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Lecture 4: Positive Semidefinite Matrices and Variational
Characterizations of Eigenvalues

• positive semidefinite matrices

• application: subspace method for super-resolution spectral analysis

• application: Euclidean distance matrices

• variational characterizations of eigenvalues of real symmetric matrices

• matrix inequalities
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Hightlights

• a matrix A ∈ Sn is said to be positive semidefinite (PSD) if

xTAx ≥ 0, for all x ∈ Rn;

and positive definite (PD) if

xTAx > 0, for all x ∈ Rn with x 6= 0

• a matrix A ∈ Sn is PSD (resp. PD)

– if and only if its eigenvalues are all non-negative (resp. positive);

– if and only if it can be factored as A = BTB for some B ∈ Rm×n
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Highlights

• let A ∈ Sn, and let λ1(A), . . . , λn(A) be the eigenvalues of A with ordering

λmax(A) = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) = λmin(A)

where λmin(A) and λmax(A) denote the min. and max. eigenvalues of A, resp.

• variational characterizations of λmin(A) and λmax(A):

λmax(A) = max
x∈Rn,‖x‖2=1

xTAx, λmin(A) = min
x∈Rn,‖x‖2=1

xTAx

• (Courant-Fischer) for k ∈ {1, . . . , n},

λk(A) = min
Sn−k+1⊆Rn

max
x∈Sn−k+1,‖x‖2=1

xTAx = max
Sk⊆Rn

min
x∈Sk,‖x‖2=1

xTAx

where Sk denotes a subspace of dimension k

• complex case: the same results apply; replace R by C, S by H, and “T” by “H”

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 3



Quadratic Form

Let A ∈ Sn. For x ∈ Rn, the matrix product

xTAx

is called a quadratic form.

• some basic facts (try to verify):

– xTAx =
∑n
i=1

∑n
j=1 xixjaij

– it suffices to consider symmetric A since for general A ∈ Rn×n,

xTAx = xT
[
1
2(A + AT )

]
x

– complex case:

∗ the quadratic form is defined as xHAx, where x ∈ Cn

∗ for A ∈ Hn, xHAx is real for any x ∈ Cn
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Positive Semidefinite Matrices

A matrix A ∈ Sn is said to be

• positive semidefinite (PSD) if xTAx ≥ 0 for all x ∈ Rn

• positive definite (PD) if xTAx > 0 for all x ∈ Rn with x 6= 0

• indefinite if A is not PSD

Notation:

• A � 0 means that A is PSD

• A � 0 means that A is PD

• A � 0 means that A is indefinite

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 5



Example: Covariance Matrices

• let y0,y2, . . .yT−1 ∈ Rn be a sequence of multi-dimensional data samples

– examples: patches in image processing, multi-channel signals in signal process-
ing, history of returns of assets in finance [Brodie-Daubechies-et al.’09],
...

• sample mean: µ̂y = 1
T

∑T−1
t=0 yt

• sample covariance: Ĉy = 1
T

∑T−1
t=0 (yt − µ̂y)(yt − µ̂y)

T

• a sample covariance is PSD: xT Ĉyx = 1
T

∑T−1
t=0 |(yt − µ̂y)

Tx|2 ≥ 0

• the (statistical) covariance of yt is also PSD

– to put into context, assume that yt is a wide-sense stationary random process

– the covariance, defined as Cy = E[(yt − µy)(yt − µy)
T ] where µy = E[yt],

can be shown to be PSD
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Example: Hessian

• let f : Rn → R be a twice differentiable function

• the Hessian of f , denoted by ∇2f(x) ∈ Sn, is a matrix whose (i, j)th entry is
given by [

∇2f(x)
]
i,j

=
∂2f

∂xi∂xj

• Fact: f is convex if and only if ∇2f(x) � 0 for all x in the problem domain

• example: consider the quadratic function

f(x) =
1

2
xTRx + qTx + c

It can be verified that ∇2f(x) = R. Thus, f is convex if and only if R � 0
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Illustration of Quadratic FunctionsIllustration of Quadratic Functions
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(b) indefinite A.

