

- proof of Theorem 4.3: " \Longrightarrow " is trivial, and we consider " \Leftarrow "
 - suppose there exists $\bar{z} \notin \{z_1, \ldots, z_k\}$ such that $\mathbf{a}(\bar{z}) \in \mathcal{R}(\mathbf{A})$.

- let
$$\tilde{\mathbf{A}} = [\mathbf{a}(\bar{z}) \mathbf{A}] \in \mathbb{C}^{d \times (k+1)}$$
.

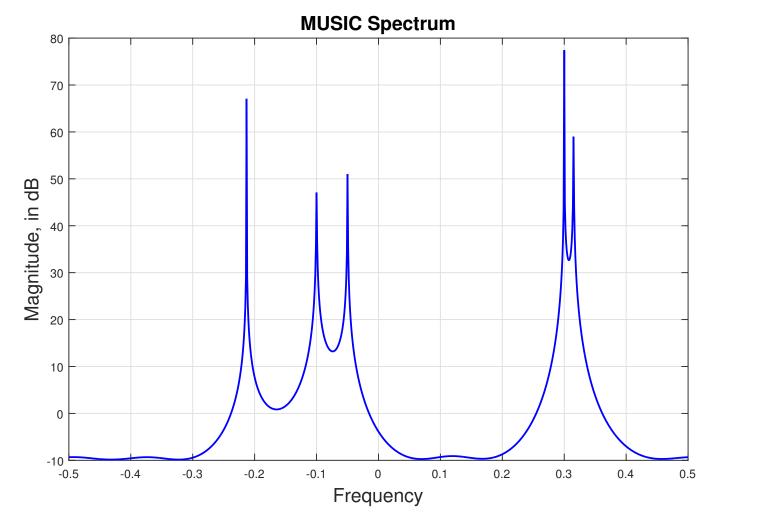
- $\mathbf{a}(\bar{z}) \in \mathcal{R}(\mathbf{A})$ implies that $\tilde{\mathbf{A}}$ has linearly dependent columns
- however, $\tilde{\mathbf{A}}$ is Vandemonde with distinct roots $\bar{z}, z_1, \ldots, z_k$, and for $d \ge k+1$ $\tilde{\mathbf{A}}$ must have linearly independent columns—a contradiction

Spectral Analysis via Subspace: Algorithm

- there are many subspace methods, and multiple signal classification (MUSIC) is most well-known
- MUSIC uses the fact that $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A}) \iff \mathbf{V}_2^H \mathbf{a}(e^{\mathbf{j}2\pi f}) = \mathbf{0}$

Algorithm: MUSIC input: the correlation matrix $\mathbf{R}_{y} \in \mathbb{C}^{d \times d}$ and the model order k < dPerform eigendecomposition $\mathbf{R}_{y} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{H}$ with $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{d}$. Let $\mathbf{V}_{2} = [\mathbf{v}_{k+1}, \ldots, \mathbf{v}_{d}]$, and compute $S(f) = \frac{1}{\|\mathbf{V}_{2}^{H}\mathbf{a}(e^{j2\pi f})\|_{2}^{2}}$ for $f \in [-\frac{1}{2}, \frac{1}{2})$ (done by discretization). **output:** S(f)

Spectral Analysis via Subspace: Algorithm

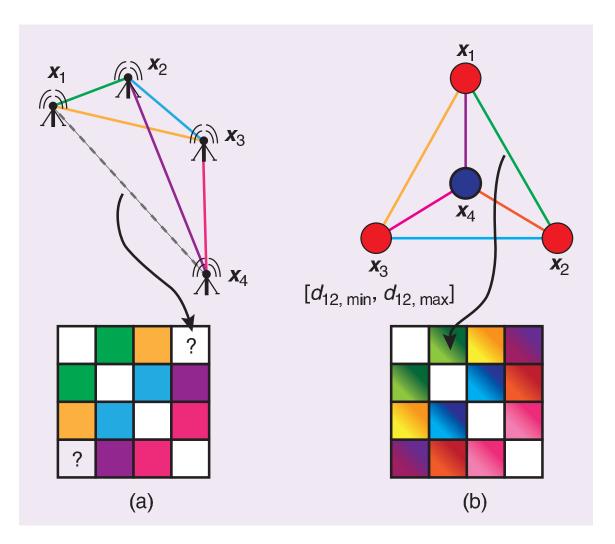


An illustration of the MUSIC spectrum. $T = 64, k = 5, \{f_1, \dots, f_k\} = \{-0.213, -0.1, -0.05, 0.3, 0.315\}.$

