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Lecture 4: Positive Semidefinite Matrices and Variational
Characterizations of Eigenvalues

Instructor: Wing-Kin Ma

The focus of this note is to give a more in-depth description of variational characterizations of
eigenvalues of real symmetric matrices. I will also provide the proof of some results concerning the
PSD matrix inequalities in the main lecture slides.

Our notations is as follows. The eigenvalues of a given matrix A ∈ Sn are denoted by
λ1(A), . . . , λn(A), and they are assumed to be arranged such that

λmax(A) = λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) = λmin(A),

where we also denote λmin(A) and λmax(A) as the smallest and largest eigenvalues of A, respec-
tively. If not specified, we will simply denote λ1, . . . , λn, with λ1 ≥ . . . ≥ λn, as the eigenvalues of
A ∈ Sn. Also, we will denote VΛVT as the eigendecomposition of A without explicit mentioning.

1 Variational Charcterizations of Eigenvalues of Real Symmetric
Matrices

For a general A ∈ Rn×n, we may only characterize its eigenvalues as the roots of the characteristic
polynomial p(λ) = det(A−λI). However, for a real symmetric A, we can alternatively characterize
the eigenvalues as solutions to certain quadratic optimization problems. As we will see, such
variational characterizations of the eigenvalues lead to a number of interesting matrix analysis
results.

1.1 Rayleigh Quotient Maximization and Minimization

Let A ∈ Sn, and consider the following optimization problems

max
x∈Rn,x 6=0

xTAx

xTx
, (1)

min
x∈Rn,x 6=0

xTAx

xTx
, (2)

Note that the ratio xTAx/xTx is called a Rayleigh quotient. Rayleigh quotients are invariant to
‖x‖22; one can see that

(αx)TA(αx)

(αx)T (αx)
=

xTAx

xTx
,

for any α 6= 0 and x 6= 0. Without loss of generality, let us assume ‖x‖2 = 1 and rewrite problems
(1) and (2) as

max
x∈Rn,x 6=0

xTAx

xTx
= max

x∈Rn,‖x‖2=1
xTAx,

min
x∈Rn,x 6=0

xTAx

xTx
= min

x∈Rn,‖x‖2=1
xTAx,
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respectively. The solutions to problems (1) and (2) are described in the following theorem.

Theorem 4.4 (Rayleigh-Ritz) For any A ∈ Sn, it holds that

λmin‖x‖22 ≤ xTAx ≤ λmax‖x‖22, (3)

λmax = max
x∈Rn,‖x‖2=1

xTAx, (4)

λmin = min
x∈Rn,‖x‖2=1

xTAx. (5)

Proof: This theorem is a direct consequence of eigendecomposition for real symmetric matrices.
By letting y = VTx, the term xTAx can be expressed as

xTAx = yTΛy =

n∑
i=1

λi|yi|2.

Since

λn

n∑
i=1

|yi|2 ≤
n∑

i=1

λi|yi|2 ≤ λ1
n∑

i=1

|yi|2

and ‖y‖22 = ‖VTx‖22 = ‖x‖22 for any orthogonal V, we have (3). It follows that

xTAx ≤ λmax, for all x ∈ Rn, ‖x‖2 = 1, (6)

xTAx ≥ λmin, for all x ∈ Rn, ‖x‖2 = 1. (7)

It can be verified that the equalities in (6) and (7) are attained when x = v1 and x = vn,
respectively. Thus, we also have shown (4) and (5). �

1.2 The Courant-Fischer Minimax Theorem

The Rayleigh-Ritz theorem gives an alternative characterization of the smallest and largest eigenval-
ues of a real symmetric matrix. The next question is whether we provide a similar characterization
for any eigenvalue. To give some insight, consider the following problem

max
x∈span{v2,...,vn}

‖x‖2=1

xTAx,

Following the same proof as in the Rayleigh-Ritz theorem, it can be shown that

λ2 = max
x∈span{v2,...,vn}

‖x‖2=1

xTAx;

(please try). Also, the above problem can be alternatively expressed as

λ2 = max
x∈span{v1}⊥
‖x‖2=1

xTAx. (8)

However, the above eigenvalue characterization does not look very attractive as its feasible set
depends on the principal eigenvector. Let us consider another problem

max
x∈Rn,‖x‖2=1

wTx=0

xTAx,
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where w ∈ Rn is given. By letting y = VTx again, we can derive a lower bound

max
x∈Rn,‖x‖2=1

wTx=0

xTAx = max
y∈Rn,‖y‖2=1

(VTw)Ty=0

yTΛy

≥ max
y∈Rn,‖y‖2=1

(VTw)Ty=0
y3=y4=...=yn=0

yTΛy

= max
y∈span{VTw,e3,...,en}⊥

‖y‖2=1

yTΛy. (9)

