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Lecture 3: Eigenvalues and Eigenvectors

• facts about eigenvalues and eigenvectors

• eigendecomposition, the case of Hermitian and real symmetric matrices

• power method

• Schur decomposition

• PageRank: a case study
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Notation and Conventions

• a square matrix A is said to be symmetric if aij = aji for all i, j with i 6= j, or
equivalently, if AT = A

– example:

A =

 1 −0.5 3
−0.5 −2 0.9
3 0.9 0.1


• a square matrix A is said to be Hermitian if aij = a∗ji for all i, j with i 6= j, or

equivalently, if AH = A

• we denote the set of all n× n real symmetric matrices by Sn

• we denote the set of all n× n complex Hermitian matrices by Hn
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Notation and Conventions

• note the following subtleties:

– by definition, a real symmetric matrix is also Hermitian

– when we say that a matrix is Hermitian, we often imply that the matrix may
be complex (at least for this course); a real Hermitian matrix is simply real
symmetric

– we can have a complex symmetric matrix, though we will not study it
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Main Results

A matrix A ∈ Rn×n (or Cn×n) is said to admit an eigendecomposition if there exists
a nonsingular V ∈ Cn×n and a collection of scalars λ1, . . . , λn ∈ C such that

A = VΛV−1,

where Λ = Diag(λ1, . . . , λn).

• the above (V,Λ) satisfies Avi = λivi for i = 1, . . . , n, which are eigen-equations

• v1, . . . ,vn are required to be linearly independent

• eigendecomposition does not always exist

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 4



Main Results

A real symmetric matrix A ∈ Sn always admits an eigendecomposition

A = VΛVT

where V ∈ Rn×n is orthogonal; Λ = Diag(λ1, . . . , λn) with λi ∈ R for all i.

A Hermitian matrix A ∈ Hn always admits an eigendecomposition

A = VΛVH

where V ∈ Cn×n is unitary; Λ = Diag(λ1, . . . , λn) with λi ∈ R for all i.

• differences: a Hermitian or real symmetric matrix always has

– an eigendecomposition
– real λi’s
– a V that is not only nonsingular but also unitary
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Eigenvalues and Eigenvectors

We start with the basic definition of eigenvalues and eigenvectors.

Problem: given a A ∈ Rn×n (or Cn×n), find a vector v ∈ Cn with v 6= 0 such that

Av = λv, for some λ ∈ C (∗)

• (∗) is called an eigenvalue problem or eigen-equation

• let (v, λ) be a solution to (∗). We call

– (v, λ) an eigen-pair of A

– λ an eigenvalue of A; v an eigenvector of A associated with λ

• if (v, λ) is an eigen-pair of A, (αv, λ) is also an eigen-pair for any α ∈ C, α 6= 0

• unless specified, we will assume ‖v‖2 = 1 in the sequel
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Eigenvalues and Eigenvectors

Fact: Every A ∈ Rn×n (or Cn×n) has n eigenvalues.

• from the eigenvalue problem we see that

Av = λv for some v 6= 0 ⇐⇒ (A− λI)v = 0 for some v 6= 0

⇐⇒ det(A− λI) = 0

• let p(λ) = det(A− λI), called the characteristic polynomial of A

• from the determinant def., it can be shown that p(λ) is a polynomial of degree
n, viz., p(λ) = α0 + α1λ+ α2λ

2 + . . .+ αnλ
n where αi’s depend on A

• as p(λ) is a polynomial of degree n, it can be factored as p(λ) =
∏n
i=1(λi − λ)

where λ1, . . . , λn are the roots of p(λ)

• we have det(A− λI) = 0⇐⇒ λ ∈ {λ1, . . . , λn}
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Eigenvalues and Eigenvectors

Let λ1, . . . , λn denote the n eigenvalues of A. We write

Avi = λivi, i = 1, . . . , n,

where vi denotes an eigenvector of A associated with λi.

