
ENGG 5781: Matrix Analysis and Computations 2022-23 First Term

Lecture 3: Eigenvalues and Eigenvectors

Instructor: Wing-Kin Ma

1 Eigenvalue Problem

The eigenvalue problem is as follows. Given A ∈ Cn×n, find a vector v ∈ Cn, v 6= 0, such that

Av = λv, (1)

for some λ ∈ C. If we can find a 2-tuple (v, λ) such that (1) holds, we say that (v, λ) is an eigen-pair
of A, λ is an eigenvalue of A, and v is an eigenvector of A associated with λ. From (1), we observe
two facts. First, (1) is equivalent to finding a λ such that

det(A− λI) = 0. (2)

Second, (1) is equivalent to

v ∈ N (A− λI), N (A− λI) 6= {0}. (3)

Let us consider the solution to (2). Denote p(λ) = det(A − λI). From the definition of
determinant, one can verify that p(λ) is a polynomial of degree n. Since a polynomial of degree n
has n roots, we may write

p(λ) =
n∏

i=1

(λi − λ),

where λ1, . . . , λn are the roots of p(λ). The above equation shows that (2) holds if and only if
λ = λi for any i = 1, . . . , n. Thus, we conclude that the eigenvalue problem in (1) always has a
solution, and that the roots λ1, . . . , λn of p(λ) are the solutions to (1) . For convenience, let us
denote

Avi = λivi, i = 1, . . . , n, (4)

where vi denotes an eigenvector associated with λi.
Next, we take a look at the solution to (3) w.r.t. v, given an eigenvalue λ. Since N (A− λI) is

a subspace and N (A− λI) 6= {0}, we can represent it by N (A− λI) = span{b1, . . . ,br} for some
basis {b1, . . . ,br} ⊂ Cn and for some r ≥ 1. In particular, the dimension of N (A− λI) is r. From
the above representation, we notice that there may be multiple eigenvectors associated with the
same λ. We should be careful when we describe the multiplicity of eigenvectors: A scaled version
of an eigenvector v, i.e., αv for some α ∈ C, α 6= 0, is also an eigenvector, but such a case is trivial.
From such a viewpoint, the eigenvector v associated with λ is unique subject to a complex scaling
if dimN (A − λI) = 1. Moreover, for dimN (A − λI) > 1, there are infinitely many eigenvectors
associated with λ even if we do not count the complex scaling cases; however, we can find a number
of r = dimN (A − λI) linearly independent eigenvectors associated with λ. Also, dimN (A − λI)
is the maximal number of linearly independent eigenvectors we can obtain for λ.

1



2 Multiplicity of Eigenvalues and Eigenvectors

We are concerned with the multiplicity of an eigenvalue and the multiplicity of its associated
eigenvectors. For ease of exposition of ideas, let us assume w.l.o.g. that the eigenvalues λ1, . . . , λn
are ordered such that {λ1, . . . λk}, k ≤ n, is the set of all distinct eigenvalues of A; i.e., λi 6= λj
for all i, j ∈ {1, . . . , k} with i 6= j, and λi ∈ {λ1, . . . λk} for all i ∈ {1, . . . , n}. Then, consider the
following definitions:

• The algebraic multiplicity of an eigenvalue λi, i ∈ {1, . . . , k}, is defined as the number of times
that λi appears as a root of p(λ). We will denote the algebraic multiplicity of λi as µi.

• The geometric multiplicity of λi, i ∈ {1, . . . , k}, is defined as the maximal number of linearly
independent eigenvectors associated with λi. We will denote the geometric multiplicity of λi
as γi, and note that γi = dimN (A− λiI).

Intuitively, it seems that if an eigenvalue is repeated r times, then we should also have r (linearly
independent) eigenvectors associated with it. We will show that

Property 3.1 We have µi ≥ γi for i = 1, . . . , k.

However, there exist instances for which µi > γi. An example is as follows:

A =

0 0 1
0 0 0
0 0 0

 .
It can be verified that the roots of p(λ) are λ1 = λ2 = λ3 = 0. Thus, we have µ1 = 3, k = 1.
However, one can also verify that

N (A− λ1I) = N (A) = span


1

0
0

 ,
0

1
0

 ,

and consequently, γ1 = dimN (A− λ1I) = 2.