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 8



PSD Matrices and Eigenvalues

Theorem 4.1. Let A ∈ Sn, and let λ1, . . . , λn be the eigenvalues of A. We have

1. A � 0⇐⇒ λi ≥ 0 for i = 1, . . . , n

2. A � 0⇐⇒ λi > 0 for i = 1, . . . , n

• proof: let A = VΛVT be the eigendecomposition of A.

A � 0 ⇐⇒ xTVΛVTx ≥ 0, for all x ∈ Rn

⇐⇒ zTΛz ≥ 0, for all z ∈ R(VT ) = Rn

⇐⇒ ∑n
i=1 λi|zi|2 ≥ 0, for all z ∈ Rn

⇐⇒ λi ≥ 0 for all i

The PD case is proven by the same manner.
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Example: Ellipsoid

• an ellipsoid of Rn is defined as

E = { x ∈ Rn | xTP−1x ≤ 1 },

for some PD P ∈ Sn

Example: Ellipsoid

• an ellipsoid of Rn is defined as

E = { x ∈ Rn | xTP−1x ≤ 1 },

for some PD P ∈ Sn

0

√
λ1

√
λ2

• let P = VΛVT be the eigendecomposition

– V determines the directions of the semi-axes

– λ1, . . . , λn determine the lengths of the semi-axes
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Example: Multivariate Gaussian Distribution

• probability density function for a Gaussian-distributed vector x ∈ Rn:

p(x) =
1

(2π)
n
2 (det(Σ))

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

where µ and Σ are the mean and covariance of x, resp.

– Σ is PD

– Σ determines how x is spread, by the same way as in ellipsoid
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Example: Multivariate Gaussian DistributionExample: Multivariate Gaussian Distribution
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PSD Matrices and Square Root

Theorem 4.2. A matrix A ∈ Sn is PSD if and only if it can be factored as

A = BTB

for some B ∈ Rm×n and for some positive integer m.

• proof:

– sufficiency: A = BTB =⇒ xTAx = xTBTBx = ‖Bx‖22 ≥ 0 for all x

– necessity: let Λ1/2 = Diag(λ
1/2
1 , . . . , λ

1/2
n ).

A � 0 =⇒ A = (VΛ1/2)(Λ1/2VT ), with Λ1/2VT being real
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PSD Matrices and Square Root

• the factorization A = BTB has non-unique factor B

– for any orthogonal U ∈ Rn×n, B = UΛ1/2VT is a factor for A = BTB

• denote
A1/2 = VΛ1/2VT .

– B = A1/2 is a factor for A = BTB

– A1/2 is also a symmetric factor

– A1/2 is the unique PSD factor for A = BTB (how to prove it?)

• A1/2 is called the PSD square root of A

– note: in general, a matrix B ∈ Rn×n is said to be a square root of another
matrix A ∈ Rn×n if A = B2
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Some Properties of PSD Matrices

• it can be directly seen from the definition that

– A � 0 =⇒ aii ≥ 0 for all i

– A � 0 =⇒ aii > 0 for all i

• extension (also direct): partition A as

A =

[
A11 A12

A21 A22

]
.

Then, A � 0 =⇒ A11 � 0,A22 � 0. Also, A � 0 =⇒ A11 � 0,A22 � 0

• further extension:

– a principal submatrix of A, denoted by AI, where I = {i1, . . . , im} ⊆
{1, . . . , n}, m < n, is a submatrix obtained by keeping only the rows and
columns indicated by I; i.e., [AI]jk = aij,ik for all j, k ∈ {1, . . . ,m}

– if A is PSD (resp. PD), then any principal submatrix of A is PSD (resp. PD)
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Some Properties of PSD Matrices

Property 4.1. Let A ∈ Sn, B ∈ Rn×m, and

C = BTAB.

