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Lecture 3: Eigenvalues and Eigenvectors
e facts about eigenvalues and eigenvectors
e ecigendecomposition, the case of Hermitian and real symmetric matrices
e power method
e Schur decomposition

e PageRank: a case study
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Notation and Conventions

e a square matrix A is said to be symmetric if a;; = a;; for all 7,5 with 7 # 7, or
equivalently, if AT = A

— example: i i
1 —0.5 3

A=|-05 -2 0.9

3 0.9 0.1

e a square matrix A is said to be Hermitian if a;; = a3, for all 4, j with i # j, or
equivalently, if A7 = A

e we denote the set of all n X n real symmetric matrices by S

e we denote the set of all n x n complex Hermitian matrices by H"
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Notation and Conventions

e note the following subtleties:

— by definition, a real symmetric matrix is also Hermitian

— when we say that a matrix is Hermitian, we often imply that the matrix may
be complex (at least for this course); a real Hermitian matrix is simply real

symmetric

— we can have a complex symmetric matrix, though we will not study it
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Main Results

A matrix A € R"*™ (or C™*") is said to admit an eigendecomposition if there exists
a nonsingular V. € C™*"™ and a collection of scalars Aq,..., )\, € C such that

A=VAV
where A = Diag(Aq,...,A\pn).
e the above (V, A) satisfies Av; = \;v; fori = 1,...,n, which are eigen-equations
® vVi,...,V, are required to be linearly independent

e cigendecomposition does not always exist
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Main Results
A real symmetric matrix A € S™ always admits an eigendecomposition

A =VAV?

where V € R™*" is orthogonal; A = Diag(A1,...,A,) with \; € R for all 4.

A Hermitian matrix A € H" always admits an eigendecomposition
A =VAVH

where V. € C"*"™ is unitary; A = Diag(A1,...,\,) with \; € R for all .

e differences: a Hermitian or real symmetric matrix always has
— an eigendecomposition
— real A\;'s
— a V that is not only nonsingular but also unitary
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Eigenvalues and Eigenvectors

We start with the basic definition of eigenvalues and eigenvectors.

Problem: given a A € R™"*"™ (or C™*"), find a vector v € C" with v # 0 such that

Av = v, for some A € C ()

e (x) is called an eigenvalue problem or eigen-equation

e let (v, \) be a solution to (x). We call
— (v, A) an eigen-pair of A
— A an eigenvalue of A; v an eigenvector of A associated with A
e if (v, ) is an eigen-pair of A, (av, \) is also an eigen-pair for any o € C,a # 0

e unless specified, we will assume ||v||2 = 1 in the sequel
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Eigenvalues and Eigenvectors

Fact: Every A € R™*" (or C™*") has n eigenvalues.

e from the eigenvalue problem we see that

Av=)Avforsomev#0 <= (A —A)v=0forsomev#0
<— det(A—-X)=0
o let p(\) = det(A — M), called the characteristic polynomial of A

e from the determinant def., it can be shown that p()\) is a polynomial of degree
n, viz., p(A) = ag + ay A + aeX? + ... + a, A" where a;'s depend on A

e as p(\) is a polynomial of degree n, it can be factored as p(\) = [[;_,;(\i — A)
where A1, ..., )\, are the roots of p()\)

e we have det(A — AXI) =0<= A€ {A\1,..., A\ }
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Eigenvalues and Eigenvectors

Let \q,..., )\, denote the n eigenvalues of A. We write
AVZ':AZ'VZ', ’i:l,...,n,
where v; denotes an eigenvector of A associated with ;.

e we should be careful about the meaning of n eigenvalues: they are defined as the
n roots of the characteristic polynomial p(\) = det(A — AI)

!

— from the original definition Av = Av, one can verify that A = 1 is the only
eigenvalue of A

e example: consider

— from the characteristic polynomial, which is p(A\) = (1 — X\)?, we see two roots
A1 = Ay = 1 as two eigenvalues
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Eigenvalues and Eigenvectors
Fact: an eigenvalue can be complex even if A is real.

e a polynomial p(\) = ag+ a1 A+ aaA\? + ... + a, A" with real coefficients o;'s can
have complex roots

e example: consider
0 —1
A= [1 O].