Application: Euclidean Distance Matrices

- let $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ be a collection of points, and let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$
- let $d_{ij} = \|\mathbf{x}_i \mathbf{x}_j\|_2$ be the Euclidean distance between points i and j
- Problem: given d_{ij} 's for all $i, j \in \{1, \ldots, n\}$, recover **X**
 - this problem is called the Euclidean distance matrix (EDM) problem
- applications: sensor network localization (SNL), molecule conformation,
- suggested reading: [Dokmanić-Parhizkar-et al.'15]

EDM Applications



(a) SNL. (b) Molecular transformation. Source: [Dokmanić-Parhizkar-et al.'15]

EDM: Formulation

- let $\mathbf{R} \in \mathbb{R}^{n imes n}$ be matrix whose entries are $r_{ij} = d_{ij}^2$ for all i, j
- from

$$r_{ij} = d_{ij}^2 = \|\mathbf{x}_i\|_2^2 - 2\mathbf{x}_i^T \mathbf{x}_j + \|\mathbf{x}_j\|_2^2,$$

we see that ${\bf R}$ can be written as

$$\mathbf{R} = \mathbf{1}(\operatorname{diag}(\mathbf{X}^T \mathbf{X}))^T - 2\mathbf{X}^T \mathbf{X} + (\operatorname{diag}(\mathbf{X}^T \mathbf{X}))\mathbf{1}^T$$
(*)

where the notation diag means that $diag(\mathbf{Y}) = [y_{11}, \ldots, y_{nn}]^T$ for any square \mathbf{Y}

 \bullet observation: (*) also holds if we replace ${\bf X}$ by

-
$$ilde{\mathbf{X}} = [\mathbf{x}_1 + \mathbf{b}, \dots, \mathbf{x}_n + \mathbf{b}]$$
 for any $\mathbf{b} \in \mathbb{R}^d$ $(d_{ij} = \| ilde{\mathbf{x}}_i - ilde{\mathbf{x}}_j\|_2$ is also true)

-
$$ilde{\mathbf{X}} = \mathbf{Q}\mathbf{X}$$
 for any orthogonal \mathbf{Q} $(ilde{\mathbf{X}}^T ilde{\mathbf{X}} = \mathbf{X}^T\mathbf{X})$

- \bullet implication: recovery of ${\bf X}$ from ${\bf R}$ is subjected to translations and rotations/reflections
 - in SNL we can use anchors to fix this issue

EDM: Formulation

• assume $\mathbf{x}_1 = \mathbf{0}$ w.l.o.g. Then,

$$\mathbf{r}_{1} = \begin{bmatrix} \|\mathbf{x}_{1} - \mathbf{x}_{1}\|_{2}^{2} \\ \|\mathbf{x}_{2} - \mathbf{x}_{1}\|_{2}^{2} \\ \vdots \\ \|\mathbf{x}_{n} - \mathbf{x}_{1}\|_{2}^{2} \end{bmatrix} = \begin{bmatrix} 0 \\ \|\mathbf{x}_{2}\|_{2}^{2} \\ \vdots \\ \|\mathbf{x}_{n}\|_{2}^{2} \end{bmatrix}, \quad \operatorname{diag}(\mathbf{X}^{T}\mathbf{X}) = \begin{bmatrix} \|\mathbf{x}_{1}\|_{2}^{2} \\ \|\mathbf{x}_{2}\|_{2}^{2} \\ \vdots \\ \|\mathbf{x}_{n}\|_{2}^{2} \end{bmatrix} = \mathbf{r}_{1}$$

• construct from ${f R}$ the following matrix

$$\mathbf{G} = -\frac{1}{2}(\mathbf{R} - \mathbf{1}\mathbf{r}_1^T - \mathbf{r}_1\mathbf{1}^T).$$