We have the following properties:

1. A � 0 =⇒ C � 0

2. suppose A � 0. It holds that C � 0⇐⇒ B has full column rank

3. suppose B is nonsingular. It holds that A � 0⇐⇒ C � 0, and that A � 0⇐⇒
C � 0.

• proof sketch: the 1st property is trivial. For the 2nd property, observe

C � 0⇐⇒ zTAz > 0, ∀ z ∈ R(B) \ {0}. (∗)

If A � 0, (∗) reduces to C � 0 ⇐⇒ Bx 6= 0, ∀ x 6= 0 (or B has full column
rank). The 3rd property is proven by the similar manner.
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Properties for Symmetric Factorization

Property 4.2. Let A ∈ Rm×k and B ∈ Rk×n, and suppose that B has full row
rank. Then

R(AB) = R(A)

• proof:

– observe that dimR(B) = rank(B) = k, which implies R(B) = Rk.

– we have R(AB) = {y = Az | z ∈ R(B)} = {y = Az | z ∈ Rk} = R(A).

• corollary: let R be a PSD matrix. Suppose that we factor R as R = BBT for
some full-column rank B. Then, R(R) = R(B).
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Properties for Symmetric Factorization

Property 4.3. Let B ∈ Rn×k,C ∈ Rn×k be full-column rank matrices. It holds that

BBT = CCT ⇐⇒ C = BQ for some orthogonal Q ∈ Rk×k

• proof: we consider “=⇒” only, as “⇐=” is trivial

– suppose BBT = CCT .

– from

I = (B†B)(B†B)T = B†(BBT )(B†)T = B†(CCT )(B†)T = (B†C)(B†C)T ,

we see that B†C is orthogonal (note that B†C is square).

– let Q = B†C. We have BQ = BB†C = PBC, or equivalently,

Bqi = ΠR(B)(ci), i = 1, . . . , k.

– from Property 4.2 we see that R(B) = R(BBT ) = R(CCT ) = R(C). It
follows that ΠR(B)(ci) = ci for all i.
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Application: Spectral Analysis

• consider the complex harmonic time-series

yt =

k∑
i=1

αie
j2πfit + wt, t = 0, 1, . . . , T − 1

where αi ∈ C is the amplitude-phase coefficient of the ith sinusoid; fi ∈
[
−1

2,
1
2

)
is the frequency of the ith sinusoid; wt is noise; T is the observation time length

• Aim: estimate the frequencies f1, . . . , fk from {yt}T−1t=0

– can be done by applying the Fourier transform

– the spectral resolution of Fourier-based methods is often limited by T

• our interest: study a subspace approach which can enable “super-resolution”

• suggested reading: [Stoica-Moses’97]
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Application: Spectral Analysis

Frequency
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An illustration of the Fourier spectrum. T = 64, k = 5, {f1, . . . , fk} =

{−0.213,−0.1,−0.05, 0.3, 0.315}.
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Spectral Analysis via Subspace: Formulation

• let zi = ej2πfi. Given a positive integer d, let

yt =


yt
yt+1

...
yt−d+1

 =

k∑
i=1

αi


zti
zt+1
i
...

zt+d−1i

+


wt
wt+1

...
wt+d−1

 =

k∑
i=1

αi


1
zi
...

zd−1i


︸ ︷︷ ︸

=ai

zti+


wt
wt+1

...
wt−d+1


︸ ︷︷ ︸

wt

• let Y = [ y0,y1, . . . ,yTd−1 ] where Td = T − d+ 1. We can write

Y = ADS + W,

where A = [ a1, . . . ,ak ], D = Diag(α1, . . . , αk), W = [ w1, . . . ,wTd−1 ],

S =


1 z1 z21 . . . z

Td−1
1

1 z2 z22 . . . z
Td−1
2

... ...