— we have p(A) =X+ 1,50 \y =J, Ay = —J

Fact: if A is real and there exists a real eigenvalue \ of A, the associated eigenvector
v can be taken as real.

e obviously, when A — Al is real we can define A'/(A — AI) on R"

e or, if v is a complex eigenvector of a real A associated with a real A\, we can
write v = vr + gvi, where vgr, vy € R". It is easy to verify that vg and vy are
eigenvectors associated with A
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Further Discussion: Repeated Eigenvalues

e w.l.o.g., order \1,..., A\, such that {\1,... A}, kK < n, is the set of all distinct
eigenvalues of A; ie,, \; # \; forall 7,5 € {1,...,k}, i # j; A € {A1,... Mg}
forallte{1,...,n}

e denote u; as the number of repeated eigenvalues of \;, 1 =1,...,k

— 1; 1s called the algebraic multiplicity of the eigenvalue \;

e every )\; can have more than one eigenvector (scaling not counted)
— if dim NV (A — \;I) = r, we can find r linearly independent v;'s
— denote v; = dimN (A — \1),i=1,...,k

— 7, Is called the geometric multiplicity of the eigenvalue \;

Property 3.1. We have p; > v; for all : =1,...,k (not trivial, requires a proof)

— Implication: no. of repeated eigenvalues > no. of linearly indep. eigenvectors
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Eigendecomposition

A matrix A € R" ™ (or C"*") is said to be diagonalizable, or admit an eigende-
composition, if there exists a nonsingular V. € C™"*" such that

A=VAVL
where A = Diag(A1,...,A\n).

e in defining diagonalizability, we didn't say that (v;, \;) has to be an eigen-pair of
A. But

A=VAV™! «— AV = VA, V nonsingular
< Av,=\v;, 1=1,...,n, V nonsingular

Also, Ai,..., A, must be the n eigenvalues of A; this can be seen from the
characteristic polynomial det(A — AI) = det(A — AI) =[], (Ai — A)

e the non-trivial part lies in finding n linearly independent eigenvectors
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Eigendecomposition

If A admits an eigendecomposition, the following properties can be shown (easily):

n

[ ) det(A) — H )\z

i=1
o tr(A) = Z A
i=1

o the eigenvalues of A¥ are A}, ... \F
e rank(A) = number of nonzero eigenvalues of A

e suppose that A is also nonsingular. Then, A=l = VA~'V~!

Note: the first three properties can be shown to be valid for any A; the fourth
property may not be valid when A does not admit an eigendecomposition
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Eigendecomposition

Question: Does every A € R™*" (or C™"*™) admit an eigendecomposition?

e the answer is no.

e counter example: consider

A =

o OO
o OO
o O =

— the characteristic polynomial is p(A) = —A3, s0 A\; = Ao = A3 =0
— it is easy to see that

1 0
N(A = \I) =N(A) =R(AT): =span{ |0], |1
0 0

— any selection of vq, vy, vy € N(A) is linearly dependent
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Eigendecomposition

Question: under which conditions can a matrix admit an eigendcomposition?

e there exist matrix subclasses in which eigendecomposition is guaranteed to exist

— one example is the circulant matrix subclass, as seen in the last lecture

— another example is the Hermitian matrix subclass, as we will see

e there exist simple sufficient conditions under which eigendec. exists
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Eigendecomposition

Property 3.2. Let A € R™*™ (or C™*™), and suppose that \;'s are ordered such

that {\1,...,A\x} is the set of all distinct eigenvalues of A. Also, let v; be any
eigenvector associated with A\;. Then vq,..., v, must be linearly independent.
Implications:

e if all the eigenvalues of A are distinct, i.e.,
)\i#)\ja for all Z,]E{l,,n}WIch#],

then A admits an eigendecomposition

— to have all the eigenvalues to be distinct is not that hard, as we will see later

e A admits an eigendcomposition if and only if u; = ~; for all ¢
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Eigendecomposition for Hermitian & Real Symmetric Matrices

Consider the Hermitian matrix subclass.
Property 3.3. Let A € H".

1. the eigenvalues \q,..., )\, of A are real

2. suppose that \;'s are ordered such that {\i,..., A\x} is the set of all distinct
eigenvalues of A. Also, let v; be any eigenvector associated with A;. Then
V1i,...,VE must be orthonormal.

e the above results apply to real symmetric matrices; recall A € S" = A € H"

e Corollary: for a real symmetric matrix, all eigenvectors v4,..., v, can be chosen
as real

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term. 16



Eigendecomposition for Real Symmetric & Hermitian Matrices

Theorem 3.1. Every A € H"™ admits an eigendecomposition
A =VAVH

where V. € C™*™ is unitary; A = Diag(\y,...,A,) with A\; € R for all i. Also, if
A € S", V can be taken as real orthogonal.