We have

$$\mathbf{G} = \mathbf{X}^T \mathbf{X}$$

• idea: do a symmetric factorization for \mathbf{G} to try to recover \mathbf{X}

EDM: Method

- \bullet assumption: ${\bf X}$ has full row rank
- G is PSD and has rank(G) = d
- denote the eigendecomposition of G as $\mathbf{G} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$. Assuming $\lambda_1 \geq \ldots \geq \lambda_n$, it takes the form

$$\mathbf{G} = \begin{bmatrix} \mathbf{V}_1 & \mathbf{V}_2 \end{bmatrix} \begin{bmatrix} \mathbf{\Lambda}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix} = (\mathbf{\Lambda}^{1/2} \mathbf{V}_1^T)^T (\mathbf{\Lambda}^{1/2} \mathbf{V}_1^T)$$

where $\mathbf{V}_1 \in \mathbb{R}^{n imes d}$, $\mathbf{\Lambda}_1 = \mathrm{Diag}(\lambda_1, \ldots, \lambda_d)$

- EDM solution: take $\hat{\mathbf{X}} = \mathbf{\Lambda}^{1/2} \mathbf{V}_1^T$ as an estimate of \mathbf{X}
- recovery guarantee: by Property 4.3, we have $\hat{\mathbf{X}} = \mathbf{Q}\mathbf{X}$ for some orthogonal \mathbf{Q}

EDM: Further Discussion

- in applications such as SNL, not all pairwise distances d_{ij} 's are available
- $\bullet\,$ or, there are missing entries with ${\bf R}\,$
- \bullet possible solution: apply low-rank matrix completion to try to recover the full ${\bf R}$
- \bullet to use low-rank matrix completion, we need to know a rank bound on ${\bf R}$
- by the result $\mathrm{rank}(\mathbf{A}+\mathbf{B}) \leq \mathrm{rank}(\mathbf{A}) + \mathrm{rank}(\mathbf{B})$, we get

 $\operatorname{rank}(\mathbf{R}) \leq \operatorname{rank}(\mathbf{1}(\operatorname{diag}(\mathbf{X}^T\mathbf{X}))^T) + \operatorname{rank}(-2\mathbf{X}^T\mathbf{X}) + \operatorname{rank}((\operatorname{diag}(\mathbf{X}^T\mathbf{X}))\mathbf{1}^T)$ $\leq 1 + d + 1 = d + 2$

• other issues: noisy distance measurements, resolving the orthogonal rotation problem with $\hat{\mathbf{X}}$. See the suggested reference [Dokmanić-Parhizkar-*et al.*'15].

Variational Characterizations of Eigenvalues of Real Symmetric Matrices

Notation and Conventions:

• $\lambda_1(\mathbf{A}), \dots, \lambda_n(\mathbf{A})$ denote the eigenvalues of a given $\mathbf{A} \in \mathbb{S}^n$ with ordering

$$\lambda_{\max}(\mathbf{A}) = \lambda_1(\mathbf{A}) \geq \lambda_2(\mathbf{A}) \geq \ldots \geq \lambda_n(\mathbf{A}) = \lambda_{\min}(\mathbf{A}),$$

where $\lambda_{\min}(\mathbf{A})$ and $\lambda_{\max}(\mathbf{A})$ denote the smallest and largest eigenvalues, resp.

• if not specified, $\lambda_1, \ldots, \lambda_n$ will be used to denote the eigenvalues of $\mathbf{A} \in \mathbb{S}^n$; they also follow the ordering

$$\lambda_{\max} = \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n = \lambda_{\min}.$$

Also, $\mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ will be used to denote the eigendecomposition of $\mathbf{A} \in \mathbb{S}^n$

Variational Characterizations of Eigenvalues

- let $\mathbf{A} \in \mathbb{S}^n$.
- for any $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \neq \mathbf{0}$, the ratio

$$\frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

is called the Rayleigh quotient.

