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Lecture 1: Basic Concepts

• notation and conventions

• subspace, linear independence, basis, dimension

• rank, determinant, invertible matrices

• vector norms, inner product

• projections onto subspaces, orthogonal complements

• orthonormal basis, Gram Schmidt

• matrix multiplications and representations, block matrix manipulations

• complexity, floating point operations (flops)
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Notation and Conventions

R the set of real numbers, or real space

C the set of complex numbers, or complex space

Rn n-dimensional real space

Cn n-dimensional complex space

Rm×n set of all m× n real-valued matrices

Cm×n set of all m× n complex-valued matrices

x column vector

xi, [x]i ith entry of x

A matrix

aij, [A]ij (i, j)th entry of A

Sn set of all n × n real symmetric matrices; i.e, A ∈ Rn×n and aij = aji
for all i, j

Hn set of all n×n complex Hermitian matrices; i.e, A ∈ Rn×n and aij = a∗ji
for all i, j
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Notation and Conventions
• vector: x ∈ Rn means that x is a real-valued n-dimensional column vector; i.e.,

x =




x1
x2
...
xn


 , xi ∈ R for all i.

Similarly, x ∈ Cn means that x is a complex-valued n-dimensional column vector.

• transpose: let x ∈ Rn. The notation xT means that

xT =
[
x1, x2, . . . , xn

]
.

• Hermitian transpose: let x ∈ Cn. The notation xH means that

xH =
[
x∗1, x∗2, . . . , x∗n

]
,

where the superscript ∗ denotes the complex conjugate.
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Notation and Conventions

• matrix: A ∈ Rm×n means that A is real-valued m× n matrix

A =




a11 a12 . . . a1n
a21 a22 . . . a2n

... ...
am1 am2 . . . amn


 , aij ∈ R for all i, j.

Similarly, A ∈ Cm×n means that A is a complex-valued m× n matrix.

• unless specified, we denote the ith column of a matrix A ∈ Rm×n as ai ∈ Rm;
i.e.,

A =
[
a1, a2, . . . , an

]
.

The same notation applies to A ∈ Cm×n.
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Notation and Conventions

• transpose: let A ∈ Rm×n. The notation AT means that

AT =




a11 a21 . . . am1

a12 a22 . . . am2
... ...
a1n am2 . . . amn


 ∈ Rn×m.

– or, we have B = AT ⇐⇒ bij = aji for all i, j.

– properties:

∗ (AB)T = BTAT

∗ (AT )T = A
∗ (A + B)T = AT + BT
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Notation and Conventions

• Hermitian transpose: let A ∈ Cm×n. The notation AH means that

AH =




a∗11 a∗21 . . . a∗m1

a∗12 a∗22 . . . a∗m2
... ...
a∗1n a∗m2 . . . a∗mn


 ∈ Cn×m.

– or, we have B = AH ⇐⇒ bij = a∗ji for all i, j.

– properties (same as transpose):

∗ (AB)H = BHAH

∗ (AH)H = A
∗ (A + B)H = AH + BH
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Notation and Conventions

• trace: let A ∈ Rn×n. The trace of A is

tr(A) =

n∑

i=1

aii.

– properties:

∗ tr(AT ) = tr(A)
∗ tr(A + B) = tr(A) + tr(B)
∗ tr(AB) = tr(BA) for A,B of appropriate sizes

• matrix power: let A ∈ Rn×n. The notation A2 means A2 = AA, and Ak

means
Ak = AA · · ·A︸ ︷︷ ︸

k A’s

.
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Notation and Conventions

• all-one vectors: we use the notation

1 =




1
...
1




to denote a vector of all 1’s.

• zero vectors or matrices: we use the notation 0 to denote either a vector of all
zeros, or a matrix of all zeros.

• unit vectors: unit vectors are vectors that have only one nonzero element and
the nonzero element is 1. We use the notation

ei =
[
0 · · · 0 1 0 · · · 0

]T

to denote a unit vector with the nonzero element at the ith entry.
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Notation and Conventions

• identity matrix:

I =




1
1

. . .
1


 ,

where, as a convention, the empty entries are assumed to be zero.

• diagonal matrices: we use the notation

Diag(a1, . . . , an) =



a1

. . .
an




to denote a diagonal matrix with diagonals a1, . . . , an. We also use the shorthand
notation Diag(a) = Diag(a1, . . . , an).
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Notation and Conventions

• A matrix A ∈ Rm×n is said to be

– square if m = n;
– tall if m > n;
– fat if m < n.

