ENGG5781 Matrix Analysis and Computations Lecture 3: Eigenvalues and Eigenvectors

Wing-Kin (Ken) Ma

> 2022-23 First Term

Department of Electronic Engineering The Chinese University of Hong Kong

Lecture 3: Eigenvalues and Eigenvectors

- facts about eigenvalues and eigenvectors
- eigendecomposition, the case of Hermitian and real symmetric matrices
- power method
- Schur decomposition
- PageRank: a case study

Notation and Conventions

- a square matrix \mathbf{A} is said to be symmetric if $a_{i j}=a_{j i}$ for all i, j with $i \neq j$, or equivalently, if $\mathbf{A}^{T}=\mathbf{A}$
- example:

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & -0.5 & 3 \\
-0.5 & -2 & 0.9 \\
3 & 0.9 & 0.1
\end{array}\right]
$$

- a square matrix \mathbf{A} is said to be Hermitian if $a_{i j}=a_{j i}^{*}$ for all i, j with $i \neq j$, or equivalently, if $\mathbf{A}^{H}=\mathbf{A}$
- we denote the set of all $n \times n$ real symmetric matrices by \mathbb{S}^{n}
- we denote the set of all $n \times n$ complex Hermitian matrices by \mathbb{H}^{n}

Notation and Conventions

- note the following subtleties:
- by definition, a real symmetric matrix is also Hermitian
- when we say that a matrix is Hermitian, we often imply that the matrix may be complex (at least for this course); a real Hermitian matrix is simply real symmetric
- we can have a complex symmetric matrix, though we will not study it

Main Results

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) is said to admit an eigendecomposition if there exists a nonsingular $\mathbf{V} \in \mathbb{C}^{n \times n}$ and a collection of scalars $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1}
$$

where $\boldsymbol{\Lambda}=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

- the above $(\mathbf{V}, \boldsymbol{\Lambda})$ satisfies $\mathbf{A} \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ for $i=1, \ldots, n$, which are eigen-equations
- $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are required to be linearly independent
- eigendecomposition does not always exist

Main Results

A real symmetric matrix $\mathbf{A} \in \mathbb{S}^{n}$ always admits an eigendecomposition

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{T}
$$

where $\mathbf{V} \in \mathbb{R}^{n \times n}$ is orthogonal; $\boldsymbol{\Lambda}=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i} \in \mathbb{R}$ for all i.
A Hermitian matrix $\mathbf{A} \in \mathbb{H}^{n}$ always admits an eigendecomposition

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{H}
$$

where $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary; $\boldsymbol{\Lambda}=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i} \in \mathbb{R}$ for all i.

- differences: a Hermitian or real symmetric matrix always has
- an eigendecomposition
- real λ_{i} 's
- a \mathbf{V} that is not only nonsingular but also unitary

Eigenvalues and Eigenvectors

We start with the basic definition of eigenvalues and eigenvectors.

Problem: given a $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), find a vector $\mathbf{v} \in \mathbb{C}^{n}$ with $\mathbf{v} \neq \mathbf{0}$ such that

$$
\begin{equation*}
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}, \quad \text { for some } \lambda \in \mathbb{C} \tag{*}
\end{equation*}
$$

- $(*)$ is called an eigenvalue problem or eigen-equation
- let (\mathbf{v}, λ) be a solution to $(*)$. We call
- (\mathbf{v}, λ) an eigen-pair of \mathbf{A}
- λ an eigenvalue of $\mathbf{A} ; \mathbf{v}$ an eigenvector of \mathbf{A} associated with λ
- if (\mathbf{v}, λ) is an eigen-pair of $\mathbf{A},(\alpha \mathbf{v}, \lambda)$ is also an eigen-pair for any $\alpha \in \mathbb{C}, \alpha \neq 0$
- unless specified, we will assume $\|\mathbf{v}\|_{2}=1$ in the sequel

Eigenvalues and Eigenvectors

Fact: Every $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) has n eigenvalues.

