1 Proof of Linear Independence of Vandemonde Matrices

Let k be any positive integer, and consider the following matrix

$$
\mathbf{B}=\left[\begin{array}{ccccc}
1 & z_{1} & z_{1}^{2} & \ldots & z_{1}^{k-1} \\
1 & z_{2} & z_{2}^{2} & \ldots & z_{2}^{k-1} \\
\vdots & & & & \vdots \\
1 & z_{k} & z_{k}^{2} & \ldots & z_{k}^{k-1}
\end{array}\right] \in \mathbb{C}^{k}
$$

with $z_{1}, \ldots, z_{k} \in \mathbb{C}$. We will show that \mathbf{B} is nonsingular if z_{i} 's are distinct. For now, let us assume this to be true and focus on showing the linear independence of \mathbf{A}. If $m \geq n$, we can represent \mathbf{A} by

$$
\mathbf{A}^{T}=[\mathbf{B} \times]
$$

with $k=n$; here, " \times " means parts that do not matter. By the rank definition, we have $\operatorname{rank}(\mathbf{A})=$ $\operatorname{rank}\left(\mathbf{A}^{T}\right) \geq \operatorname{rank}(\mathbf{B})=n$. Since we also have $\operatorname{rank}(\mathbf{A}) \leq n$, we obtain the result $\operatorname{rank}(\mathbf{A})=n$. Moreover, if $m \leq n$ we can represent \mathbf{A} by

$$
\mathbf{A}=\left[\mathbf{B}^{T} \times\right]
$$

with $k=m$. Following the same argument as above, we obtain $\operatorname{rank}(\mathbf{A})=m$. Thus we have established the result that \mathbf{A} has full rank.

Now, we show that \mathbf{B} is nonsingular if z_{i} 's are distinct. Observe that

$$
\begin{equation*}
\mathbf{B} \boldsymbol{\alpha}=\mathbf{0} \quad \Longleftrightarrow \quad p\left(z_{i}\right)=0, i=1, \ldots, k \tag{1}
\end{equation*}
$$

where

$$
p(z)=\alpha_{1}+\alpha_{2} z+\alpha_{3} z^{2}+\ldots+\alpha_{k} z^{k-1}
$$

denotes a polynomial of degree $k-1$. On one hand, the condition on the R.H.S. of (1) implies that z_{1}, \ldots, z_{k} are the roots of $p(z)$. On the other hand, it is known that a polynomial of degree $k-1$ has $k-1$ roots, and no more. Consequently, the above two statements contradict to each other if we have $z_{i} \neq z_{j}$ for all i, j with $i \neq j$. Hence, we have shown that \mathbf{B} must be nonsingular if z_{i} 's are distinct.