• A matrix A ∈ Rn×n is said to be

– upper triangular if aij = 0 for all i > j;
– lower triangular if aij = 0 for all i < j.

Examples:

A =




1 2 3
0 4 5
0 0 6


 , A =




1 0 0
1
2 2 0
1
8 3 0


 .
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Subspace

A subset S of Rm is said to be a subspace if

x,y ∈ S,
α, β ∈ R =⇒ αx + βy ∈ S.

• if S is a subspace and a1, . . . ,an ∈ S, any linear combination of a1, . . . ,an, i.e.,∑n
i=1αiai for some α ∈ Rn, lies in S.

• some quick facts: let S1,S2 be subspaces of Rm.

– S1 + S2 is a subspace 1

– S1 ∩ S2 is a subspace

1note the notation X + Y = {x + y | x ∈ X , y ∈ Y}.
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Span

The span of a collection of vectors a1, . . . ,an ∈ Rm is defined as

span{a1, . . . ,an} =

{
y ∈ Rm

∣∣∣∣ y =

n∑

i=1

αiai, α ∈ Rn

}
.

• the set of all linear combinations of a1, . . . ,an

• a subspace

• Question: any span is a subspace. But can any subspace be written as a span?

Theorem 1.1. Let S be a subspace of Rm. There exists a positive integer n and
a collection of vectors a1, . . . ,an ∈ S such that S = span{a1, . . . ,an}.

– Implication: we can always represent a subspace by a span
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Range Space and Nullspace

The range space of A ∈ Rm×n is defined as

R(A) = {y ∈ Rm | y = Ax, x ∈ Rn}.

• essentially the same as span

The nullspace of A ∈ Rm×n is defined as

N (A) = {x ∈ Rn | Ax = 0}.

• a nullspace is a subspace (verify as a mini exercise)

• by Theorem 1.1, we can represent a nullspace by N (A) = R(B) for some
B ∈ Rn×r and positive integer r.
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Linear Independence

A collection of vectors a1, . . . ,an ∈ Rm is said to be linearly independent if

n∑

i=1

αiai 6= 0, for all α ∈ Rn with α 6= 0;

and linearly dependent otherwise.

• an equivalent way of defining linear dependence: {a1, . . . ,an} ⊂ Rm is a linearly
dependent vector set if there exists α ∈ Rn, α 6= 0, such that

n∑

i=1

αiai = 0.
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Linear Independence

Some known facts (some easy to show, some not):

• if {a1, . . .an} ⊂ Rm is linearly independent, then any aj cannot be a linear
combination of the other ai’s; i.e., aj 6=

∑
i6=j αiai for any αi’s.

• if {a1, . . .an} ⊂ Rm is linearly dependent, then there exists an aj such that aj is
a linear combination of the other ai’s; i.e., aj =

∑
i6=j αiai for some αi’s.

• if {a1, . . .an} ⊂ Rm is linearly independent, then n ≤ m must hold.

• let {a1, . . . ,am} ⊂ Rm be a linearly independent vector set. Suppose y ∈
span{a1, . . . ,am}. Then the coefficient α for the representation

y =

n∑

i=1

αiai

is unique; i.e., there does not exist a β ∈ Rn, β 6= α, such that y =
∑n

i=1 βiai.
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Linear Independence

Let {a1, . . .an} ⊂ Rm, and denote {i1, . . . , ik} ⊆ {1, . . . , n} as an index subset with
k ≤ n and ij 6= il for all j 6= l.

A vector subset {ai1, . . . ,aik} is called a maximal linearly independent subset of
{a1, . . .an} if

1. {ai1, . . . ,aik} is linearly independent;

2. {ai1, . . . ,aik} is not contained by any other linearly independent subset of
{a1, . . .an}.

• physical meaning: find a set of non-redundant vectors from {a1, . . .an}
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Linear Independence

• example:

a1 =




1
0
0


 , a2 =




0
1
0


 , a3 =




0
0
1


 , a4 =




0
1
1


 .

The linearly independent subets of {a1,a2,a3,a4} are

{a1}, {a2}, {a3}, {a4},
{a1,a2}, {a1,a3}, {a1,a4}, {a2,a3}, {a2,a4}, {a3,a4},

{a1,a2,a3}, {a1,a2,a4}, {a1,a3,a4}.