• we should be careful about the meaning of n eigenvalues: they are defined as the
n roots of the characteristic polynomial p(λ) = det(A− λI)

• example: consider

A =

[
1 0
0 1

]
.

– from the original definition Av = λv, one can verify that λ = 1 is the only
eigenvalue of A

– from the characteristic polynomial, which is p(λ) = (1− λ)2, we see two roots
λ1 = λ2 = 1 as two eigenvalues
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Eigenvalues and Eigenvectors

Fact: an eigenvalue can be complex even if A is real.

• a polynomial p(λ) = α0+α1λ+α2λ
2+ . . .+αnλ

n with real coefficients αi’s can
have complex roots

• example: consider

A =

[
0 −1
1 0

]
.

– we have p(λ) = λ2 + 1, so λ1 = j, λ2 = −j

Fact: if A is real and there exists a real eigenvalue λ of A, the associated eigenvector
v can be taken as real.

• obviously, when A− λI is real we can define N (A− λI) on Rn

• or, if v is a complex eigenvector of a real A associated with a real λ, we can
write v = vR + jvI, where vR,vI ∈ Rn. It is easy to verify that vR and vI are
eigenvectors associated with λ
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Further Discussion: Repeated Eigenvalues

• w.l.o.g., order λ1, . . . , λn such that {λ1, . . . λk}, k ≤ n, is the set of all distinct
eigenvalues of A; i.e., λi 6= λj for all i, j ∈ {1, . . . , k}, i 6= j; λi ∈ {λ1, . . . λk}
for all i ∈ {1, . . . , n}

• denote µi as the number of repeated eigenvalues of λi, i = 1, . . . , k

– µi is called the algebraic multiplicity of the eigenvalue λi

• every λi can have more than one eigenvector (scaling not counted)

– if dimN (A− λiI) = r, we can find r linearly independent vi’s

– denote γi = dimN (A− λiI), i = 1, . . . , k

– γi is called the geometric multiplicity of the eigenvalue λi

Property 3.1. We have µi ≥ γi for all i = 1, . . . , k (not trivial, requires a proof)

– Implication: no. of repeated eigenvalues ≥ no. of linearly indep. eigenvectors
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Eigendecomposition

A matrix A ∈ Rn×n (or Cn×n) is said to be diagonalizable, or admit an eigende-
composition, if there exists a nonsingular V ∈ Cn×n such that

A = VΛV−1,

where Λ = Diag(λ1, . . . , λn).

• in defining diagonalizability, we didn’t say that (vi, λi) has to be an eigen-pair of
A. But

A = VΛV−1 ⇐⇒ AV = VΛ, V nonsingular

⇐⇒ Avi = λivi, i = 1, . . . , n, V nonsingular

Also, λ1, . . . , λn must be the n eigenvalues of A; this can be seen from the
characteristic polynomial det(A− λI) = det(Λ− λI) =

∏n
i=1(λi − λ)

• the non-trivial part lies in finding n linearly independent eigenvectors
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Eigendecomposition

If A admits an eigendecomposition, the following properties can be shown (easily):

• det(A) =

n∏
i=1

λi

• tr(A) =

n∑
i=1

λi

• the eigenvalues of Ak are λk1, . . . , λ
k
n

• rank(A) = number of nonzero eigenvalues of A

• suppose that A is also nonsingular. Then, A−1 = VΛ−1V−1

Note: the first three properties can be shown to be valid for any A; the fourth
property may not be valid when A does not admit an eigendecomposition
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Eigendecomposition

Question: Does every A ∈ Rn×n (or Cn×n) admit an eigendecomposition?

• the answer is no.

• counter example: consider

A =

0 0 1
0 0 0
0 0 0


– the characteristic polynomial is p(λ) = −λ3, so λ1 = λ2 = λ3 = 0

– it is easy to see that

N (A− λ1I) = N (A) = R(AT )⊥ = span


10
0

 ,
01
0


– any selection of v1,v2,v3 ∈ N (A) is linearly dependent
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Eigendecomposition

Question: under which conditions can a matrix admit an eigendcomposition?