- from the eigenvalue problem we see that

$$
\begin{aligned}
\mathbf{A} \mathbf{v}=\lambda \mathbf{v} \text { for some } \mathbf{v} \neq \mathbf{0} & \Longleftrightarrow(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0} \text { for some } \mathbf{v} \neq \mathbf{0} \\
& \Longleftrightarrow \operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0
\end{aligned}
$$

- let $p(\lambda)=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$, called the characteristic polynomial of \mathbf{A}
- from the determinant def., it can be shown that $p(\lambda)$ is a polynomial of degree n, viz., $p(\lambda)=\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}+\ldots+\alpha_{n} \lambda^{n}$ where α_{i} 's depend on \mathbf{A}
- as $p(\lambda)$ is a polynomial of degree n, it can be factored as $p(\lambda)=\prod_{i=1}^{n}\left(\lambda_{i}-\lambda\right)$ where $\lambda_{1}, \ldots, \lambda_{n}$ are the roots of $p(\lambda)$
- we have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0 \Longleftrightarrow \lambda \in\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$

Eigenvalues and Eigenvectors

Let $\lambda_{1}, \ldots, \lambda_{n}$ denote the n eigenvalues of \mathbf{A}. We write

$$
\mathbf{A} \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}, \quad i=1, \ldots, n
$$

where \mathbf{v}_{i} denotes an eigenvector of \mathbf{A} associated with λ_{i}.

- we should be careful about the meaning of n eigenvalues: they are defined as the n roots of the characteristic polynomial $p(\lambda)=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$
- example: consider

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- from the original definition $\mathbf{A v}=\lambda \mathbf{v}$, one can verify that $\lambda=1$ is the only eigenvalue of \mathbf{A}
- from the characteristic polynomial, which is $p(\lambda)=(1-\lambda)^{2}$, we see two roots $\lambda_{1}=\lambda_{2}=1$ as two eigenvalues

Eigenvalues and Eigenvectors

Fact: an eigenvalue can be complex even if \mathbf{A} is real.

- a polynomial $p(\lambda)=\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}+\ldots+\alpha_{n} \lambda^{n}$ with real coefficients α_{i} 's can have complex roots
- example: consider

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

- we have $p(\lambda)=\lambda^{2}+1$, so $\lambda_{1}=\boldsymbol{j}, \lambda_{2}=-\boldsymbol{j}$

Fact: if \mathbf{A} is real and there exists a real eigenvalue λ of \mathbf{A}, the associated eigenvector \mathbf{v} can be taken as real.

- obviously, when $\mathbf{A}-\lambda \mathbf{I}$ is real we can define $\mathcal{N}(\mathbf{A}-\lambda \mathbf{I})$ on \mathbb{R}^{n}
- or, if \mathbf{v} is a complex eigenvector of a real \mathbf{A} associated with a real λ, we can write $\mathbf{v}=\mathbf{v}_{\mathrm{R}}+\boldsymbol{j} \mathbf{v}_{\mathrm{I}}$, where $\mathbf{v}_{\mathrm{R}}, \mathbf{v}_{\mathrm{I}} \in \mathbb{R}^{n}$. It is easy to verify that \mathbf{v}_{R} and \mathbf{v}_{I} are eigenvectors associated with λ

Further Discussion: Repeated Eigenvalues

- w.l.o.g., order $\lambda_{1}, \ldots, \lambda_{n}$ such that $\left\{\lambda_{1}, \ldots \lambda_{k}\right\}, k \leq n$, is the set of all distinct eigenvalues of \mathbf{A}; i.e., $\lambda_{i} \neq \lambda_{j}$ for all $i, j \in\{1, \ldots, k\}, i \neq j ; \lambda_{i} \in\left\{\lambda_{1}, \ldots \lambda_{k}\right\}$ for all $i \in\{1, \ldots, n\}$
- denote μ_{i} as the number of repeated eigenvalues of $\lambda_{i}, i=1, \ldots, k$
- μ_{i} is called the algebraic multiplicity of the eigenvalue λ_{i}
- every λ_{i} can have more than one eigenvector (scaling not counted)
- if $\operatorname{dim} \mathcal{N}\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right)=r$, we can find r linearly independent \mathbf{v}_{i} 's
- denote $\gamma_{i}=\operatorname{dim} \mathcal{N}\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right), i=1, \ldots, k$
- γ_{i} is called the geometric multiplicity of the eigenvalue λ_{i}