Proof of Property 3.1: For convenience, let λ̄ ∈ {λ1, . . . , λk} be any eigenvalue of A, and denote
r = dimN (A− λ̄I). We aim to show that the characteristic polynomial det(A− λI) has at least r
repeated roots for λ = λ̄. From basic subspace concepts (cf. Lecture 1), we can find a collection of
orthonormal vectors q1, . . . ,qr ∈ N (A−λI) and a collection of vectors qr+1, . . . ,qn ∈ Cn such that
Q = [ q1, . . . ,qn ] is unitary. Let Q1 = [ q1, . . . ,qr ], Q2 = [ qr+1, . . . ,qn ], and note Q = [ Q1 Q2 ].
We have

QHAQ =

[
QH

1

QH
2

]
[ AQ1 AQ2 ] =

[
QH

1 AQ1 QH
1 AQ2

QH
2 AQ1 QH

2 AQ2

]
.

Since Aqi = λ̄qi for i = 1, . . . , r, we get AQ1 = λ̄Q1. By also noting that QH
1 Q1 = I and

QH
2 Q1 = 0, the above matrix equation can be simplified to

QHAQ =

[
λ̄I QH

1 AQ2

0 QH
2 AQ2

]
.
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Consequently, we have the following equivalence for the characteristic polynomial of A:

det(A− λI) = det(QH(A− λI)Q) = det(QHAQ− λI)

= det(λ̄I− λI) det(QH
2 AQ2 − λI)

=
(
λ̄− λ

)r
det(QH

2 AQ2 − λI)

where the second equality is due to the determinant result for block upper triangular matrices; here
note that det(QH

2 AQ2 − λI) is a polynomial of degree of n − r. From the above equation we see
that det(A− λI) has at least r repeated roots for λ = λ̄. The proof is complete. �

3 Similarity, Diagonalizability, and Eigendecomposition

3.1 Similarity and Diagonalizability

To set the stage for describing eigendecomposition, we start with introducing the concepts of
similarity and diagonalizability. A matrix B ∈ Cn×n is said to be similar to another matrix
A ∈ Cn×n if there exists a nonsingular S ∈ Cn×n such that

B = S−1AS.

Similar matrices are similar in the sense that their characteristic polynomials are the same. Specif-
ically, if A is similar to B then we have

det(A− λI) = det(S−1(A− λI)S) = det(B− λI).

It is easy to verify that similar matrices have the following properties:

1. If B is similar to A, A is also similar to B.

2. If A,B are similar, they have the same set of eigenvalues.

3. If A,B are similar, they have det(A) = det(B).

In matrix analysis we are curious about whether a matrix can be similar to a diagonal matrix—
obviously because diagonal matrices are easy to deal with. A matrix A ∈ Cn×n is said to be
diagonalizable if it is similar to a diagonal matrix; i.e., there exists a nonsingular S ∈ Cn×n and a
diagonal D ∈ Cn×n such that

D = S−1AS,

or equivalently,
A = SDS−1.

Now, observe that the above equation can be equivalently rewritten as AS = SD, or, in column-
by-column form

Asi = disi, i = 1, . . . , n,

where di denotes the (i, i)th entry of D. Hence, every (si, di) must be an eigen-pair of A. Also, since
A and D are similar they have the same set of eigenvalues; more precisely, d1, . . . , dn must equal
λ1, . . . , λn or any of its permutation. Let us assume w.l.o.g. that di = λi for i = 1, . . . , n. Then
every si is an eigenvector associated with λi. Furthermore, it is important to note that s1, . . . , sn
must be linearly independent.
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3.2 Eigendecomposition

We are now ready to consider eigendecomposition. A matrix A ∈ Cn×n is said to admit an
eigendecomposition if there exists a nonsingular V ∈ Cn×n such that

A = VΛV−1,

where Λ = Diag(λ1, . . . , λn) and λ1, . . . , λn are the eigenvalues of A. Essentially, eigendecomposi-
tion is the same as the diagonalization discussed above.