• our interest: quadratic optimization such as

$$\max_{\mathbf{x}\in\mathbb{R}^{n},\mathbf{x}\neq\mathbf{0}} \frac{\mathbf{x}^{T}\mathbf{A}\mathbf{x}}{\mathbf{x}^{T}\mathbf{x}} = \max_{\mathbf{x}\in\mathbb{R}^{n},\|\mathbf{x}\|_{2}=1} \mathbf{x}^{T}\mathbf{A}\mathbf{x}$$
$$\min_{\mathbf{x}\in\mathbb{R}^{n},\mathbf{x}\neq\mathbf{0}} \frac{\mathbf{x}^{T}\mathbf{A}\mathbf{x}}{\mathbf{x}^{T}\mathbf{x}} = \min_{\mathbf{x}\in\mathbb{R}^{n},\|\mathbf{x}\|_{2}=1} \mathbf{x}^{T}\mathbf{A}\mathbf{x}$$

Variational Characterizations of Eigenvalues: Rayleigh-Ritz

Theorem 4.4 (Rayleigh-Ritz). Let $\mathbf{A} \in \mathbb{S}^n$. It holds that

$$\lambda_{\min} \|\mathbf{x}\|_{2}^{2} \leq \mathbf{x}^{T} \mathbf{A} \mathbf{x} \leq \lambda_{\max} \|\mathbf{x}\|_{2}^{2}$$
$$\lambda_{\min} = \min_{\mathbf{x} \in \mathbb{R}^{n}, \|\mathbf{x}\|_{2}=1} \mathbf{x}^{T} \mathbf{A} \mathbf{x}, \qquad \lambda_{\max} = \max_{\mathbf{x} \in \mathbb{R}^{n}, \|\mathbf{x}\|_{2}=1} \mathbf{x}^{T} \mathbf{A} \mathbf{x}$$

• proof:

– by a change of variable
$$\mathbf{y} = \mathbf{V}^T \mathbf{x}$$
, we have

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{y}^T \mathbf{A} \mathbf{y} = \sum_{i=1}^n \lambda_i |y_i|^2 \le \lambda_1 \sum_{i=1}^n |y_i|^2 = \lambda_1 \|\mathbf{V}^T \mathbf{x}\|_2^2 = \lambda_1 \|\mathbf{x}\|_2^2$$

– we thus have
$$\max_{\|\mathbf{x}\|_2=1} \mathbf{x}^T \mathbf{A} \mathbf{x} \leq \lambda_1$$

- since $\mathbf{v}_1^T \mathbf{A} \mathbf{v}_1 = \lambda_1$, the above equality is attained
- the results $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq \lambda_n \|\mathbf{x}\|_2^2$ and $\min_{\|\mathbf{x}\|_2=1} \mathbf{x}^T \mathbf{A} \mathbf{x} = \lambda_n$ are proven by the same way

Variational Characterizations of Eigenvalues: Courant-Fischer

Question: how about λ_k for any $k \in \{1, \ldots, n\}$? Do we have a similar variational characterization as that in the Rayleigh-Ritz theorem?

Theorem 4.5 (Courant-Fischer). Let $\mathbf{A} \in \mathbb{S}^n$, and let \mathcal{S}_k denote any subspace of \mathbb{R}^n and of dimension k. For any $k \in \{1, \ldots, n\}$, it holds that

$$\lambda_{k} = \min_{\substack{\mathcal{S}_{n-k+1} \subseteq \mathbb{R}^{n} \\ \mathcal{S}_{k} \subseteq \mathbb{R}^{n}}} \max_{\mathbf{x} \in \mathcal{S}_{n-k+1}, \|\mathbf{x}\|_{2} = 1} \mathbf{x}^{T} \mathbf{A} \mathbf{x}}$$
$$= \max_{\substack{\mathcal{S}_{k} \subseteq \mathbb{R}^{n} \\ \mathbf{x} \in \mathcal{S}_{k}, \|\mathbf{x}\|_{2} = 1}} \mathbf{x}^{T} \mathbf{A} \mathbf{x}}$$

• proof: see the accompanying note

Variational Characterizations of Eigenvalues: More Results

The Courant-Fischer theorem and its variants lead to a rich collection of eigenvalue inequalities: For $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n$, $\mathbf{z} \in \mathbb{R}^n$,