e a consequence of a more powerful decomposition, namely, the Schur decomposi-
tion; we will go through it later

e does not require the assumption of distinct eigenvalues

e Corollary: if A is Hermitian or real symmetric, pu; = -; for all ¢ (no. of repeated
eigenvalues = no. of linearly indep. eigenvectors)
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Power Method

e a method of numerically computing an eigenvector of a given matrix
e simple

e not the best in convergence speed

— a comprehensive coverage of various computational methods for the eigenvalue

problem can be found in the textbook [Golub-Van Loan’12]

e suitable for large-scale sparse problems, e.g., PageRank
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Power Method

e assumptions:

— A admits an eigendecomposition

— \;'s are ordered such that [A1| > [As] > ... > |\,

— [A1] > [Aq]

— we have an initial guess x that satisfies [V ~!x]; # 0 (random guess should do)

e consider Afx. Let @« = V~!x, and observe

AN
Afx = VAPV~ X—Za )\kvz—ozl)\l (Vl—l-z (M) Vz’)

1=1
where ry is a residual and has =Tk
n - )\2 k n a
1
Il <> |— Ivills < |32 SO |&
; Q )\1 3 oA
1=2 i=9
k
e convergence: let ¢y = % (note |cx| = 1). We have
. Akrx
hm Ck = V3

k— o0 ||AkXH2
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Power Method

Algorithm: Power Method
input: A € C™*" and a starting point v(?) ¢ C”
k=20
repeat
vE+1) — Ay (k)
v{(k+1) — {’(k+1)/|“~’(k+l)“2
k:=k+1
until a stopping rule is satisfied
output: v(¥)

AF (0)
e it can be verified that v(%) = HAk:(O)HQ

e complexity per iteration: O(n?), or O(nnz(A)) for sparse A

A9

e convergence rate depends on !

; slower if |\a| is closer to | 1]

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term.

20



Deflation

e the power method finds the largest eigenvalue (in modulus) only
e how can we compute all the eigenvalues and eigenvectors?
e there are many ways and let's consider a simple method called deflation

e consider a Hermitian A with |A| > [Xo| > ... > |\,

representation n
Z H
A = )\Z'V,L'Vi .
i=1

e Deflation: use the power method to obtain vi, A\, do the subtraction

, and note the outer-product

n
A=A — )\1V1V{—I = E )\iviV,fI,
1=2

and repeat until all the eigenvectors and eigenvalues are found

— if we want the first k eigen-pairs only, deflation can also do that
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Schur Decomposition

Theorem 3.2. Let A € C™*", and let \q,...,\, be its eigenvalues. The matrix A
admits a decomposition

A =UTUZ,
for some unitary U € C™*™ and for some upper triangular T € C™**™ with t;; = \;
for all 7. If A isreal and Aq,..., A, are all real, U and T can be taken as real.

e we will call the above decomposition the Schur decomposition in the sequel

e some insight: Suppose A can be written as A = UTU" for some unitary U
and upper triangular T, but it's not known if t;; = A;. Then

det(A — AI) = det(T — AI) = [T, (tsi — A)

This implies that t11,...,t,, are the eigenvalues of A

e see the accompanying note for the proof of Theorem 3.2
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Schur Decomposition

e the Schur decomposition is a powerful tool

e e.g., we can use it to show that for any square A (with or without eigendec.),
~ det(A) = [Ty A

— tr(A) = Z?:l Ai
— the eigenvalues of A* are A%, ... \F

n

e we may use it to prove the convergence of the power method when eigendecom-

position does not exist

e the Jordan canonical form, which we will not teach, requires the Schur decompo-

sition as the first key step
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Implications of the Schur Decomposition

e proof of Theorem 3.1:

— let A be Hermitian, and let A = UTU?! be its Schur decomposition. Observe
0=A-AY=vurTU? —UuT?Uf =U(T-THUY = o=T-T#

— since T is upper triangular and T# is lower triangular, T = T implies that
T is diagonal; thus, the Schur decomposition is also the eigendecomposition

— similar results apply to real symmetric A, except that we use real T, U

— note: T = T¥ also implies that ¢;;'s are real; so the proof also confirms that
A;'s are real
e skew-Hermitian matrices: A € C™*" is said to be skew-Hermitian if A = —A

— by the Schur decomposition, we can show that any skew-Hermitian A admits
an eigendecomposition with unitary V and the eigenvalues are purely imaginary
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Implications of Schur Decomposition

e another result from the Schur decomposition:
Proposition 3.1. Let A € C"*". For every ¢ > 0, there exists a matrix
A € C™*"™ such that the n eigenvalues of A are distinct and

|A — AHF < e.