Property 3.1. We have $\mu_{i} \geq \gamma_{i}$ for all $i=1, \ldots, k$ (not trivial, requires a proof)

- Implication: no. of repeated eigenvalues \geq no. of linearly indep. eigenvectors

Eigendecomposition

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) is said to be diagonalizable, or admit an eigendecomposition, if there exists a nonsingular $\mathbf{V} \in \mathbb{C}^{n \times n}$ such that

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1}
$$

where $\boldsymbol{\Lambda}=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

- in defining diagonalizability, we didn't say that $\left(\mathbf{v}_{i}, \lambda_{i}\right)$ has to be an eigen-pair of A. But

$$
\begin{aligned}
\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1} & \Longleftrightarrow \mathbf{A V}=\mathbf{V} \boldsymbol{\Lambda}, \mathbf{V} \text { nonsingular } \\
& \Longleftrightarrow \mathbf{A v}_{i}=\lambda_{i} \mathbf{v}_{i}, i=1, \ldots, n, \mathbf{V} \text { nonsingular }
\end{aligned}
$$

Also, $\lambda_{1}, \ldots, \lambda_{n}$ must be the n eigenvalues of \mathbf{A}; this can be seen from the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\operatorname{det}(\boldsymbol{\Lambda}-\lambda \mathbf{I})=\prod_{i=1}^{n}\left(\lambda_{i}-\lambda\right)$

- the non-trivial part lies in finding n linearly independent eigenvectors

Eigendecomposition

If \mathbf{A} admits an eigendecomposition, the following properties can be shown (easily):

- $\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i}$
- $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} \lambda_{i}$
- the eigenvalues of \mathbf{A}^{k} are $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$
- $\operatorname{rank}(\mathbf{A})=$ number of nonzero eigenvalues of \mathbf{A}
- suppose that \mathbf{A} is also nonsingular. Then, $\mathbf{A}^{-1}=\mathbf{V} \mathbf{\Lambda}^{-1} \mathbf{V}^{-1}$

Note: the first three properties can be shown to be valid for any \mathbf{A}; the fourth property may not be valid when \mathbf{A} does not admit an eigendecomposition

Eigendecomposition

Question: Does every $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) admit an eigendecomposition?

- the answer is no.
- counter example: consider

$$
\mathbf{A}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- the characteristic polynomial is $p(\lambda)=-\lambda^{3}$, so $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$
- it is easy to see that

$$
\mathcal{N}\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right)=\mathcal{N}(\mathbf{A})=\mathcal{R}\left(\mathbf{A}^{T}\right)^{\perp}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

- any selection of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathcal{N}(\mathbf{A})$ is linearly dependent

Eigendecomposition

Question: under which conditions can a matrix admit an eigendcomposition?

- there exist matrix subclasses in which eigendecomposition is guaranteed to exist
- one example is the circulant matrix subclass, as seen in the last lecture
- another example is the Hermitian matrix subclass, as we will see
- there exist simple sufficient conditions under which eigendec. exists

Eigendecomposition

Property 3.2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), and suppose that λ_{i} 's are ordered such that $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ is the set of all distinct eigenvalues of \mathbf{A}. Also, let \mathbf{v}_{i} be any eigenvector associated with λ_{i}. Then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ must be linearly independent.

Implications:

- if all the eigenvalues of \mathbf{A} are distinct, i.e.,

$$
\lambda_{i} \neq \lambda_{j}, \quad \text { for all } i, j \in\{1, \ldots, n\} \text { with } i \neq j
$$

then \mathbf{A} admits an eigendecomposition

- to have all the eigenvalues to be distinct is not that hard, as we will see later
- A admits an eigendcomposition if and only if $\mu_{i}=\gamma_{i}$ for all i

Eigendecomposition for Hermitian \& Real Symmetric Matrices

Consider the Hermitian matrix subclass.
Property 3.3. Let $\mathbf{A} \in \mathbb{H}^{n}$.