- (Weyl) $\lambda_k(\mathbf{A}) + \lambda_n(\mathbf{B}) \le \lambda_k(\mathbf{A} + \mathbf{B}) \le \lambda_k(\mathbf{A}) + \lambda_1(\mathbf{B}), \ k = 1, \dots, n$
- (interlacing) $\lambda_{k+1}(\mathbf{A}) \leq \lambda_k(\mathbf{A} \pm \mathbf{z}\mathbf{z}^T) \leq \lambda_{k-1}(\mathbf{A})$ for appropriate k
- if $\operatorname{rank}(\mathbf{B}) \leq r$, then $\lambda_{k+r}(\mathbf{A}) \leq \lambda_k(\mathbf{A} + \mathbf{B}) \leq \lambda_{k-r}(\mathbf{A})$ for appropriate k
- (Weyl) $\lambda_{j+k-1}(\mathbf{A} + \mathbf{B}) \leq \lambda_j(\mathbf{A}) + \lambda_k(\mathbf{B})$ for appropriate j, k
- for any semi-orthogonal $\mathbf{U} \in \mathbb{R}^{n \times r}$, $\lambda_{k+n-r}(\mathbf{A}) \leq \lambda_k(\mathbf{U}^T \mathbf{A} \mathbf{U}) \leq \lambda_k(\mathbf{A})$ for appropriate k
- many more...

Variational Characterizations of Eigenvalues: More Results

An extension of the variational characterization to a sum of eigenvalues:

Theorem 4.6. Let $\mathbf{A} \in \mathbb{S}^n$. it holds that

$$\sum_{i=1}^{r} \lambda_i = \max_{\substack{\mathbf{U} \in \mathbb{R}^{n \times r} \\ \|\mathbf{u}_i\|_2 = 1 \ \forall i, \ \mathbf{u}_i^T \mathbf{u}_j = 0 \ \forall i \neq j}} \sum_{i=1}^{r} \mathbf{u}_i^T \mathbf{A} \mathbf{u}_i = \max_{\substack{\mathbf{U} \in \mathbb{R}^{n \times r} \\ \mathbf{U}^T \mathbf{U} = \mathbf{I}}} \operatorname{tr}(\mathbf{U}^T \mathbf{A} \mathbf{U})$$

• can be proved by the eigenvalue inequality $\lambda_k(\mathbf{U}^T \mathbf{A} \mathbf{U}) \leq \lambda_k(\mathbf{A})$

Variational Characterizations of Eigenvalues: More Results

Some more results (the proofs require more than just the Courant-Fischer theorem):

• (von Neumann) Let $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n$. It holds that

$$\sum_{i=1}^n \lambda_i(\mathbf{A})\lambda_{n-i+1}(\mathbf{B}) \le \operatorname{tr}(\mathbf{A}\mathbf{B}) \le \sum_{i=1}^n \lambda_i(\mathbf{A})\lambda_i(\mathbf{B}).$$

• (Lidskii) Let $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n$. For any $1 \le i_1 \le i_2 \le \cdots \le i_k$,

$$\sum_{j=1}^k \lambda_{i_j}(\mathbf{A} + \mathbf{B}) \le \sum_{j=1}^k \lambda_{i_j}(\mathbf{A}) + \sum_{j=1}^k \lambda_j(\mathbf{B}).$$

PSD Matrix Inequalities

- the notion of PSD matrices can be used to define inequalities for matrices
- PSD matrix inequalities are frequently used in topics like semidefinite programming
- definition:
 - $\mathbf{A} \succeq \mathbf{B}$ means that $\mathbf{A} \mathbf{B}$ is PSD
 - $\mathbf{A}\succ\mathbf{B}$ means that $\mathbf{A}-\mathbf{B}$ is PD
 - $\mathbf{A} \nsucceq \mathbf{B}$ means that $\mathbf{A} \mathbf{B}$ is indefinite
- results that immediately follow from the definition: let $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{S}^n$.
 - $\mathbf{A} \succeq \mathbf{0}, \alpha \ge 0$ (resp. $\mathbf{A} \succ \mathbf{0}, \alpha > 0$) $\Longrightarrow \alpha \mathbf{A} \succeq \mathbf{0}$ (resp. $\alpha \mathbf{A} \succ \mathbf{0}$)
 - $\textbf{-} \ \textbf{A},\textbf{B}\succeq \textbf{0} \ (\text{resp.} \ \textbf{A}\succeq \textbf{0},\textbf{B}\succ \textbf{0}) \Longrightarrow \textbf{A}+\textbf{B}\succeq \textbf{0} \ (\text{resp.} \ \textbf{A}+\textbf{B}\succ \textbf{0})$
 - $\textbf{-} \mathbf{A} \succeq \mathbf{B}, \mathbf{B} \succeq \mathbf{C} \text{ (resp. } \mathbf{A} \succeq \mathbf{B}, \mathbf{B} \succ \mathbf{C} \text{)} \Longrightarrow \mathbf{A} \succeq \mathbf{C} \text{ (resp. } \mathbf{A} \succ \mathbf{C} \text{)}$
 - $\mathbf{A} \nsucceq \mathbf{B}$ does not imply $\mathbf{B} \succeq \mathbf{A}$