But the maximal linearly independent subsets are

{a1,a2,a3}, {a1,a2,a4}, {a1,a3,a4}.
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Linear Independence

Facts:

• {ai1, . . . ,aik} is a maximal linearly independent subset of {a1, . . .an} if and only
if {ai1, . . . ,aik,aj} is linearly dependent for any j ∈ {1, . . . , n} \ {i1, . . . , ik}

• if {ai1, . . . ,aik} is a maximal linearly independent subset of {a1, . . .an}, then

span{ai1, . . . ,aik} = span{a1, . . .an}.
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Basis

Let S ⊆ Rm be a subspace with S 6= {0}.

A vector set {b1, . . . ,bk} ⊂ Rm is called a basis for S if {b1, . . . ,bk} is linearly
independent and

S = span{b1, . . . ,bk}.

• examples: let {ai1, . . . ,aik} be a maximal linearly independent vector subset of
{a1, . . . ,an}. Then, {ai1, . . . ,aik} is a basis for span{a1, . . . ,an}.

Some facts:

• we may have more than one basis for S

• all bases for S have the same number of elements; i.e., if {b1, . . . ,bk} and
{c1, . . . , cl} are bases for S, then k = l
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Dimension of a Subspace

The dimension of a subspace S, with S 6= {0}, is defined as the number of elements
of a basis for S. The dimension of {0} is defined as 0.

• dimS will be used as the notation for denoting the dimension of S

• physical meaning: effective degrees of freedom of the subspace

• examples:

– dimRm = m

– if k is the number of maximal linearly independent vectors of {a1, . . . ,an},
then dim span{a1, . . . ,an} = k.
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Dimension of a Subspace

Property 1.1. Let S,S1,S2 ⊆ Rm be subspaces.

1. If S1 ⊆ S2, then dimS1 ≤ dimS2.

2. If S1 ⊆ S2 and dimS1 = dimS2, then S1 = S2.

3. dimS = m if and only if S = Rm.

4. dim(S1 + S2) + dim(S1 ∩ S2) = dimS1 + dimS2.

5. dim(S1 + S2) ≤ dimS1 + dimS2.
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Rank

The rank of a matrix A ∈ Rm×n, denoted by rank(A), is defined as the number of
elements of a maximal linearly independent subset of {a1, . . . ,an}.

• or, rank(A) is the maximum number of linearly independent columns of A

• dimR(A) = rank(A) by definition

Facts:

• rank(A) = rank(AT ), i.e., the rank of A is also the maximum number of linearly
independent rows of A

• rank(A + B) ≤ rank(A) + rank(B)

• rank(AB) ≤ min{rank(A), rank(B)}. Also, the equality above holds if the
columns of A are linearly independent and the rows of B are linearly independent.
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Rank

• A is said to have

– full column rank if the columns of A are linearly independent (more precisely,
the collection of all columns of A is linearly independent)

∗ A ∈ Rm×n being of full-column rank ⇐⇒ m ≥ n, rank(A) = n

– full row rank if the rows of A are linearly independent

∗ A ∈ Rm×n being of full-row rank ⇐⇒ m ≤ n, rank(A) = m

– full rank if rank(A) = min{m,n}; i.e., it has either full column rank or full
row rank

– rank deficient if rank(A) < min{m,n}
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Invertible Matrices

A square matrix A is said to be nonsingular or invertible if the columns of A are
linearly independent, and singular otherwise.

• alternatively, we say A is singular if Ax = 0 for some x 6= 0.

The inverse of an invertible A, denoted by A−1, is a square matrix that satisfies

A−1A = I.
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Invertible Matrices

Facts (for a nonsingular A):

• A−1 always exists and is unique (or there are no two inverses of A)

• A−1 is nonsingular

• AA−1 = I

• (A−1)−1 = A

• (AB)−1 = B−1A−1, where A,B are square and nonsingular

• (AT )−1 = (A−1)T

– as a shorthand notation, we will denote A−T = (AT )−1
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Determinant

Let A ∈ Rm×m. The determinant of A, denoted by det(A), is defined inductively.

• if m = 1, det(A) = a11.

• if m ≥ 2, we have the following:

– let Aij ∈ R(m−1)×(m−1) be a submatrix of A obtained by deleting the ith row
and jth column of A. Let cij = (−1)i+j det(Aij).