1. the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of \mathbf{A} are real
2. suppose that λ_{i} 's are ordered such that $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ is the set of all distinct eigenvalues of \mathbf{A}. Also, let \mathbf{v}_{i} be any eigenvector associated with λ_{i}. Then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ must be orthonormal.

- the above results apply to real symmetric matrices; recall $\mathbf{A} \in \mathbb{S}^{n} \Longrightarrow \mathbf{A} \in \mathbb{H}^{n}$
- Corollary: for a real symmetric matrix, all eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ can be chosen as real

Eigendecomposition for Real Symmetric \& Hermitian Matrices

Theorem 3.1. Every $\mathbf{A} \in \mathbb{H}^{n}$ admits an eigendecomposition

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{H}
$$

where $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary; $\boldsymbol{\Lambda}=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i} \in \mathbb{R}$ for all i. Also, if $\mathbf{A} \in \mathbb{S}^{n}, \mathbf{V}$ can be taken as real orthogonal.

- a consequence of a more powerful decomposition, namely, the Schur decomposition; we will go through it later
- does not require the assumption of distinct eigenvalues
- Corollary: if \mathbf{A} is Hermitian or real symmetric, $\mu_{i}=\gamma_{i}$ for all i (no. of repeated eigenvalues $=$ no. of linearly indep. eigenvectors)

Power Method

- a method of numerically computing an eigenvector of a given matrix
- simple
- not the best in convergence speed
- a comprehensive coverage of various computational methods for the eigenvalue problem can be found in the textbook [Golub-Van Loan'12]
- suitable for large-scale sparse problems, e.g., PageRank

Power Method

- assumptions:
- A admits an eigendecomposition
- λ_{i} 's are ordered such that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$
$-\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$
- we have an initial guess \mathbf{x} that satisfies $\left[\mathbf{V}^{-1} \mathbf{x}\right]_{1} \neq 0$ (random guess should do)
- consider $\mathbf{A}^{k} \mathbf{x}$. Let $\boldsymbol{\alpha}=\mathbf{V}^{-1} \mathbf{x}$, and observe

$$
\mathbf{A}^{k} \mathbf{x}=\mathbf{V} \boldsymbol{\Lambda}^{k} \mathbf{V}^{-1} \mathbf{x}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} \mathbf{v}_{i}=\alpha_{1} \lambda_{1}^{k}(\mathbf{v}_{1}+\underbrace{\sum_{i=2}^{n} \frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \mathbf{v}_{i}}_{=\mathbf{r}_{k}})
$$

where \mathbf{r}_{k} is a residual and has

$$
\left\|\mathbf{r}_{k}\right\|_{2} \leq \sum_{i=2}^{n}\left|\frac{\alpha_{i}}{\alpha_{1}}\right|\left|\frac{\lambda_{i}}{\lambda_{1}}\right|^{k}\left\|\mathbf{v}_{i}\right\|_{2} \leq\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k} \sum_{i=2}^{n}\left|\frac{\alpha_{i}}{\alpha_{1}}\right|
$$

- convergence: let $c_{k}=\frac{\left|\alpha_{1}\right||\lambda|^{k}}{\alpha_{1} \lambda_{1}^{k}}$ (note $\left|c_{k}\right|=1$). We have

$$
\lim _{k \rightarrow \infty} c_{k} \frac{\mathbf{A}^{k} \mathbf{x}}{\left\|\mathbf{A}^{k} \mathbf{x}\right\|_{2}}=\mathbf{v}_{1}
$$

