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Nonnegative Matrix Factorization
Consider again the low-rank factorization problem

min
A∈Rm×r,B∈Rr×n

‖Y −AB‖2F .

The solution is not unique: if (A?,B?) is a solution to the above problem, then
(A?QT ,QB?) for any orthogonal Q is also a solution.

Nonnegative Matrix Factorization (NMF):

min
A∈Rm×r,B∈Rr×n

‖Y −AB‖2F s.t. A ≥ 0, B ≥ 0

where X ≥ 0 means that X is elementwise non-negative.

• found to be able to extract meaningful features (by empirical studies)

• under some conditions, the NMF solution is provably unique

• numerous applications, e.g., in machine learning, signal processing, remote sensing

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term. 2



NMF Examples

• Image Processing:

– A ≥ 0 constraints the basis elements to be nonnegative.
– B ≥ 0 imposes an additive reconstruction.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

– the basis elements extract facial features such as eyes, nose and lips. Source:
[Lee-Seung1999]
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• Text Mining

– basis elements allow us to recover different topics;
– weights allow us to assign each text to its corresponding topics.
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NMF

min
A∈Rm×r,B∈Rr×n

‖Y −AB‖2F s.t A ≥ 0, B ≥ 0.

• NP-hard in general

• a practical way to go: alternating optimization w.r.t. A,B

– given B, minimizing ‖Y −AB‖2F over A ≥ 0 is convex; given A, minimizing
‖Y −AB‖2F over B ≥ 0 is also convex

– despite that, there is no closed-form solution with minA≥0 ‖Y − AB‖2F or
minB≥0 ‖Y −AB‖2F ; it takes time to solve them when Y is big

– state of the art, such as the Lee-Seung multiplicative update, applies inexact
alternating optimization
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Toy Demonstration of NMF

A face image dataset. Image size = 101× 101, number of face images = 13232. Each xn

is the vectorization of one face image, leading to m = 101× 101 = 10201, N = 13232.

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term. 6



Toy Demonstration of NMF: NMF-Extracted Features

NMF settings: r = 49, Lee-Seung multiplicative update with 5000 iterations.
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Toy Demonstration of NMF: Comparison with PCA

Mean face 1st principal left
singular vector

2nd principal left
singular vector

3th principal left
singular vector

last principal left
singular vector
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Suggested Further Readings for NMF

• [Gillis2014] for a review of some classical NMF algorithms and separable NMF

– separable NMF is an NMF subclass that features provably polynomial-time or
very simple algorithms for solving NMF under certain assumptions

• [Fu-Huang-Sidiropoulos-Ma2018] for an overview of classic and most recent
developments of NMF identifiability

– note volume minimization NMF, which has provably better identifiability than
classic NMF
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Topic 2: Tensor Decomposition
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Tensor

A tensor is a multi-way numerical array. An N -way tensor is denoted by X ∈
RI1×I2×...×IN and its entries by xi1,i2,...,iN .

• natural extension of matrices (which are two-way tensors)

• example: a color picture is a 3-way tensor, video 4-way

=

Color

• applications: blind signal separation, chemometrics, data mining, . . .

• focus: decomposition for 3-way tensors X ∈ RI×J×K (sufficiently complicated)
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Outer Product

The outer product of a ∈ RI and b ∈ RJ is an I × J matrix

a ◦ b = abT =
[
b1a, b2a, . . . , bJa

]
.

Here, “◦” is used to denote the outer product operator.

...
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Outer Product

The outer product of a matrix A ∈ RI×J and a vector c ∈ RK, denoted by A ◦ c,
is a three-way I × J ×K tensor that takes the following form:

. .
.

Specifically, if we let X = A ◦ c, then

X (:, :, k) = ckA, k = 1, . . . ,K.
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Outer Product

Tensors in the form of a ◦ b ◦ c are called rank-1 tensors.
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Tensor Decomposition

Problem: decompose X ∈ RI×J×K as

xi,j,k =

R∑
r=1

ailbjlckl,

for some air, bjr, and ckr, i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . ,K, r = 1, . . . , R,
or equivalently,

X =

R∑
r=1

ar ◦ br ◦ cr,

where A = [a1, . . . ,aR] ∈ RI×R , B = [b1, . . . ,bR] ∈ RJ×R, C = [c1, . . . , cR] ∈
RK×R.
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Tensor Decomposition

X =

R∑
r=1

ar ◦ br ◦ cr, (∗)

...

