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Topic 1: Nonnegative Matrix Factorization




Nonnegative Matrix Factorization

Consider again the low-rank factorization problem

min Y — AB||%.
AeRmX?",BeRT’Xn

The solution is not unique: if (A*,B*) is a solution to the above problem, then
(A*QT, QB*) for any orthogonal Q is also a solution.

Nonnegative Matrix Factorization (NMF):

min Y —AB|% st.A>0, B>0
AGRmXT,BGRTXn

where X > 0 means that X is elementwise non-negative.
e found to be able to extract meaningful features (by empirical studies)
e under some conditions, the NMF solution is provably unique

e numerous applications, e.g., in machine learning, signal processing, remote sensing
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NMF Examples

e Image Processing:

— A > 0 constraints the basis elements to be nonnegative.
— B > 0 imposes an additive reconstruction.
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— the basis elements extract facial features such as eyes, nose and lips. Source:
[Lee-Seung1999]
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e Text Mining

/

Weigths to reconstruct

each text
Sets of words found simultaneously in difterent texts

|
Dictionary
U

— basis elements allow us to recover different topics;
— weights allow us to assign each text to its corresponding topics.
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NMF

min Y — ABJ% stA >0, B>0.
AeRmXT’BeRTXn

e NP-hard in general

e a practical way to go: alternating optimization w.r.t. A, B

— given B, minimizing ||[Y — AB||% over A > 0 is convex; given A, minimizing
|Y — ABJ|% over B > 0 is also convex

— despite that, there is no closed-form solution with mina>g||Y — AB|/% or
ming>g ||Y — ABJ||%; it takes time to solve them when Y is big

— state of the art, such as the Lee-Seung multiplicative update, applies inexact
alternating optimization
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Toy Demonstration of NMF

A face image dataset. Image size = 101 X 101, number of face images = 13232. Each x,
is the vectorization of one face image, leading to m = 101 x 101 = 10201, N = 13232.
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Toy Demonstration of NMF: NMF-Extracted Features

NMF settings: » = 49, Lee-Seung multiplicative update with 5000 iterations.
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Toy Demonstration of NMF: Comparison with PCA

o 19

Mean face 1st principal left 2nd principal left 3th principal left last pr|nC|paI Ieft
singular vector singular vector singular vector singular vector

6

10

10° | 8

B L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Rank

Energy Concentration

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term.



Suggested Further Readings for NMF

e [Gillis2014] for a review of some classical NMF algorithms and separable NMF
— separable NMF is an NMF subclass that features provably polynomial-time or
very simple algorithms for solving NMF under certain assumptions
e [Fu-Huang-Sidiropoulos-Ma2018] for an overview of classic and most recent

developments of NMF identifiability

— note volume minimization NMF, which has provably better identifiability than
classic NMF
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Topic 2: Tensor Decomposition
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Tensor

A tensor is a multi-way numerical array. An N-way tensor is denoted by X &

It xIgx...xI : :
R71752 N and its entries by x;, i, i

e natural extension of matrices (which are two-way tensors)

e example: a color picture is a 3-way tensor, video 4-way

Color

e applications: blind signal separation, chemometrics, data mining, ...

RIXJXK (

e focus: decomposition for 3-way tensors X € sufficiently complicated)
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Outer Product

The outer product of a € R! and b € R” is an I x J matrix
aob =ab! = [bla,an,...,bJa] :

Here, “o" is used to denote the outer product operator.

aob: a

bla

bga
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Outer Product

The outer product of a matrix A € R'*/ and a vector ¢ € R, denoted by A oc,
is a three-way I X J X K tensor that takes the following form:

CKA

AOC: = CZA

ClA

Specifically, if we let X = A o ¢, then

X, k)=cA, k=1,....K.
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Outer Product

Tensors in the form of ao b o ¢ are called rank-1 tensors.

C

aoboc =
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Tensor Decomposition

RIXJXK

Problem: decompose X € as

R
Li ik = E ailbjlckzla

r=1

for some a;y, bjp, and ¢, 0 =1,...,1, 5=1,...,J, k=1,...,K, r =
or equivalently,

R
X = E arobrocra

r=1

where A = [al,...,aR] c RIXE , B = [bl,...,bR] < RJXR, C = [Cl,...