• there exist matrix subclasses in which eigendecomposition is guaranteed to exist

– one example is the circulant matrix subclass, as seen in the last lecture

– another example is the Hermitian matrix subclass, as we will see

• there exist simple sufficient conditions under which eigendec. exists
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Eigendecomposition

Property 3.2. Let A ∈ Rn×n (or Cn×n), and suppose that λi’s are ordered such
that {λ1, . . . , λk} is the set of all distinct eigenvalues of A. Also, let vi be any
eigenvector associated with λi. Then v1, . . . ,vk must be linearly independent.

Implications:

• if all the eigenvalues of A are distinct, i.e.,

λi 6= λj, for all i, j ∈ {1, . . . , n} with i 6= j,

then A admits an eigendecomposition

– to have all the eigenvalues to be distinct is not that hard, as we will see later

• A admits an eigendcomposition if and only if µi = γi for all i
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Eigendecomposition for Hermitian & Real Symmetric Matrices

Consider the Hermitian matrix subclass.

Property 3.3. Let A ∈ Hn.

1. the eigenvalues λ1, . . . , λn of A are real

2. suppose that λi’s are ordered such that {λ1, . . . , λk} is the set of all distinct
eigenvalues of A. Also, let vi be any eigenvector associated with λi. Then
v1, . . . ,vk must be orthonormal.

• the above results apply to real symmetric matrices; recall A ∈ Sn =⇒ A ∈ Hn

• Corollary: for a real symmetric matrix, all eigenvectors v1, . . . ,vn can be chosen
as real
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Eigendecomposition for Real Symmetric & Hermitian Matrices

Theorem 3.1. Every A ∈ Hn admits an eigendecomposition

A = VΛVH,

where V ∈ Cn×n is unitary; Λ = Diag(λ1, . . . , λn) with λi ∈ R for all i. Also, if
A ∈ Sn, V can be taken as real orthogonal.

• a consequence of a more powerful decomposition, namely, the Schur decomposi-
tion; we will go through it later

• does not require the assumption of distinct eigenvalues

• Corollary: if A is Hermitian or real symmetric, µi = γi for all i (no. of repeated
eigenvalues = no. of linearly indep. eigenvectors)
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Power Method

• a method of numerically computing an eigenvector of a given matrix

• simple

• not the best in convergence speed

– a comprehensive coverage of various computational methods for the eigenvalue
problem can be found in the textbook [Golub-Van Loan’12]

• suitable for large-scale sparse problems, e.g., PageRank
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Power Method
• assumptions:

– A admits an eigendecomposition
– λi’s are ordered such that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|
– |λ1| > |λ2|
– we have an initial guess x that satisfies [V−1x]1 6= 0 (random guess should do)

• consider Akx. Let α = V−1x, and observe

Akx = VΛkV−1x =

n∑
i=1

αiλ
k
i vi = α1λ

k
1

(
v1 +

n∑
i=2

αi
α1

(
λi
λ1

)k
vi︸ ︷︷ ︸

=rk

)
where rk is a residual and has

‖rk‖2 ≤
n∑
i=2

∣∣∣∣αiα1

∣∣∣∣ ∣∣∣∣λiλ1
∣∣∣∣k ‖vi‖2 ≤ ∣∣∣∣λ2λ1

∣∣∣∣k n∑
i=2

∣∣∣∣αiα1

∣∣∣∣
• convergence: let ck =

|α1||λ|k

α1λ
k
1

(note |ck| = 1). We have

lim
k→∞

ck
Akx

‖Akx‖2
= v1
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Power Method

Algorithm: Power Method
input: A ∈ Cn×n and a starting point v(0) ∈ Cn
k = 0
repeat
why ṽ(k+1) = Av(k)

why v(k+1) = ṽ(k+1)/‖ṽ(k+1)‖2
why k := k + 1
until a stopping rule is satisfied
output: v(k)

• it can be verified that v(k) =
Akv(0)

‖Akv(0)‖2

• complexity per iteration: O(n2), or O(nnz(A)) for sparse A

• convergence rate depends on
∣∣∣λ2λ1∣∣∣; slower if |λ2| is closer to |λ1|
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Deflation

• the power method finds the largest eigenvalue (in modulus) only

• how can we compute all the eigenvalues and eigenvectors?