– cofactor expansion:

det(A) =

m∑

j=1

aijcij, for any i = 1, . . . ,m

det(A) =

m∑

i=1

aijcij, for any j = 1, . . . ,m

– remark: cij’s are called the cofactors, det(Aij)’s are called the minors
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Determinant

Some interpretations of determinant:

• (important) Ax = 0 for some x 6= 0 if and only if det(A) = 0

• | det(A)| is the volume of the parallelepiped P = {y =
∑m

i=1αiai | αi ∈ [0, 1] ∀i}

Source: Wiki. r1, r2, r3 are a1, a2, a3 on R3.
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Determinant

Properties:

• det(AB) = det(A) det(B) for any A,B ∈ Rm×m

• det(A) = det(AT )

• det(αA) = αm det(A) for any α ∈ R,A ∈ Rm×m

• det(A−1) = 1/det(A) for any nonsingular A

• det(B−1AB) = det(A) for any nonsingular B

• A−1 =
1

det(A)
Ã, where ãij = cji (the cofactor) for all i, j (A is nonsingular)

– remark: Ã is called the adjoint of A
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Determinant
More properties:

• if A ∈ Rm×m is triangular, either upper or lower,

det(A) =

m∏

i=1

aii

– proof: apply cofactor expansion inductively

• if A ∈ Rm×m takes a block upper triangular form

A =

[
B C
0 D

]
,

where B and D are square (and can be of different sizes), then

det(A) = det(B) det(D).

The same result also holds when A takes a block lower triangular form.
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Vector Norms

A function f : Rn → R is called a vector norm if

1. f(x) ≥ 0 for any x ∈ Rn

2. f(x) = 0 if and only if x = 0

3. f(x + y) ≤ f(x) + f(y) for any x,y ∈ Rn

4. f(αx) = |α|f(x) for any α ∈ R, x ∈ Rn

• used to measure the length of a vector

• we usually use the notation ‖ · ‖ to denote a norm

• also used to measure the distance of two vectors, specifically, via ‖x− y‖ where
x,y are the two vectors
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Vector Norm

Examples of norm:

• 2-norm or Euclidean norm: ‖x‖2 =

√√√√
n∑

i=1

|xi|2 = (xTx)1/2

• 1-norm or Manhattan norm: ‖x‖1 =

n∑

i=1

|xi|

• ∞-norm: ‖x‖∞ = max
i=1,...,n

|xi|

• p-norm, p ≥ 1: ‖x‖p =

( n∑

i=1

|xi|p
)1

p
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`p Function
Let

fp(x) =

(
n∑

i=1

|xi|p
)1

p

, p > 0.

ℓp Function
Let

fp(x) =

(
n∑

i=1

|xi|p
)1

p

, p > 0.
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(a) Region of fp(x) = 1, p ≥ 1.
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(b) Region of fp(x) = 1, p ≤ 1.

• fp is not a norm for 0 < p < 1

• when p → 0, fp is like the cardinality function card(x) =
∑n

i=1 1{xi 6= 0}, where
1{x 6= 0} = 1 if x 6= 0 and 1{x 6= 0} = 0 if x = 0.

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term. 32

(a) Region of fp(x) = 1, p ≥ 1.

ℓp Function
Let

fp(x) =

(
n∑

i=1

|xi|p
)1

p

, p > 0.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

p = 1
p = 2
p = ∞

(a) Region of fp(x) = 1, p ≥ 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

p = 0.1
p = 0.3
p = 0.5

(b) Region of fp(x) = 1, p ≤ 1.

• fp is not a norm for 0 < p < 1

• when p → 0, fp is like the cardinality function card(x) =
∑n

i=1 1{xi 6= 0}, where
1{x 6= 0} = 1 if x 6= 0 and 1{x 6= 0} = 0 if x = 0.

W.-K. Ma, ENGG5781 Matrix Analysis and Computations, CUHK, 2022-23 First Term. 32

(b) Region of fp(x) = 1, p ≤ 1.

• fp is not a norm for 0 < p < 1

• when p→ 0, fp is like the cardinality function card(x) =
∑n

i=1 1{xi 6= 0}, where
1{x 6= 0} = 1 if x 6= 0 and 1{x 6= 0} = 0 if x = 0.