Here, there is a subtle issue that we should pay some attention—Eq. (9) is invalid if the subspace
span{VTw, e3, . . . , en}⊥ equals {0}. Or, we need to make sure that there exists a nonzero vector
y in span{VTw, e3, . . . , en}⊥, for otherwise problem (9) is infeasible. But since

dim(span{VTw, e3, . . . , en}⊥) = n− dim(span{VTw, e3, . . . , en}) ≥ n− (n− 1) = 1,

there always exists a nonzero vector y ∈ span{VTw, e3, . . . , en}⊥. From (9), we further get

max
y∈span{VTw,e3,...,en}⊥

‖y‖2=1

yTΛy = max
y∈span{VTw,e3,...,en}⊥

‖y‖2=1

2∑
i=1

λi|yi|2 ≥ λ2. (10)

Combining (9)–(10), we have the following inequality

max
x∈Rn,‖x‖2=1

wTx=0

xTAx ≥ λ2.

Moreover, we notice that the equality above is attained if we choose w = v1; specifically this is the
consequence of (8). Hence, we have a variational characterization of λ2 as follows

λ2 = min
w∈Rn

max
x∈Rn,‖x‖2=1

wTx=0

xTAx.

The example showcased above is an instance of a more general variational characterization
result called the Courant-Fischer theorem.

Theorem 4.5 (Courant-Fischer) Let A ∈ Sn, and let Sk denote any subspace of Rn and of
dimension k. For any k ∈ {1, . . . , n}, it holds that

λk = min
Sn−k+1⊆Rn

max
x∈Sn−k+1,‖x‖2=1

xTAx, (11)

λk = max
Sk⊆Rn

min
x∈Sk,‖x‖2=1

xTAx. (12)

Proof: We will show (11) only as the proof of (12) is similar to that of (11) (or take the proof
of (12) as a self-practice problem). First, we show that

min
Sn−k+1⊆Rn

max
x∈Sn−k+1,‖x‖2=1

xTAx ≤ λk. (13)
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It can be verified that
λk = max

x∈span{vk,...,vn}
‖x‖2=1

xTAx.

Also, since dim(span{vk, . . . ,vn}) = n − k + 1, which means that span{vk, . . . ,vn} is feasible to
the outer maximization problem on the left-hand side of (13), we obtain (13).

Second, we show that

min
Sn−k+1⊆Rn

max
x∈Sn−k+1,‖x‖2=1

xTAx ≥ λk, (14)

and thereby completes the proof. Let

V = {y = VTx | x ∈ Sn−k+1},
W = {y ∈ Rn | yk+1 = . . . = yn = 0} = span{e1, . . . , ek}.

It can be shown that dimV = n − k + 1 for any Sn−k+1 and dimW = k. Also, we will need the
following subspace property:

Property 4.4 Let S1,S2 be subspaces of Rn. If dimS1+dimS2 > n, then the intersecting subspace
S1 ∩ S2 must not equal {0} (or have dim(S1 ∩ S2) ≥ 1).

Proof of Property 4.4: One can prove this property from the subspace result dimS1+dimS2−
dim(S1 ∩ S2) = dim(S1 + S2). Specifically, we have

dim(S1 ∩ S2) = dimS1 + dimS2 − dim(S1 + S2) ≥ dimS1 + dimS2 − n.

Hence, if dimS1 + dimS2 ≥ n + 1, the intersecting subspace S1 ∩ S2 must have dimension no less
than one and consequently must not equal {0}.

I also show you an alternative proof that does not require the result dimS1 +dimS2−dim(S1∩
S2) = dim(S1 + S2). Suppose that S1 ∩ S2 = {0}, but dimS1 + dimS2 ≥ n + 1. Let k = dimS1,
l = dimS2, and let {a1, . . . ,ak} and {b1, . . . ,bl} be bases of S1 and S2, respectively. The condition
S1 ∩ S2 = {0} implies that

k∑
i=1

αiai =
l∑

i=1

βibi for some α,β =⇒ α = 0,β = 0. (15)

On the other hand, for k + l ≥ n + 1, the vector set {a1, . . . ,ak,b1, . . . ,bl} must be linearly
dependent. This implies that there must exist α,β, with either α 6= 0 or β 6= 0, such that the
left-hand side of (15) holds. This contradicts with the implication in (15). �

By Property 4.4, the intersecting subspace V∩W must contain a nonzero vector for any Sn−k+1.
Subsequently, we have

min
Sn−k+1⊆Rn

max
x∈Sn−k+1,‖x‖2=1

xTAx = min
V⊆Rn

max
y∈V,‖y‖2=1

yTΛy

≥ min
V⊆Rn

max
y∈V∩W
‖y‖2=1

yTΛy

= min
V⊆Rn

max
y∈V∩W
‖y‖2=1

k∑
i=1

λi|yi|2

≥ λk,

and the proof is complete. �
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1.3 Implications of the Courant-Fischer Theorem