RKXR

7CR] S
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Tensor Decomposition

R
X = E arobrocra

r=1

]
b,

+ ..+

]
br

ai ar

I xJxK

e a sum of rank-1 tensors

e the smallest R that satisfies (x) is called the rank of the tensor

(%)

e many names: tensor rank decomposition, canonical polyadic decomposition

(CPD), parallel factor analysis (PARARFAC), CANDECOMP
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Application Example: Enron Data

e About Enron

— once ranked the 6th largest energy company in the world

— shares were worth $90.75 at their peak in Aug 2000 and dropped to $0.67 in
Jan 2002

— most top executives were tried for fraud after it was revealed in Nov 2001 that
Enron’s earning has been overstated by several hundred million dollars

e Enron email database

— a large database of over 600,000 emails generated by 158 employees of the
Enron Corporation and acquired by the Federal Energy Regulatory Commission
during its investigation after the company’s collapse, according to wiki
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Application Example: Enron Data
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Uniqueness of Tensor Decomposition

The low-rank matrix factorization problem X = AB is not unique.

We also have many matrix decompositions: SVD, QR, ...
Theorem 10.1. Let (A, B, C) be a factor for X = Zle a.ob,oc,. If

krank(A) + krank(B) + krank(C) > 2R + 2,

then (A, B, C) is the unique tensor decomposition factor for X up to a common
column permutation and scaling.

e Implication: under some mild conditions with A, B, C, low-rank tensor decom-
position is essentially unique

e the above theorem is just among one of the known sufficient conditions for unique
tensor decomposition; some other results suggest much more relaxed conditions
for unique tensor decomposition
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Slabs

A slab of a tensor is a matrix obtained by fixing one index of the tensor.

Horizontal slabs: {Xgl) = X(i,:,:) };iq
Lateral slabs: {X§2) = X(:,7,:) 3-]:1

Frontal slabs: {X,S)’) = X(:, 5, k),

K
X B
J Horizontal slabs Lateral slabs Frontal slabs
XM= x4, XP = x(,5,:) X =X(k)
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PARAFAC Formulation

Consider the horizontal slabs as an example.

R R
X,El) = Z a; r(broc,) = Z ; Tbcm’
r=1 r=1
R

X L
J S Satbees

R
X = g a,ob,oc,
r=1

We can write

X;" = BDa(;,)C”,  Dag.y = Diag(A(i,:)).
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PARAFAC Formulation

Khatri-Rao (KR) product: the KR product of A € R!*¥ and B € R/*# is

A®B=[a;®by,...,ag®ag].
A key KR property: let D = diag(d). We have

vec(ADB?) = (B® A)d.

Idea: recall the horizontal slabs expression
X" = BDy(;)C",  Dag. = Diag(A(i, ).
It can be reexpressed as
vee(X!) = (CoB)AT(3,:).

— roughly speaking, we can do A% (i,:) = (C ® B)fvec(X!").
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PARAFAC Formulation

By the trick above, we can write

Horizontal slabs: Xgl) = X(i,:,:) = BDA(,L-,:)CT
vee(X!) = (CoB)AT (i, )

Lateral slabs: X§2) = X(:,j,:) = CDp(; A"
vee(X\?) = (A ® C)BT(j,)

Frontal slabs: X\ = X(:,:, k) = AD¢(.B”
vee(X\¥) = (B® A)CT(k, )

Observation:

e fixing B, C, solving for A is a linear system problem
e fixing A, C, solving for B is a linear system problem
e fixing A, B, solving for C is a linear system problem
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PARAFAC Formulation

A tensor decomposition formulation: given X € R!*/*K R > 0, solve

2

Y

F

R
gl’qPi),nC X—glarobrocr
=

e NP-hard in general

e can be conveniently handled by alternating optimization w.r.t. A, B,C

— e.g., optimization w.r.t. A and fixing B,C is

I I
o B30 S omw |
min z;HX@ BDy(;.C L = min z; vec(X,) — (COB)A” (1,:)

1= 1=

and a solution is (A*(4,:))! = (C® B)Tvec(Xgl)), i=1,...,1.

2

2
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Suggested Further Readings for Tensor Decomposition

e [Sidiropoulos-De Lathauwer-Fu-Huang-Papalexakis-Faloutsos2017]
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