A natural question that arises from the above definition is whether eigendecomposition exists.
From the discussion in the last subsection, we see that the question is the same as asking whether
we can find a collection of eigenvectors v1, . . . ,vn, with each vi being associated with λi, such that
v1, . . . ,vn are linearly independent. Let us consider the following property:

Property 3.2 Let A ∈ Cn×n, and suppose that the eigenvalues λ1, . . . , λn are ordered such that
{λ1, . . . λk}, k ≤ n, is the set of all distinct eigenvalues of A. Also, let vi be any eigenvector
associated with λi. Then v1, . . . ,vk must be linearly independent.

We relegate the proof of the above property to the next subsection. Property 3.2 gives rise to the
following implications:

1. If the eigenvalues λ1, . . . , λn of A are all distinct, then A admits an eigendecomposition.

2. By considering also Property 3.1, A admits an eigendecomposition if and only if µi = γi for
all i = 1, . . . , k.

3. A does not admit an eigendecomposition if µi > γi for some i ∈ {1, . . . , k}. Such instances
exist as discussed in the last section.

Before we close this section, we should mention that eigendecomposition is guaranteed to exist
in some matrix subclasses. For example, a circulant matrix always admits an eigendecomposition.
Also, we will show later that it is easy to find an arbitrarily close approximation of a given matrix
A such that the approximate matrix has its eigenvalues all being distinct and thus admits an
eigendecomposition.

3.3 Proof of Property 3.2

We prove Property 3.2 by contradiction. Suppose that λi 6= λj for all i, j ∈ {1, . . . , k} with i 6= j,
but we can find a collection of linearly dependent v1, . . . ,vk, i.e.,

k∑
i=1

αivi = 0, (5)

for some α 6= 0. Let us assume w.l.o.g. that α1 6= 0, k ≥ 2. From (5), we obtain two equations

0 = A

(
k∑

i=1

αivi

)
=

k∑
i=1

αiλivi, (6)

0 = λk

(
k∑

i=1

αivi

)
=

k∑
i=1

αiλkvi. (7)
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Subtracting (6) from (7) results in

k−1∑
i=1

αi(λk − λi)vi = 0. (8)

By repeatedly applying the trick in (5)-(8), one can show that[
α1

k∏
i=2

(λi − λ1)

]
v1 = 0.

Since α1 6= 0 and λi 6= λj for all i, j ∈ {1, . . . , k}, i 6= j, the above equation holds only when v1 = 0.
This contradicts the fact that v1 is an eigenvector, and the proof is complete.

4 Eigendecomposition for Hermitian and Real Symmetric Matri-
ces

A square matrix A is said to be Hermitian if A = AH , and symmetric if A = AT . We denote Hn to
be the set of all n×n complex Hermitian matrices and Sn to be the set of all n×n real symmetric
matrices. As we will see, Hermitian and real symmetric matrices always admit eigendecompositions.
To give some insights, consider the following property.

Property 3.3 Let A ∈ Hn. We have the following results:

1. The eigenvalues λ1, . . . , λn of A are real.

2. Suppose that λi’s are ordered such that {λ1, . . . , λk}, k ≤ n, is the set of all distinct eigenvalues
of A. Also, let vi be any eigenvector associated with λi. Then v1, . . . ,vk must be orthonormal.

Proof: For any eigen-pair (v, λ) of A, we have

vHAv = vH(λv) = λ‖v‖22.

If A is Hermitian we also have

vHAv = (Av)Hv = (λv)Hv = λ∗‖v‖22.

The above two equations implies that λ = λ∗, or that λ is real. Moreover, consider the following
equations for any i, j ∈ {1, . . . , k}, i 6= j:

vH
j Avi = vH

j (Avi) = λiv
H
j vi,

vH
j Avi = (Avj)

Hvj = λjv
H
j vi,

where in the second equation we have used the fact that A is Hermitian and its corresponding
eigenvalues are real. The above equations imply (λi − λj)vH

j vi = 0. Since λi 6= λj , it must hold

that vH
j vi = 0. Hence, we have shown that any collection of v1, . . . ,vk must be orthonormal. �

Note that as a direct corollary of the first result of Property 3.3, any eigenvector of a real
symmetric matrix can be taken as real. Next, we present the main result.
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Theorem 3.1 Every A ∈ Hn admits an eigendecomposition

A = VΛVH ,

where V ∈ Cn×n is unitary, and Λ = Diag(λ1, . . . , λn) with λi ∈ R for all i. Also, if A ∈ Sn, V
can be taken as real orthogonal.