1 zk z2k . . . z
Td−1
k


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Spectral Analysis via Subspace: Formulation

• let Ry = 1
Td

∑Td−1
t=0 yty

H
t = 1

Td
YYH be the correlation matrix of yt. We have

Ry = A

(
1

Td
DSSHDH

)
︸ ︷︷ ︸

=Φ

AH +
1

Td
ADSWH +

1

Td
WSHDHAH +

1

Td
WWH

• (this requires knowledge of random processes) assume that wt is a temporally
white circular Gaussian process with mean zero and variance σ2. Then, as
Td →∞,

1

Td
SWH → 0,

1

Td
WWH → σ2I
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Spectral Analysis via Subspace: Formulation

• let us summarize

• Model: the correlation matrix Ry = 1
Td

YYH is modeled as

Ry = AΦAH + σ2I

where σ2 > 0 is the noise power; Φ = 1
Td

DSSHDH; D = Diag(α1, . . . , αk);

A =


1 1 . . . 1
z1 z2 zk
... ... ...

zd−11 zd−12 . . . zd−1k

 ∈ Cd×k, S =


1 z1 z21 . . . z

Td−1
1

1 z2 z22 . . . z
Td−1
2

... ...

1 zk z2k . . . z
Td−1
k

 ∈ Ck×Td,
with zi = ej2πfi

• observation: A and S are both Vandemonde
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Spectral Analysis via Subspace: Subspace Properties

• Assumptions: i) αi 6= 0 for all i, ii) fi 6= fj for all i 6= j, iii) d > k, iv) Td ≥ k

• results:

– A has full column rank, S has full row rank

– Φ is positive definite (and thus nonsingular)

∗ proof: xHDSSHDHx = ‖SHDHx‖22, and SHDHx = 0 if and only if SH

does not have full column rank

– R(AΦAH) = R(A), by Property 4.2

– rank(AΦAH) = rank(A) = k, thus AΦAH has k nonzero eigenvalues
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Spectral Analysis via Subspace: Subspace Properties

• consider the eigendecomposition of AΦAH. Let AΦAH = VΛVH and assume
λ1 ≥ λ2 ≥ . . . ≥ λd.

• since λi > 0 for i = 1, . . . , k and λi = 0 for i = k + 1, . . . , d,

AΦAH =
[
V1 V2

] [Λ1 0
0 0

] [
VH

1

VH
2

]
= V1Λ1V

H
1

where V1 = [ v1, . . . ,vk ] ∈ Cd×k, V2 = [ vk+1, . . . ,vd ] ∈ Cd×(d−k), Λ1 =
Diag(λ1, . . . , λk).

– result: R(AΦAH) = R(V1), R(AΦAH)⊥ = R(V2)
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Spectral Analysis via Subspace: Subspace Properties

• consider the eigendecomposition of Ry. Observe

Ry =
[
V1 V2

] [Λ1 + σ2I 0
0 σ2I

] [
VH

1

VH
2

]

• results:

– V(Λ + σ2I)VH is the eigendecomposition of Ry

– V1 can be obtained from Ry by finding the eigenvectors associated with the
first k largest eigenvalues of Ry
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Spectral Analysis via Subspace: Subspace Properties

• let us summarize

• compute the eigenvector matrix V ∈ Cd×d of Ry. Partition V = [ V1,V2 ]
where V1 ∈ Cn×k corresponds the first k largest eigenvalues. Then,

R(V1) = R(A), R(V2) = R(A)⊥

• Idea of subspace methods: let

a(z) =


1
z
...

zd−1

 .
Find any f ∈ [−1

2,
1
2) that satisfies a(ej2πf) ∈ R(A).
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Spectral Analysis via Subspace: Subspace Properties

• Question: it is true that f ∈ {f1, . . . fk} implies a(ej2πf) ∈ R(A). But is it also
true that a(ej2πf) ∈ R(A) implies f ∈ {f1, . . . fk}?