Power Method

Algorithm: Power Method input: $\mathbf{A} \in \mathbb{C}^{n \times n}$ and a starting point $\mathbf{v}^{(0)} \in \mathbb{C}^{n}$
$k=0$
repeat

$$
\begin{aligned}
& \tilde{\mathbf{v}}^{(k+1)}=\mathbf{A} \mathbf{v}^{(k)} \\
& \mathbf{v}^{(k+1)}=\tilde{\mathbf{v}}^{(k+1)} /\left\|\tilde{\mathbf{v}}^{(k+1)}\right\|_{2} \\
& k:=k+1
\end{aligned}
$$

until a stopping rule is satisfied output: $\mathbf{v}^{(k)}$

- it can be verified that $\mathbf{v}^{(k)}=\frac{\mathbf{A}^{k} \mathbf{v}^{(0)}}{\left\|\mathbf{A}^{k} \mathbf{v}^{(0)}\right\|_{2}}$
- complexity per iteration: $\mathcal{O}\left(n^{2}\right)$, or $\mathcal{O}(\mathrm{nnz}(\mathbf{A}))$ for sparse \mathbf{A}
- convergence rate depends on $\left|\frac{\lambda_{2}}{\lambda_{1}}\right|$; slower if $\left|\lambda_{2}\right|$ is closer to $\left|\lambda_{1}\right|$

Deflation

- the power method finds the largest eigenvalue (in modulus) only
- how can we compute all the eigenvalues and eigenvectors?
- there are many ways and let's consider a simple method called deflation
- consider a Hermitian A with $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\ldots>\left|\lambda_{n}\right|$, and note the outer-product representation

$$
\mathbf{A}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{H}
$$

- Deflation: use the power method to obtain $\mathbf{v}_{1}, \lambda_{1}$, do the subtraction

$$
\mathbf{A}:=\mathbf{A}-\lambda_{1} \mathbf{v}_{1} \mathbf{v}_{1}^{H}=\sum_{i=2}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{H}
$$

and repeat until all the eigenvectors and eigenvalues are found

- if we want the first k eigen-pairs only, deflation can also do that

Schur Decomposition

Theorem 3.2. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, and let $\lambda_{1}, \ldots, \lambda_{n}$ be its eigenvalues. The matrix \mathbf{A} admits a decomposition

$$
\mathbf{A}=\mathbf{U T} \mathbf{U}^{H}
$$

for some unitary $\mathbf{U} \in \mathbb{C}^{n \times n}$ and for some upper triangular $\mathbf{T} \in \mathbb{C}^{n \times n}$ with $t_{i i}=\lambda_{i}$ for all i. If \mathbf{A} is real and $\lambda_{1}, \ldots, \lambda_{n}$ are all real, \mathbf{U} and \mathbf{T} can be taken as real.

- we will call the above decomposition the Schur decomposition in the sequel
- some insight: Suppose \mathbf{A} can be written as $\mathbf{A}=\mathbf{U T U}^{H}$ for some unitary \mathbf{U} and upper triangular \mathbf{T}, but it's not known if $t_{i i}=\lambda_{i}$. Then

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\operatorname{det}(\mathbf{T}-\lambda \mathbf{I})=\prod_{i=1}^{n}\left(t_{i i}-\lambda\right)
$$

This implies that $t_{11}, \ldots, t_{n n}$ are the eigenvalues of \mathbf{A}

- see the accompanying note for the proof of Theorem 3.2

Schur Decomposition

- the Schur decomposition is a powerful tool
- e.g., we can use it to show that for any square \mathbf{A} (with or without eigendec.),
$-\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i}$
$-\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} \lambda_{i}$
- the eigenvalues of \mathbf{A}^{k} are $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$
- we may use it to prove the convergence of the power method when eigendecomposition does not exist
- the Jordan canonical form, which we will not teach, requires the Schur decomposition as the first key step

Implications of the Schur Decomposition

- proof of Theorem 3.1:
- let \mathbf{A} be Hermitian, and let $\mathbf{A}=\mathbf{U T} \mathbf{U}^{H}$ be its Schur decomposition. Observe

$$
\mathbf{0}=\mathbf{A}-\mathbf{A}^{H}=\mathbf{U} \mathbf{T} \mathbf{U}^{H}-\mathbf{U} \mathbf{T}^{H} \mathbf{U}^{H}=\mathbf{U}\left(\mathbf{T}-\mathbf{T}^{H}\right) \mathbf{U}^{H} \quad \Longleftrightarrow \mathbf{0}=\mathbf{T}-\mathbf{T}^{H}
$$