e Implication: for any square A, we can always find an A that is arbitrarily close
to A and admits an eigendecomposition

e proof:
— let A = UTU*¥ be the Schur dec. of A

— let A = U(T+D)U¥, where D = Diag(dy, ..., dy) is such that |d;| < (£)

ey1/2
mn
for all ¢, and t11 +d1, ..., t,n + d,, are distinct

— |A = A||%2 = |D||% < &, the eigenvalues of A are ty1 +di, ..., tny + dy
— by Property 3.2, A admits an eigendecomposition
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PageRank: A Case Study

e PageRank is an algorithm used by Google to rank the pages of a search result.

e the idea is to use counts of links of various pages to determine pages’ importance.

PageRank

Source: Wiki.

e further reading: [Bryan-Tanya2006]
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PageRank Model

e Model:

where c; is the number of outgoing links from page j; £, is the set of pages with
a link to page 7; v; is the importance score of page 1.

e example:
(1 je—— 2 )
\\ ) //"‘ \‘\ § ) //' A Vv Vv
~— 2 ~— T 7 1_x/_-/\_\ —~N=
0 5 1 ? U1 U1
0O 0 O % V2  [V2
. —~ 0 % 0 3 U3 Us
3 — 4 ) 0 0 0 0] [va]  [v4]
'\\,_‘_7_ B / .‘\\ //
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PageRank Problem

o let A € R"*" be a matrix such that a;; =1/c; if j € L; and a;; =0if j ¢ L;
e Problem: find a non-negative v such that Av=1v

— A is extremely large and sparse, and we want to use the power method

e Questions:
— does a solution to Av = v exist? Or, is A = 1 an eigenvalue of A7

— does Av = v have a non-negative solution? Or, does a non-negative eigenvec-
tor associated with A = 1 exist?

— is the solution to Av = v unique? Or, would there exist more than one
eigenvector associated with A = 17

* a unique solution is desired for this problem
— is A = 1 the only eigenvalue that is the largest in modulus?

x this is required for the power method
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Some Notation and Conventions

e notation:
— X >y means that x; > y, for all ¢
— X >y means that x; > y; for all ¢
— x #y means that x >y does not hold

— the same notations apply to matrices

e conventions:
— x is said to be non-negative if x > 0, and non-positive if —x > 0
— x is said to be positive if x > 0, and negative if —x > 0
— the same conventions apply to matrices

— a square A is said to be column-stochastic if A > 0 and AT1 =1

n

+ a column-stochastic A has every column a; satisfying al'1 = ijl aj; = 1
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PageRank Matrix Properties

e in PageRank, A is column-stochastic if all pages have outgoing links
— see the literature to see how to deal with cases where some pages do not have
outgoing links (dangling nodes)
Property 3.4. Let A be column-stochastic. Then,

1. A =1 is an eigenvalue of A

2. |[A| <1 for any eigenvalue A of A

e |Implications:

— a solution to Av = v does exist, though it doesn't say if v > 0 or not

— A =1 is an eigenvalue that has the largest modulus, but we don't know if it is
the only eigenvalue that has the largest modulus

e we resort to non-negative matrix theory to answer the rest of the questions
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Non-Negative Matrix Theory

Theorem 3.3 (Perron-Frobenius). Let A be square positive. There exists an
eigenvalue p of A such that

1. pisreal and p > 0
2. |A| < p for any eigenvalue X\ of A with \ # p
3. there exists a positive eigenvector associated with p

4. the algebraic multiplicity of p is 1 (so the geometric multiplicity of p is also 1)

A weaker result for general non-negative matrices:

Theorem 3.4. Let A be square non-negative. There exists an eigenvalue p of A
such that

1. pisreal and p > 0
2. |A| < p for any eigenvalue X\ of A

3. there exists a non-negative eigenvector associated with p
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PageRank Matrix Properties

e further implication by Theorem 3.4:

— a non-negative solution to Av = v exists, though it doesn't say if there exists
another solution

— even worse, it is not known if there exists another solution v such that v 2 0
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PageRank Matrix Properties

e PageRank actually considers a modified version of A

A=(1-BA+7

where 0 < 8 < 1 (typical value is g = 0.15)
e Ais positive
e further implications by Theorem 3.3:

— A =1 is the only eigenvalue that has the largest modulus

— there exists only one eigenvector associated with A = 1; that eigenvector is
either positive or negative

— so the power method should work
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