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 32



Inner Product and Angle

The inner product of two vectors x,y ∈ Rn is defined as

〈x,y〉 =

n∑

i=1

yixi = yTx.

• x,y are said to be orthogonal to each other if 〈x,y〉 = 0

• x,y are said to be parallel if x = αy for some α

– for parallel x,y we have 〈x,y〉 = ±‖x‖2‖y‖2

The angle between two vectors x,y ∈ Rn is defined as

θ = cos−1
(

yTx

‖x‖2‖y‖2

)
.

• x,y are orthogonal if θ = ±π/2
• x,y are parallel if θ = 0 or θ = ±π
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Important Inequalities for Inner Product

Cauchy-Schwarz inequality:
|xTy| ≤ ‖x‖2‖y‖2.

Also, the above equality holds if and only if either x = αy for some α ∈ R or
y = αx for some α ∈ R.

• proof: suppose y 6= 0; the case of y = 0 is trivial. For any β ∈ R,

0 ≤ ‖x− βy‖22 = (x− βy)T (x− βy) = ‖x‖22 − 2βxTy + β2‖y‖22 := f(β) (∗)

The function f is minimized when β = (xTy)/‖y‖22. Plugging this β back to
(∗) gives |xTy| ≤ ‖x‖2‖y‖2. Equality in (∗) holds if and only if x− βy = 0, or
equivalently, x = αy for some α ∈ R.
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Important Inequalities for Inner Product

Hölder inequality: for any p, q ∈ [1,∞] such that 1/p+ 1/q = 1,

|xTy| ≤ ‖x‖p‖y‖q,

If one of the x and y is 0, then equality holds. If both x and y do not equal 0,

– for p > 1, equality holds if and only if (i) |xi|p = α|yi|q for all i and for some
α ≥ 0, and (ii) sgn(xi) = β sgn(yi) for all i and for some β ∈ {−1, 1}2

– for (p, q) = (1,∞), equality holds if (i) |y1| = · · · = |yn|, and (ii) sgn(xi) =
β sgn(yi) for all i and for some β ∈ {−1, 1}
• examples:

– (p, q) = (2, 2): Cauchy-Schwarz inequality

– (p, q) = (1,∞): |xTy| ≤ ‖x‖1‖y‖∞. In fact,

|xTy| ≤∑n
i=1 |xiyi| ≤ maxj |yj| (

∑n
i=1 |xi|) = ‖x‖1‖y‖∞.

2Here we define sgn(x) = 1 if x > 0, sgn(x) = 0 if x = 0, and sgn(x) = −1 if x < 0
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Projections on Subspaces

Let S ⊆ Rm be a nonempty closed set (not necessarily a subspace).

Let y ∈ Rm be given.

A projection of y onto S is any solution to

min
z∈S

‖z− y‖22

• a projection of y onto S is any point that is closest to y and lies in S

• notation: if, for every y ∈ Rm, there is always only one projection of y onto S,
then we denote

ΠS(y) = arg min
z∈S

‖z− y‖22
and ΠS is called the projection (or projection operator) of y onto S.
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Projections onto Subspaces

Theorem 1.2 (Projection Theorem). Let S be a subspace of Rm.

1. for every y ∈ Rm, there exists a unique vector ys ∈ S that minimizes ‖z − y‖22
over z ∈ S. Thus, we can use the notation ΠS(y) = arg minz∈S ‖z− y‖22.

2. given y ∈ Rm, we have the equivalence

ys = ΠS(y) ⇐⇒ ys ∈ S, zT (ys − y) = 0 for all z ∈ S.

• a special case of the projection theorem for convex sets

– the latter plays a key role in convex optimization

• the subspace projection theorem above is very useful, as we will see
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Projections onto SubspacesProjections onto Subspaces

S

0

ys

y

y − ys
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Orthogonal Complements

Let S ⊆ Rm be a nonempty closed set.

The orthogonal complement of S is defined as

S⊥ = {y ∈ Rm | zTy = 0 for all z ∈ S}.

• S⊥ is a subspace (easy to verify)

• any z ∈ S,y ∈ S⊥ are orthogonal

• either S ∩ S⊥ = {0} or S ∩ S⊥ = ∅

• some facts for subspaces:

– R(A)⊥ = N (AT ) (also easy to verify)

– N (A) = R(AT )⊥
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Orthogonal Complements

What happens to the orthogonal complement if S is a subspace?