The Courant-Fischer theorem and its proof insight have led a collection of elegant results for
eigenvalue inequalities, and here we describe some of them. Let A,B ∈ Sn, z ∈ Rn. We have the
following results:

(a) (Weyl) λk(A) + λn(B) ≤ λk(A + B) ≤ λk(A) + λ1(B) for k = 1, . . . , n;

(b) (interlacing) λk+1(A) ≤ λk(A ± zzT ) for k = 1, . . . , n − 1, and λk(A ± zzT ) ≤ λk−1(A) for
k = 2, . . . , n;

(c) if rank(B) ≤ r, then λk+r(A) ≤ λk(A + B) for k = 1, . . . , n− r and λk(A + B) ≤ λk−r(A) for
k = r + 1, . . . , n;

(d) (Weyl) λj+k−1(A + B) ≤ λj(A) + λk(B) for j, k ∈ {1, . . . , n} with j + k ≤ n+ 1;

(e) for any I = {i1, . . . , ir} ⊆ {1, . . . , n}, λk+n−r(A) ≤ λk(AI) ≤ λk(A) for k = 1, . . . , r.

(f) for any semi-orthogonal U ∈ Rn×r, λk+n−r(A) ≤ λk(UTAU) ≤ λk(A) for k = 1, . . . , r.

The details of the proof of the above results are left as self-practice problems for you, and
here are some hints: Result (a) is obtained by applying (3) to (11). Result (b) is shown via the
Courier-Fischer theorem; specifically we have

λk(A± zzT ) = min
Sn−k+1⊆Rn

max
x∈Sn−k+1,‖x‖2=1

xT (A± zzT )x

≥ min
Sn−k+1⊆Rn

max
x∈Sn−k+1∩R(z)⊥,‖x‖2=1

xTAx

≥ min
Sr⊆Rn

n−k≤r

max
x∈Sr,‖x‖2=1

xTAx

= λk+1(A),

where the second inequality is obtained by showing that dim(Sn−k+1 ∩ R(z)⊥) ≥ n − k (use the
result dimS1 + dimS2 − dim(S1 ∩ S2) = dim(S1 + S2)). Result (c) is shown by applying Result
(b) and using the fact that a matrix B ∈ Sn with rank(B) ≤ r can be written as a sum of r outer
products B =

∑r
i=1 µiuiu

T
i . Result (d) is proven by applying Result (c). For Result (e), consider

the case of I = {1, . . . , r} for ease of exposition of ideas. We have

λk(A) ≥ min
Sn−k+1⊆Rn

max
x∈Sn−k+1∩span{e1,...,er}

‖x‖2=1

xTAx

≥ min
Sl⊆Rr

r−k+1≤l

max
y∈Sl, ‖y‖2=1

yTAIy

= λk(AI),

where one needs to show that dim(Sn−k+1∩span{e1, . . . , er}) ≥ r−k+1; some care also needs to be
taken as we change the vector dimension in the second equation above. Result (f) is a consequence
of Result (e).
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1.4 Maximization of a Sum of Rayleigh Quotients

In the previous subsections we consider maximization or minimization of a Rayleigh quotient. Here
we are interested in a problem concerning a sum of Rayleigh quotients:

max
U∈Rn×r

ui 6=0 ∀i, uT
i uj=0 ∀i 6=j

r∑
i=1

uT
i Aui

uT
i ui

, (16)

where we want the vectors u1, . . .ur of the Rayleigh quotients to be orthogonal to each other. This
problem finds applications in matrix factorization and PCA, as we will see in the next lecture. As
in the previous treatment for Rayleigh quotients, we can rewrite problem (16) as

max
U∈Rn×r

ui 6=0 ∀i, uT
i uj=0 ∀i 6=j

r∑
i=1

uT
i Aui

uT
i ui

= max
U∈Rn×r

‖ui‖2=1 ∀i, uT
i uj=0 ∀i 6=j

r∑
i=1

uT
i Aui

= max
U∈Rn×r

UTU=I

tr(UTAU), (17)

The following result describes an equivalence relation between problem (17) and eigenvalues.

Theorem 4.6 Let A ∈ Sn. It holds that

r∑
i=1

λi = max
U∈Rn×r

UTU=I

tr(UTAU). (18)

Proof: This theorem can be easily shown by Result (f) in Section 1.3. Specifically, for any
semi-orthogonal U ∈ Rn×r we have

tr(UTAU) =

r∑
i=1

λi(U
TAU) ≤

r∑
i=1

λi(A), (19)

where the inequality is owing to Result (f) in Section 1.3. Since the equality in (19) is attained by
U = [ v1, . . . ,vr], we obtain the desired result.