- since \mathbf{T} is upper triangular and \mathbf{T}^{H} is lower triangular, $\mathbf{T}=\mathbf{T}^{H}$ implies that \mathbf{T} is diagonal; thus, the Schur decomposition is also the eigendecomposition
- similar results apply to real symmetric \mathbf{A}, except that we use real \mathbf{T}, \mathbf{U}
- note: $\mathbf{T}=\mathbf{T}^{H}$ also implies that $t_{i i}$'s are real; so the proof also confirms that λ_{i} 's are real
- skew-Hermitian matrices: $\mathbf{A} \in \mathbb{C}^{n \times n}$ is said to be skew-Hermitian if $\mathbf{A}^{H}=-\mathbf{A}$
- by the Schur decomposition, we can show that any skew-Hermitian A admits an eigendecomposition with unitary \mathbf{V} and the eigenvalues are purely imaginary

Implications of Schur Decomposition

- another result from the Schur decomposition:

Proposition 3.1. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. For every $\varepsilon>0$, there exists a matrix $\tilde{\mathbf{A}} \in \mathbb{C}^{n \times n}$ such that the n eigenvalues of $\tilde{\mathbf{A}}$ are distinct and

$$
\|\mathbf{A}-\tilde{\mathbf{A}}\|_{F} \leq \varepsilon
$$

- Implication: for any square \mathbf{A}, we can always find an $\tilde{\mathbf{A}}$ that is arbitrarily close to \mathbf{A} and admits an eigendecomposition
- proof:
- let $\mathbf{A}=\mathbf{U T U}^{H}$ be the Schur dec. of \mathbf{A}
- let $\tilde{\mathbf{A}}=\mathbf{U}(\mathbf{T}+\mathbf{D}) \mathbf{U}^{H}$, where $\mathbf{D}=\operatorname{Diag}\left(d_{1}, \ldots, d_{n}\right)$ is such that $\left|d_{i}\right| \leq\left(\frac{\varepsilon}{n}\right)^{1 / 2}$ for all i, and $t_{11}+d_{1}, \ldots, t_{n n}+d_{n}$ are distinct
- $\|\mathbf{A}-\tilde{\mathbf{A}}\|_{F}^{2}=\|\mathbf{D}\|_{F}^{2} \leq \varepsilon$, the eigenvalues of $\tilde{\mathbf{A}}$ are $t_{11}+d_{1}, \ldots, t_{n n}+d_{n}$
- by Property 3.2, $\tilde{\mathbf{A}}$ admits an eigendecomposition

PageRank: A Case Study

- PageRank is an algorithm used by Google to rank the pages of a search result.
- the idea is to use counts of links of various pages to determine pages' importance.

Source: Wiki.

- further reading: [Bryan-Tanya2006]

PageRank Model

- Model:

$$
\sum_{j \in \mathcal{L}_{i}} \frac{v_{j}}{c_{j}}=v_{i}, \quad i=1, \ldots, n
$$

where c_{j} is the number of outgoing links from page $j ; \mathcal{L}_{i}$ is the set of pages with a link to page $i ; v_{i}$ is the importance score of page i.

- example:

PageRank Problem

- let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a matrix such that $a_{i j}=1 / c_{j}$ if $j \in \mathcal{L}_{i}$ and $a_{i j}=0$ if $j \notin \mathcal{L}_{i}$
- Problem: find a non-negative \mathbf{v} such that $\mathbf{A v}=\mathbf{v}$
- A is extremely large and sparse, and we want to use the power method
- Questions:
- does a solution to $\mathbf{A v}=\mathbf{v}$ exist? Or, is $\lambda=1$ an eigenvalue of \mathbf{A} ?
- does $\mathbf{A v}=\mathbf{v}$ have a non-negative solution? Or, does a non-negative eigenvector associated with $\lambda=1$ exist?
- is the solution to $\mathbf{A v}=\mathbf{v}$ unique? Or, would there exist more than one eigenvector associated with $\lambda=1$?
* a unique solution is desired for this problem
- is $\lambda=1$ the only eigenvalue that is the largest in modulus?
* this is required for the power method