• The answer is yes if d > k. The following matrix result gives the answer.

Theorem 4.3. Let A ∈ Cd×k any Vandemonde matrix with distinct roots
z1, . . . , zk and with d ≥ k + 1. Then it holds that

z ∈ {z1, . . . , zk} ⇐⇒ a(z) ∈ R(A).
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Spectral Analysis via Subspace: Subspace Properties

• proof of Theorem 4.3: “=⇒” is trivial, and we consider “⇐=”

– suppose there exists z̄ /∈ {z1, . . . , zk} such that a(z̄) ∈ R(A).

– let Ã = [ a(z̄) A ] ∈ Cd×(k+1).

– a(z̄) ∈ R(A) implies that Ã has linearly dependent columns

– however, Ã is Vandemonde with distinct roots z̄, z1, . . . , zk, and for d ≥ k + 1
Ã must have linearly independent columns—a contradiction
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Spectral Analysis via Subspace: Algorithm

• there are many subspace methods, and multiple signal classification (MUSIC) is
most well-known

• MUSIC uses the fact that a(ej2πf) ∈ R(A)⇐⇒ VH
2 a(ej2πf) = 0

Algorithm: MUSIC
input: the correlation matrix Ry ∈ Cd×d and the model order k < d
Perform eigendecomposition Ry = VΛVH with λ1 ≥ λ2 ≥ . . . ≥ λd.
Let V2 = [ vk+1, . . . ,vd ], and compute

S(f) =
1

‖VH
2 a(ej2πf)‖22

for f ∈
[
−1

2,
1
2

)
(done by discretization).

output: S(f)
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Spectral Analysis via Subspace: Algorithm

Frequency
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An illustration of the MUSIC spectrum. T = 64, k = 5, {f1, . . . , fk} =

{−0.213,−0.1,−0.05, 0.3, 0.315}.
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Application: Euclidean Distance Matrices

• let x1, . . . ,xn ∈ Rd be a collection of points, and let X = [ x1, . . . ,xn ]

• let dij = ‖xi − xj‖2 be the Euclidean distance between points i and j

• Problem: given dij’s for all i, j ∈ {1, . . . , n}, recover X

– this problem is called the Euclidean distance matrix (EDM) problem

• applications: sensor network localization (SNL), molecule conformation, ....

• suggested reading: [Dokmanić-Parhizkar-et al.’15]
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EDM Applications

(a) SNL. (b) Molecular transformation. Source: [Dokmanić-Parhizkar-et al.’15]
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EDM: Formulation

• let R ∈ Rn×n be matrix whose entries are rij = d2ij for all i, j

• from
rij = d2ij = ‖xi‖22 − 2xTi xj + ‖xj‖22,

we see that R can be written as

R = 1(diag(XTX))T − 2XTX + (diag(XTX))1T (∗)

where the notation diag means that diag(Y) = [y11, . . . , ynn]T for any square Y

• observation: (∗) also holds if we replace X by

– X̃ = [x1 + b, . . . ,xn + b] for any b ∈ Rd (dij = ‖x̃i − x̃j‖2 is also true)

– X̃ = QX for any orthogonal Q (X̃T X̃ = XTX)

• implication: recovery of X from R is subjected to translations and rota-
tions/reflections

– in SNL we can use anchors to fix this issue
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EDM: Formulation

• assume x1 = 0 w.l.o.g. Then,

r1 =


‖x1 − x1‖22
‖x2 − x1‖22

...
‖xn − x1‖22

 =


0
‖x2‖22

...
‖xn‖22

 , diag(XTX) =


‖x1‖22
‖x2‖22

...
‖xn‖22

 = r1

• construct from R the following matrix

G = −1

2
(R− 1rT1 − r11

T ).