To enrich your understanding of this topic, I also show you an alternative proof which does not
use Result (f) in Section 1.3. In essence, the main challenge lies in showing (19). Consider the
following problem

max
U∈Rn×r

UTU=I

tr(UTΛU).

It can be shown that the above problem is equivalent to the problem on the right-hand side of (18).
Now, observe that

tr(UTΛU) = tr(UUTΛ) =
n∑

i=1

[UUT ]iiλi,

and that for any semi-orthogonal U ∈ Rn×r we have

[UUT ]ii = eTi UUTei = ‖UTei‖22 ≤ ‖ei‖22 = 1,
n∑

i=1

[UUT ]ii = tr(UUT ) = tr(UTU) = r.
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This leads us to consider a relaxation

max
U∈Rn×r, UTU=I

tr(UTΛU) ≤ max
x∈Rn

n∑
i=1

xiλi

s.t. 0 ≤ xi ≤ 1, i = 1, . . . , n
n∑

i=1

xi = r

In particular, we replace every [UUT ]ii by xi. One can easily see that the optimal value of the
problem on the right-hand side of the above equation is

∑r
i=1 λi. Hence, we have shown (19). �

2 Matrix Inequalities

In this section the aim is to give the proof of some of the results we mentioned in PSD matrix
inequalities in the main lecture slides. To be specific, let A,B ∈ Sn and recall the following results.

(a) A � B implies λk(A) ≥ λk(B) for k = 1, . . . , n.

(b) A � I is equivalent to λk(A) ≥ 1 for k = 1, . . . , n. Also, A � I is equivalent to λk(A) > 1 for
k = 1, . . . , n.

(c) I � A is equivalent to λk(A) ≤ 1 for k = 1, . . . , n. Also, I � A is equivalent to λk(A) < 1 for
k = 1, . . . , n.

(d) If A,B � 0 then A � B is equivalent to B−1 � A−1.

(e) (The Schur complement) Let

X =

[
A B
BT C

]
,

where A ∈ Sm, B ∈ Rm×n, C ∈ Sn with C � 0, and denote S = A−BC−1BT . It holds that

X � 0 ⇐⇒ S � 0

Also, we have X � 0⇐⇒ S � 0.

The proof is as follows.

Proof of (a): Suppose A � B. We have, for any k ∈ {1, . . . , n},

λk(A) = λk(B + A−B) ≥ λk(B) + λn(A−B) ≥ λk(B).

where the first inequality is due to Weyl’s inequality, and the second inequality is because A −B
is PSD.

Proof of (b): Consider the matrix A− I. Since A− I = V(Λ− I)VT , the eigenvalues of A− I
are λ1 − 1, . . . , λn − 1. It follows that A − I is PSD if and only if λk − 1 ≥ 0 for all k, and that
A− I is PD if and only if λk − 1 > 0 for all k.

Proof of (c): The proof is the same as that of (b) and is omitted for brevity.
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Proof of (d): Since A is PD, its square root A1/2 is invertible. We have

A−B � 0 ⇐⇒ A1/2(I−A−1/2BA−1/2)A1/2 � 0 ⇐⇒ I−A−1/2BA−1/2 � 0 (20)

where Theorem 4.3 has been used to obtain the second equivalence. Let C = A−1/2BA−1/2, and
denote its eigendecomposition as C = QDQT where D = Diag(d1, . . . , dn). Since B is PD and
A1/2 is invertible, by Theorem 4.3 C is PD; hence, we have dk > 0 for all k. From the right-hand
side of (20) we further show the following equivalence

I−C � 0⇐⇒ 1 ≥ dk, k = 1, . . . , n

⇐⇒ 1

dk
≥ 1, k = 1, . . . , n

⇐⇒ D−1 � I

⇐⇒ Q(D−1 − I)QT � 0

⇐⇒ C−1 − I � 0

⇐⇒ A1/2B−1A1/2 − I � 0

⇐⇒ B−1 −A−1 � 0,

where we have applied Theorem 4.3 multiple times and Results (b)–(c).

Proof of (e): Let

Y =

[
I 0

−C−1BT I

]
.

One can verify that

YTXY =

[
A−BC−1BT 0

0 C

]
.

Also, Y is nonsingular; from the block triangular structure of Y we see that det(Y) = 1. Hence,
by Theorem 4.3, X is PSD if and only if YTXY � 0. The condition YTXY � 0 is equivalent to
A−BC−1BT � 0 and C � 0, and hence we have shown the desired result for the PSD case. The
PD case is shown by the same manner.

8