The proof of Theorem 3.1 requires another theorem, namely, the Schur deocmposition theorem.
We will consider the Schur decomposition in the next section.

5 The Schur Decomposition

If we cannot always diagonalize a matrix, which is true as we discussed, our next question would
be to ask if a matrix can always be similar to another matrix that is closer to a diagonal matrix.
The Schur decomposition seeks to look at triangularizability—given A ∈ Cn×n, can we find a
nonsingular S ∈ Cn×n such that

A = STS−1

for some upper triangular T ∈ Cn×n? Having such a result is still good: When T is upper triangular,
its characteristic polynomial is simply

det(T− λI) =
n∏

i=1

(tii − λ).

As a result, we can have tii = λi for all i.
As a beautiful result in matrix analysis, we can always triangularize a matrix. The result is

summarized as follows.

Theorem 3.2 Let A ∈ Cn×n, and let λ1, . . . , λn be its eigenvalues. The matrix A admits a
decomposition

A = UTUH , (9)

for some unitary U ∈ Cn×n and for some upper triangular T ∈ Cn×n with tii = λi for all i. If A
is real and λ1, . . . , λn are all real, U and T can be taken as real.

The decomposition in (9) will be called the Schur decomposition in the sequel. The Schur
decomposition not only shows that any square matrix is similar to an upper triangular matrix, it
also reveals that the “triangularizer” S can be unitary.

5.1 Proof of the Schur Decomposition

Consider the following lemma.

Lemma 3.1 Let X ∈ Cn×n and suppose that X takes a block upper triangular form

X =

[
X11 X12

0 X22

]
,
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where X11 ∈ Ck×k, X12 ∈ Ck×(n−k), X22 ∈ C(n−k)×(n−k), with 0 ≤ k < n. There exists an unitary
U ∈ Cn×n such that

UHXU =

[
X11 Y12

0 Y22

]
, Y22 =

[
λ̄ ×
0 ×

]
,

for some Y12 ∈ Ck×(n−k), Y22 ∈ C(n−k)×(n−k), λ̄ ∈ C.

Proof of Lemma 3.1: The proof may be seen as a variation of the proof of Property 3.1 in
Section 2. Let λ̄ be any eigenvalue of X22, and v ∈ Cn−k be an eigenvector of X22 associated with λ̄.
Following the same proof as in Property 3.1, there exists a collection of vectors q2, . . . ,qn−k ∈ Cn−k

such that Q = [ v, q2, . . . ,qn−k ] ∈ C(n−k)×(n−k) is unitary, and it can be shown that QHX22Q
takes the form

QHX22Q =

[
λ̄ ×
0 ×

]
.

Now, let

U =

[
I 0
0 Q

]
.

We have

UHXU =

[
I 0
0 QH

] [
X11 X12

0 X22

] [
I 0
0 Q

]
=

[
I 0
0 QH

] [
X11 X12Q
0 X22Q

]
=

[
X11 X12Q
0 QHX22Q

]
.

The result is obtained, as desired. �

The idea of proving the Schur decomposition in Theorem 3.2 is to apply Lemma 3.1 recursively.
To put into context, let A0 = A and consider the following iterations:

A1 = UH
1 A0U1

A2 = UH
2 A1U2

...

An−1 = UH
n−1An−2Un−1

where every Ui is unitary and obtained by applying Lemma 3.1 with X = Ai−1 and k = i − 1.
From Lemma 3.1 we observe that Ai takes the form

Ai =

[
Tii ×
0 ×

]
,

for some upper triangular Tii ∈ Ci×i. Hence, it follows that An−1 is upper triangular. Let

U = U1U2 · · ·Un−1.