We have
G = XTX

• idea: do a symmetric factorization for G to try to recover X
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EDM: Method

• assumption: X has full row rank

• G is PSD and has rank(G) = d

• denote the eigendecomposition of G as G = VΛVT . Assuming λ1 ≥ . . . ≥ λn,
it takes the form

G =
[
V1 V2

] [Λ1 0
0 0

] [
VT

1

VT
2

]
= (Λ1/2VT

1 )T (Λ1/2VT
1 )

where V1 ∈ Rn×d, Λ1 = Diag(λ1, . . . , λd)

• EDM solution: take X̂ = Λ1/2VT
1 as an estimate of X

• recovery guarantee: by Property 4.3, we have X̂ = QX for some orthogonal Q
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EDM: Further Discussion

• in applications such as SNL, not all pairwise distances dij’s are available

• or, there are missing entries with R

• possible solution: apply low-rank matrix completion to try to recover the full R

• to use low-rank matrix completion, we need to know a rank bound on R

• by the result rank(A + B) ≤ rank(A) + rank(B), we get

rank(R) ≤ rank(1(diag(XTX))T ) + rank(−2XTX) + rank((diag(XTX))1T )

≤ 1 + d+ 1 = d+ 2

• other issues: noisy distance measurements, resolving the orthogonal rotation
problem with X̂. See the suggested reference [Dokmanić-Parhizkar-et al.’15].
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Variational Characterizations of Eigenvalues of Real Symmetric
Matrices

Notation and Conventions:

• λ1(A), . . . , λn(A) denote the eigenvalues of a given A ∈ Sn with ordering

λmax(A) = λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) = λmin(A),

where λmin(A) and λmax(A) denote the smallest and largest eigenvalues, resp.

• if not specified, λ1, . . . , λn will be used to denote the eigenvalues of A ∈ Sn; they
also follow the ordering

λmax = λ1 ≥ λ2 ≥ . . . ≥ λn = λmin.

Also, VΛVT will be used to denote the eigendecomposition of A ∈ Sn
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Variational Characterizations of Eigenvalues

• let A ∈ Sn.

• for any x ∈ Rn with x 6= 0, the ratio

xTAx

xTx

is called the Rayleigh quotient.

• our interest: quadratic optimization such as

max
x∈Rn,x 6=0

xTAx

xTx
= max

x∈Rn,‖x‖2=1
xTAx

min
x∈Rn,x 6=0

xTAx

xTx
= min

x∈Rn,‖x‖2=1
xTAx
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Variational Characterizations of Eigenvalues: Rayleigh-Ritz

Theorem 4.4 (Rayleigh-Ritz). Let A ∈ Sn. It holds that

λmin‖x‖22 ≤ xTAx ≤ λmax‖x‖22
λmin = min

x∈Rn,‖x‖2=1
xTAx, λmax = max

x∈Rn,‖x‖2=1
xTAx

• proof:

– by a change of variable y = VTx, we have

xTAx = yTΛy =
∑n
i=1 λi|yi|2 ≤ λ1

∑n
i=1 |yi|2 = λ1‖VTx‖22 = λ1‖x‖22

– we thus have max‖x‖2=1 xTAx ≤ λ1
– since vT1 Av1 = λ1, the above equality is attained

– the results xTAx ≥ λn‖x‖22 and min‖x‖2=1 xTAx = λn are proven by the
same way
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Variational Characterizations of Eigenvalues: Courant-Fischer

Question: how about λk for any k ∈ {1, . . . , n}? Do we have a similar variational
characterization as that in the Rayleigh-Ritz theorem?