• there are many ways and let’s consider a simple method called deflation

• consider a Hermitian A with |λ1| > |λ2| > . . . > |λn|, and note the outer-product
representation

A =

n∑
i=1

λiviv
H
i .

• Deflation: use the power method to obtain v1, λ1, do the subtraction

A := A− λ1v1v
H
1 =

n∑
i=2

λiviv
H
i ,

and repeat until all the eigenvectors and eigenvalues are found

– if we want the first k eigen-pairs only, deflation can also do that
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Schur Decomposition

Theorem 3.2. Let A ∈ Cn×n, and let λ1, . . . , λn be its eigenvalues. The matrix A
admits a decomposition

A = UTUH,

for some unitary U ∈ Cn×n and for some upper triangular T ∈ Cn×n with tii = λi
for all i. If A is real and λ1, . . . , λn are all real, U and T can be taken as real.

• we will call the above decomposition the Schur decomposition in the sequel

• some insight: Suppose A can be written as A = UTUH for some unitary U
and upper triangular T, but it’s not known if tii = λi. Then

det(A− λI) = det(T− λI) =
∏n
i=1(tii − λ)

This implies that t11, . . . , tnn are the eigenvalues of A

• see the accompanying note for the proof of Theorem 3.2
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Schur Decomposition

• the Schur decomposition is a powerful tool

• e.g., we can use it to show that for any square A (with or without eigendec.),

– det(A) =
∏n
i=1 λi

– tr(A) =
∑n
i=1 λi

– the eigenvalues of Ak are λk1, . . . , λ
k
n

• we may use it to prove the convergence of the power method when eigendecom-
position does not exist

• the Jordan canonical form, which we will not teach, requires the Schur decompo-
sition as the first key step
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Implications of the Schur Decomposition

• proof of Theorem 3.1:

– let A be Hermitian, and let A = UTUH be its Schur decomposition. Observe

0 = A−AH = UTUH−UTHUH = U(T−TH)UH ⇐⇒ 0 = T−TH

– since T is upper triangular and TH is lower triangular, T = TH implies that
T is diagonal; thus, the Schur decomposition is also the eigendecomposition

– similar results apply to real symmetric A, except that we use real T,U

– note: T = TH also implies that tii’s are real; so the proof also confirms that
λi’s are real

• skew-Hermitian matrices: A ∈ Cn×n is said to be skew-Hermitian if AH = −A

– by the Schur decomposition, we can show that any skew-Hermitian A admits
an eigendecomposition with unitary V and the eigenvalues are purely imaginary
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Implications of Schur Decomposition

• another result from the Schur decomposition:

Proposition 3.1. Let A ∈ Cn×n. For every ε > 0, there exists a matrix
Ã ∈ Cn×n such that the n eigenvalues of Ã are distinct and

‖A− Ã‖F ≤ ε.

• Implication: for any square A, we can always find an Ã that is arbitrarily close
to A and admits an eigendecomposition

• proof:

– let A = UTUH be the Schur dec. of A

– let Ã = U(T+D)UH, where D = Diag(d1, . . . , dn) is such that |di| ≤
(
ε
n

)1/2
for all i, and t11 + d1, . . . , tnn + dn are distinct

– ‖A− Ã‖2F = ‖D‖2F ≤ ε, the eigenvalues of Ã are t11 + d1, . . . , tnn + dn

– by Property 3.2, Ã admits an eigendecomposition
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PageRank: A Case Study

• PageRank is an algorithm used by Google to rank the pages of a search result.

• the idea is to use counts of links of various pages to determine pages’ importance.