PSD Matrix Inequalities

• more results: let $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n$.

 $- \mathbf{A} \succeq \mathbf{B} \Longrightarrow \lambda_k(\mathbf{A}) \ge \lambda_k(\mathbf{B})$ for all k; the converse is not always true

- $\mathbf{A} \succeq \mathbf{I} \text{ (resp. } \mathbf{A} \succ \mathbf{I} \text{)} \iff \lambda_k(\mathbf{A}) \ge 1 \text{ for all } k \text{ (resp. } \lambda_k(\mathbf{A}) > 1 \text{ for all } k \text{)}$
- $\mathbf{I} \succeq \mathbf{A}$ (resp. $\mathbf{I} \succ \mathbf{A}$) $\iff \lambda_k(\mathbf{A}) \le 1$ for all k (resp. $\lambda_k(\mathbf{A}) < 1$ for all k)

– if
$$\mathbf{A}, \mathbf{B} \succ \mathbf{0}$$
 then $\mathbf{A} \succeq \mathbf{B} \Longleftrightarrow \mathbf{B}^{-1} \succeq \mathbf{A}^{-1}$

- some results as consequences of the above results:
 - for $\mathbf{A} \succeq \mathbf{B} \succeq \mathbf{0}$, $\det(\mathbf{A}) \ge \det(\mathbf{B})$
 - for $\mathbf{A} \succeq \mathbf{B}$, $\operatorname{tr}(\mathbf{A}) \ge \operatorname{tr}(\mathbf{B})$
 - for $\mathbf{A} \succeq \mathbf{B} \succ \mathbf{0}$, $\operatorname{tr}(\mathbf{A}^{-1}) \leq \operatorname{tr}(\mathbf{B}^{-1})$

PSD Matrix Inequalities

• the Schur complement: let

$$\mathbf{X} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{C} \end{bmatrix},$$

where $\mathbf{A} \in \mathbb{S}^m$, $\mathbf{B} \in \mathbb{R}^{m \times n}$, $\mathbf{C} \in \mathbb{S}^n$ with $\mathbf{C} \succ \mathbf{0}$. Let

$$\mathbf{S} = \mathbf{A} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^T,$$

which is called the Schur complement. We have

$$\mathbf{X} \succeq \mathbf{0} \; (\mathsf{resp.} \; \mathbf{X} \succ \mathbf{0}) \quad \Longleftrightarrow \quad \mathbf{S} \succeq \mathbf{0} \; (\mathsf{resp.} \; \mathbf{S} \succ \mathbf{0})$$

– example: let C be PD. By the Schur complement,

$$1 - \mathbf{b}^T \mathbf{C}^{-1} \mathbf{b} \ge 0 \iff \mathbf{C} - \mathbf{b} \mathbf{b}^T \succeq \mathbf{0}$$

References

[Brodie-Daubechies-et al.'09] J. Brodie, I. Daubechies, C. De Mol, D. Giannone, and I. Loris, "Sparse and stable Markowitz portfolios," *Proceedings of the National Academy of Sciences*, vol. 106, no. 30, pp. 12267–12272, 2009.

[Stoica-Moses'97] P. Stoica and R. L. Moses, *Introduction to Spectral Analysis*, Prentice Hall, 1997.

[Dokmanić-Parhizkar-et al.'15] I. Dokmanić, R. Parhizkar, J. Ranieri, and Vetterli, "Euclidean distance matrices," *IEEE Signal Processing Magazine*, vol. 32, no. 6, pp. 12–30, Nov. 2015.