Theorem 4.5 (Courant-Fischer). Let A ∈ Sn, and let Sk denote any subspace of
Rn and of dimension k. For any k ∈ {1, . . . , n}, it holds that

λk = min
Sn−k+1⊆Rn

max
x∈Sn−k+1,‖x‖2=1

xTAx

= max
Sk⊆Rn

min
x∈Sk,‖x‖2=1

xTAx

• proof: see the accompanying note
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Variational Characterizations of Eigenvalues: More Results

The Courant-Fischer theorem and its variants lead to a rich collection of eigenvalue
inequalities: For A,B ∈ Sn, z ∈ Rn,

• (Weyl) λk(A) + λn(B) ≤ λk(A + B) ≤ λk(A) + λ1(B), k = 1, . . . , n

• (interlacing) λk+1(A) ≤ λk(A± zzT ) ≤ λk−1(A) for appropriate k

• if rank(B) ≤ r, then λk+r(A) ≤ λk(A + B) ≤ λk−r(A) for appropriate k

• (Weyl) λj+k−1(A + B) ≤ λj(A) + λk(B) for appropriate j, k

• for any semi-orthogonal U ∈ Rn×r, λk+n−r(A) ≤ λk(U
TAU) ≤ λk(A) for

appropriate k

• many more...
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Variational Characterizations of Eigenvalues: More Results

An extension of the variational characterization to a sum of eigenvalues:

Theorem 4.6. Let A ∈ Sn. it holds that

r∑
i=1

λi = max
U∈Rn×r

‖ui‖2=1 ∀i, uTi uj=0 ∀i6=j

r∑
i=1

uTi Aui = max
U∈Rn×r
UTU=I

tr(UTAU)

• can be proved by the eigenvalue inequality λk(U
TAU) ≤ λk(A)
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Variational Characterizations of Eigenvalues: More Results

Some more results (the proofs require more than just the Courant-Fischer theorem):

• (von Neumann) Let A,B ∈ Sn. It holds that

n∑
i=1

λi(A)λn−i+1(B) ≤ tr(AB) ≤
n∑
i=1

λi(A)λi(B).

• (Lidskii) Let A,B ∈ Sn. For any 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik,

k∑
j=1

λij(A + B) ≤
k∑
j=1

λij(A) +

k∑
j=1

λj(B).

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 44



PSD Matrix Inequalities

• the notion of PSD matrices can be used to define inequalities for matrices

• PSD matrix inequalities are frequently used in topics like semidefinite programming

• definition:

– A � B means that A−B is PSD

– A � B means that A−B is PD

– A � B means that A−B is indefinite

• results that immediately follow from the definition: let A,B,C ∈ Sn.

– A � 0, α ≥ 0 (resp. A � 0, α > 0) =⇒ αA � 0 (resp. αA � 0)

– A,B � 0 (resp. A � 0,B � 0) =⇒ A + B � 0 (resp. A + B � 0)

– A � B,B � C (resp. A � B,B � C) =⇒ A � C (resp. A � C)

– A � B does not imply B � A
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PSD Matrix Inequalities

• more results: let A,B ∈ Sn.

– A � B =⇒ λk(A) ≥ λk(B) for all k; the converse is not always true

– A � I (resp. A � I) ⇐⇒ λk(A) ≥ 1 for all k (resp. λk(A) > 1 for all k)

– I � A (resp. I � A) ⇐⇒ λk(A) ≤ 1 for all k (resp. λk(A) < 1 for all k)

– if A,B � 0 then A � B⇐⇒ B−1 � A−1

• some results as consequences of the above results:

– for A � B � 0, det(A) ≥ det(B)

– for A � B, tr(A) ≥ tr(B)

– for A � B � 0, tr(A−1) ≤ tr(B−1)
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PSD Matrix Inequalities

• the Schur complement: let

X =

[
A B
BT C

]
,

where A ∈ Sm, B ∈ Rm×n, C ∈ Sn with C � 0. Let

S = A−BC−1BT ,

which is called the Schur complement. We have

X � 0 (resp. X � 0) ⇐⇒ S � 0 (resp. S � 0)

– example: let C be PD. By the Schur complement,

1− bTC−1b ≥ 0 ⇐⇒ C− bbT � 0
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