Some Notation and Conventions

- notation:
$-\mathbf{x} \geq \mathbf{y}$ means that $x_{i} \geq y_{i}$ for all i
$-\mathbf{x}>\mathbf{y}$ means that $x_{i}>y_{i}$ for all i
$-\mathbf{x} \nsupseteq \mathbf{y}$ means that $\mathbf{x} \geq \mathbf{y}$ does not hold
- the same notations apply to matrices
- conventions:
- \mathbf{x} is said to be non-negative if $\mathbf{x} \geq \mathbf{0}$, and non-positive if $-\mathbf{x} \geq \mathbf{0}$
-x is said to be positive if $\mathrm{x}>\mathbf{0}$, and negative if $-\mathrm{x}>\mathbf{0}$
- the same conventions apply to matrices
- a square \mathbf{A} is said to be column-stochastic if $\mathbf{A} \geq \mathbf{0}$ and $\mathbf{A}^{T} \mathbf{1}=\mathbf{1}$
* a column-stochastic \mathbf{A} has every column \mathbf{a}_{i} satisfying $\mathbf{a}_{i}^{T} \mathbf{1}=\sum_{j=1}^{n} a_{j i}=1$

PageRank Matrix Properties

- in PageRank, A is column-stochastic if all pages have outgoing links
- see the literature to see how to deal with cases where some pages do not have outgoing links (dangling nodes)

Property 3.4. Let A be column-stochastic. Then,

1. $\lambda=1$ is an eigenvalue of \mathbf{A}
2. $|\lambda| \leq 1$ for any eigenvalue λ of \mathbf{A}

- Implications:
- a solution to $\mathbf{A v}=\mathbf{v}$ does exist, though it doesn't say if $\mathbf{v} \geq \mathbf{0}$ or not
$-\lambda=1$ is an eigenvalue that has the largest modulus, but we don't know if it is the only eigenvalue that has the largest modulus
- we resort to non-negative matrix theory to answer the rest of the questions

Non-Negative Matrix Theory

Theorem 3.3 (Perron-Frobenius). Let \mathbf{A} be square positive. There exists an eigenvalue ρ of \mathbf{A} such that

1. ρ is real and $\rho>0$
2. $|\lambda|<\rho$ for any eigenvalue λ of \mathbf{A} with $\lambda \neq \rho$
3. there exists a positive eigenvector associated with ρ
4. the algebraic multiplicity of ρ is 1 (so the geometric multiplicity of ρ is also 1)

A weaker result for general non-negative matrices:
Theorem 3.4. Let \mathbf{A} be square non-negative. There exists an eigenvalue ρ of \mathbf{A} such that

1. ρ is real and $\rho \geq 0$
2. $|\lambda| \leq \rho$ for any eigenvalue λ of \mathbf{A}
3. there exists a non-negative eigenvector associated with ρ

PageRank Matrix Properties

- further implication by Theorem 3.4:
- a non-negative solution to $\mathbf{A v}=\mathbf{v}$ exists, though it doesn't say if there exists another solution
- even worse, it is not known if there exists another solution \mathbf{v} such that $\mathbf{v} \nsupseteq \mathbf{0}$

PageRank Matrix Properties

- PageRank actually considers a modified version of \mathbf{A}

$$
\tilde{\mathbf{A}}=(1-\beta) \mathbf{A}+\beta\left[\begin{array}{ccc}
1 / n & \ldots & 1 / n \\
\vdots & & \vdots \\
1 / n & \ldots & 1 / n
\end{array}\right]
$$

where $0<\beta<1$ (typical value is $\beta=0.15$)

- $\tilde{\mathbf{A}}$ is positive
- further implications by Theorem 3.3:
$-\lambda=1$ is the only eigenvalue that has the largest modulus
- there exists only one eigenvector associated with $\lambda=1$; that eigenvector is either positive or negative
- so the power method should work

References

[Golub-Van Loan'12] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd edition, JHU Press, 2012.
[Bryan-Tanya2006] K. Bryan and L. Tanya, "The 25,000, 000, 000 eigenvector: The linear algebra behind Google," SIAM Review, vol. 48, no. 3, pp. 569-581, 2006.