Source: Wiki.

• further reading: [Bryan-Tanya2006]
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PageRank Model

• Model: ∑
j∈Li

vj
cj

= vi, i = 1, . . . , n,

where cj is the number of outgoing links from page j; Li is the set of pages with
a link to page i; vi is the importance score of page i.

• example:

A︷ ︸︸ ︷
0 1

2 1 1
3

0 0 0 1
3

0 1
2 0 1

3
0 0 0 0


v︷ ︸︸ ︷
v1
v2
v3
v4

 =

v︷ ︸︸ ︷
v1
v2
v3
v4

 .
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PageRank Problem

• let A ∈ Rn×n be a matrix such that aij = 1/cj if j ∈ Li and aij = 0 if j /∈ Li

• Problem: find a non-negative v such that Av = v

– A is extremely large and sparse, and we want to use the power method

• Questions:

– does a solution to Av = v exist? Or, is λ = 1 an eigenvalue of A?

– does Av = v have a non-negative solution? Or, does a non-negative eigenvec-
tor associated with λ = 1 exist?

– is the solution to Av = v unique? Or, would there exist more than one
eigenvector associated with λ = 1?

∗ a unique solution is desired for this problem

– is λ = 1 the only eigenvalue that is the largest in modulus?

∗ this is required for the power method
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Some Notation and Conventions

• notation:

– x ≥ y means that xi ≥ yi for all i

– x > y means that xi > yi for all i

– x � y means that x ≥ y does not hold

– the same notations apply to matrices

• conventions:

– x is said to be non-negative if x ≥ 0, and non-positive if −x ≥ 0

– x is said to be positive if x > 0, and negative if −x > 0

– the same conventions apply to matrices

– a square A is said to be column-stochastic if A ≥ 0 and AT1 = 1

∗ a column-stochastic A has every column ai satisfying aTi 1 =
∑n
j=1 aji = 1
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PageRank Matrix Properties

• in PageRank, A is column-stochastic if all pages have outgoing links

– see the literature to see how to deal with cases where some pages do not have
outgoing links (dangling nodes)

Property 3.4. Let A be column-stochastic. Then,

1. λ = 1 is an eigenvalue of A

2. |λ| ≤ 1 for any eigenvalue λ of A

• Implications:

– a solution to Av = v does exist, though it doesn’t say if v ≥ 0 or not

– λ = 1 is an eigenvalue that has the largest modulus, but we don’t know if it is
the only eigenvalue that has the largest modulus

• we resort to non-negative matrix theory to answer the rest of the questions
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Non-Negative Matrix Theory

Theorem 3.3 (Perron-Frobenius). Let A be square positive. There exists an
eigenvalue ρ of A such that

1. ρ is real and ρ > 0

2. |λ| < ρ for any eigenvalue λ of A with λ 6= ρ

3. there exists a positive eigenvector associated with ρ

4. the algebraic multiplicity of ρ is 1 (so the geometric multiplicity of ρ is also 1)

A weaker result for general non-negative matrices:

Theorem 3.4. Let A be square non-negative. There exists an eigenvalue ρ of A
such that

1. ρ is real and ρ ≥ 0

2. |λ| ≤ ρ for any eigenvalue λ of A

3. there exists a non-negative eigenvector associated with ρ
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PageRank Matrix Properties

• further implication by Theorem 3.4:

– a non-negative solution to Av = v exists, though it doesn’t say if there exists
another solution

– even worse, it is not known if there exists another solution v such that v � 0
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PageRank Matrix Properties

• PageRank actually considers a modified version of A

Ã = (1− β)A + β

1/n . . . 1/n
... ...

1/n . . . 1/n


where 0 < β < 1 (typical value is β = 0.15)

• Ã is positive

• further implications by Theorem 3.3:

– λ = 1 is the only eigenvalue that has the largest modulus

– there exists only one eigenvector associated with λ = 1; that eigenvector is
either positive or negative

– so the power method should work
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