• a sum of rank-1 tensors

• the smallest R that satisfies (∗) is called the rank of the tensor

• many names: tensor rank decomposition, canonical polyadic decomposition
(CPD), parallel factor analysis (PARARFAC), CANDECOMP
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Application Example: Enron Data

• About Enron

– once ranked the 6th largest energy company in the world

– shares were worth $90.75 at their peak in Aug 2000 and dropped to $0.67 in
Jan 2002

– most top executives were tried for fraud after it was revealed in Nov 2001 that
Enron’s earning has been overstated by several hundred million dollars

• Enron email database

– a large database of over 600,000 emails generated by 158 employees of the
Enron Corporation and acquired by the Federal Energy Regulatory Commission
during its investigation after the company’s collapse, according to wiki
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Application Example: Enron Data

Source: http://www.math.uwaterloo.ca/~hdesterc/websiteW/Data/presentations/pres2012/Valencia.pptx.pdf
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Uniqueness of Tensor Decomposition

The low-rank matrix factorization problem X = AB is not unique.

We also have many matrix decompositions: SVD, QR, . . .

Theorem 10.1. Let (A,B,C) be a factor for X =
∑R

r=1 ar ◦ br ◦ cr. If

krank(A) + krank(B) + krank(C) ≥ 2R+ 2,

then (A,B,C) is the unique tensor decomposition factor for X up to a common
column permutation and scaling.

• Implication: under some mild conditions with A,B,C, low-rank tensor decom-
position is essentially unique

• the above theorem is just among one of the known sufficient conditions for unique
tensor decomposition; some other results suggest much more relaxed conditions
for unique tensor decomposition
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Slabs

A slab of a tensor is a matrix obtained by fixing one index of the tensor.

Horizontal slabs: {X(1)
i = X (i, :, :)}Ii=1

Lateral slabs: {X(2)
j = X (:, j, :)}Jj=1

Frontal slabs: {X(3)
k = X (:, :, k)}Kk=1

…

…

…

Lateral slabsHorizontal  slabs Frontal  slabs
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PARAFAC Formulation
Consider the horizontal slabs as an example.

X
(1)
i =

R∑
r=1

ai,r(br ◦ cr) =
R∑

r=1

ai,rbrc
T
r

… …

We can write

X
(1)
i = BDA(i,:)C

T , DA(i,:) = Diag(A(i, :)).
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PARAFAC Formulation

Khatri-Rao (KR) product: the KR product of A ∈ RI×R and B ∈ RJ×R is

A�B = [a1 ⊗ b1, . . . ,aR ⊗ aR].

A key KR property: let D = diag(d). We have

vec(ADBT ) = (B�A)d.

Idea: recall the horizontal slabs expression

X
(1)
i = BDA(i,:)C

T , DA(i,:) = Diag(A(i, :)).

It can be reexpressed as

vec(X
(1)
i ) = (C�B)AT (i, :).

– roughly speaking, we can do AT (i, :) = (C�B)†vec(X
(1)
i ).

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term. 22



PARAFAC Formulation
By the trick above, we can write

Horizontal slabs: X
(1)
i = X (i, :, :) = BDA(i,:)C

T

vec(X
(1)
i ) = (C�B)AT (i, :)

Lateral slabs: X
(2)
j = X (:, j, :) = CDB(j,:)A

T

vec(X
(2)
j ) = (A�C)BT (j, :)

Frontal slabs: X
(3)
k = X (:, :, k) = ADC(k,:)B

T

vec(X
(3)
k ) = (B�A)CT (k, :)

Observation:

• fixing B,C, solving for A is a linear system problem

• fixing A,C, solving for B is a linear system problem

• fixing A,B, solving for C is a linear system problem
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PARAFAC Formulation

A tensor decomposition formulation: given X ∈ RI×J×K, R > 0, solve

min
A,B,C

∥∥∥∥∥X −
R∑

r=1

ar ◦ br ◦ cr

∥∥∥∥∥
2

F

,

• NP-hard in general

• can be conveniently handled by alternating optimization w.r.t. A,B,C

– e.g., optimization w.r.t. A and fixing B,C is

min
A

I∑
i=1

∥∥∥X(1)
i −BDA(i,:)C

T
∥∥∥2
F
= min

A

I∑
i=1

∥∥∥vec(X(1)
i )− (C�B)AT (i, :)

∥∥∥2
2

and a solution is (A?(i, :))T = (C�B)†vec(X
(1)
i ), i = 1, . . . , I.
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Suggested Further Readings for Tensor Decomposition

• [Sidiropoulos-De Lathauwer-Fu-Huang-Papalexakis-Faloutsos2017]
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