It can be verified that U is unitary. By noting that An−1 = UHAU, we obtain the Schur decom-
position formula A = UTUH where T = An−1.
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We should also mention how the result tii = λi for all i is concluded. By the similarity of A and
T and by det(T − λI) =

∏n
i=1(tii − λ), the n roots t11, . . . , tnn of det(T − λI) must be λ1, . . . , λn

or its permutation. Hence, we can assume w.l.o.g. that tii = λi for i = 1, . . . , n.
Furthermore, it can be verified that if A is real and its eigenvalues λ1, . . . , λn are also real, then

we can choose U as real orthogonal and T as real in the Schur decomposition. This is left as a
self-practice problem for you.

5.2 Implications of the Schur Decomposition

Here we discuss some implications of the Schur decomposition.

• Computations of the Schur decomposition: The proof of the Schur decomposition is construc-
tive, and it also tells how we may write an algorithm to compute the Schur factors U and T.
From the proof in the last subsection, we see that we need two sub-algorithms to construct
U and T, namely, i) an algorithm for computing an eigenvector of a given matrix, and ii) an
algorithm that finds a unitary matrix Q such that its first column vector is fixed as a given
vector v. Task i) may be done by the power method, while Task ii) can be accomplished by
the so-called QR decomposition—which we will study later.

It should be further mentioned that the procedure mentioned above is arguably not the
best approach for computing the Schur factors, although it is top-down, insightful and easy
to understand. There exist computationally more efficient methods for computing the Schur
factors, and they were established based on some rather specific and sophisticated ideas which
are beyond the scope of this course. The only keyword I can give you is QR decomposition.

• Proof of Theorem 3.1 and beyond: With the Schur decomposition, we can easily show that any
Hermitian matrix admits an eigendecomposition. Let A be Hermitian and let A = UTUH

be its Schur decomposition. We see that

0 = A−AH = UTUH −UTHUH = U(T−TH)UH .

This implies that T−TH = 0, or T must be diagonal. Consequently, the Schur dcomposition
reduces to the eigendecomposition with unitary V. The implication T−TH = 0 also implies
that tii = t∗ii, or the eigenvalues λi’s are real. The same result also applies to a real symmetric
A.1 Using the same idea, we can also show that if A satisfies A = −AH , i.e., it is the
so-called skew-Hermitian matrix, then A admits an eigendecomposition with unitary V and
with purely imaginary λi’s.

• Existence of eigendecomposition: We have mentioned that even though A does not admit an
eigendecomposition, it is not hard to find an approximation of A such that the approximate
matrix admits an eigendecomposition. This is described as follows.

Proposition 3.1 Let A ∈ Cn×n. For every ε > 0, there exists a matrix Ã ∈ Cn×n such that
the n eigenvalues of Ã are distinct and

‖A− Ã‖F ≤ ε.
1As a minor point to note, for the real symmetric case we first need the first result of Property 3.3 to confirm that

λi’s are real.
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The proof is simple and is follows: Let A = UTUH be the Schur decomposition of A, and
let Ã = U(T + D)UH where D = Diag(d1, . . . , dn) and d1, . . . , dn are chosen such that
|di|2 ≤ ε/n for all i and such that t11 + d1, . . . , tnn + dn are distinct. It is easy to verify that
‖A− Ã‖2F = ‖UDUH‖2F = ‖D‖2F ≤ ε2.
The above proposition suggests that for any square A, we can always find a matrix Ã that
is arbitrarily close to A and admits an eigendecomposition.

• The Jordan canonical form: Recall that we have been asking the question of whether a
matrix can be similar to a diagonal matrix, and if not possible, a matrix that is closer to
the diagonal matrix. The Jordan canonical form says the following: any square A can be
decomposed as A = SJS−1 where S is nonsingular and J takes some kind of tri-diagonal
structures. The Jordon canonical form is beyond the scope of this course, but we should
note that it is an enhancement of the Schur decomposition. In a nutshell, the proof of the
Jordon canonical form first applies the Schur decomposition. Then, as the non-trivial part
of the proof, it shows that the Schur factor T is similar to another matrix J that takes the
tri-diagonal structure.
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