Theorem 1.3. Let S ⊆ Rm be a subspace.

1. for every y ∈ Rm, there exists a unique (ys,yc) ∈ S × S⊥ such that

y = ys + yc.

Also, such a (ys,yc) is ys = ΠS(y),yc = y −ΠS(y).

2. the projection of y onto S⊥ can be determined by ΠS⊥(y) = y −ΠS(y).

• proof sketch: by the projection theorem. We can rephrase the projection theorem
as

ys ∈ S, y − ys ∈ S⊥ ⇐⇒ ys ∈ ΠS(y).

This leads us to Statement 1 of Theorem 1.3.
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Orthogonal Complements

Consequences of Theorem 1.3:

Property 1.2. Let S ⊆ Rm be a subspace.

1. S + S⊥ = Rm;

2. dimS + dimS⊥ = m;

3. (S⊥)⊥ = S.

• examples: let A ∈ Rm×n.

– dimR(A) + dimR(A)⊥ = m

– and then dimR(A) + dimN (AT ) = m

– and then dimN (A) = n− dimR(AT ) = n− rank(A) ≥ n−min{m,n}
∗ implication: if A is fat, the dim. of N (A) is at least n−m

Property 1.3. S1 ∩ S2 = (S⊥1 + S⊥2 )⊥, where S1,S2 ⊆ Rm are subspaces.
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Orthogonal Bases and Matrices

A collection of nonzero vectors a1, . . . ,an ∈ Rm is said to be

• orthogonal if aTi aj = 0 for all i, j with i 6= j

• orthonormal if ‖ai‖2 = 1 for all i and aTi aj = 0 for all i, j with i 6= j.

The same definition applies to complex ai’s, but we need to replace “T” with “H”.

Examples:

• {e1, . . . , em} ⊂ Rm is orthonormal; in fact, it’s an orthonormal basis for Rm

• any subset of {e1, . . . , em} is orthornormal

• (to be learnt) discrete Fourier transform (DFT), Haar transform, etc., form
orthonormal bases
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Orthogonal Bases and Matrices

Some immediate facts:

• an orthonormal set of vectors is also linearly independent.

• let {a1, . . . ,an} ⊂ Rm be an orthonormal set of vectors. Suppose y ∈
span{a1, . . . ,an}. Then the coefficient α for the representation

y =

n∑

i=1

αiai

is uniquely given by αi = aTi y, i = 1, . . . , n.

A not so immediate fact:

• (important) every subspace S with S 6= {0} has an orthonormal basis.

– this will be clear when we consider Gram-Schmidt
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Orthogonal Bases and Matrices

A real matrix Q is said to be

• orthogonal if it is square and its columns are orthonormal (why we call it an
orthogonal matrix, but not an orthonormal matrix?)

• semi-orthogonal if its columns are orthonormal

– a semi-orthogonal Q must be tall or square

A complex matrix Q is said to be unitary if it is square and its columns are
orthonormal, and semi-unitary if its columns are orthonormal.

Example: consider a transformation y = Qx, where

Q =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
,

where θ ∈ [0, 2π). This Q is orthogonal. Also, it performs rotation and reflection.
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Orthogonal Bases and Matrices

Facts:

• QTQ = I and QQT = I for orthogonal Q

• QTQ = I (but not necessarily QQT = I) for semi-orthogonal Q

• ‖Qx‖2 = ‖x‖2 for orthogonal Q

– physical meaning: rotation and reflection do not affect the vector length

• for every tall and semi-orthogonal matrix Q1 ∈ Rn×k, there exists a matrix
Q2 ∈ Rn×(n−k) such that [ Q1 Q2 ] is orthogonal
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Orthogonal Bases and Matrices

Question: given a subspace S, how do we know that it has an orthonormal basis?

• we know that every subspace has a basis, c.f. Theorem 1.1

• but the theorem doesn’t say if that basis is orthonormal

• we can construct an orthonormal basis from a basis—and one way to do it is the
Gram-Schmidt procedure
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Gram-Schmidt Procedure

Algorithm: Gram-Schmidt
input: a collection of vectors a1, . . . ,an, presumably linearly independent
q̃1 = a1, q1 = q̃1/‖q̃1‖2
for i = 2, . . . , n
why q̃i = ai −

∑i−1
j=1(q

T
j ai)qj

why qi = q̃i/‖q̃i‖2
end
output: q1, . . . ,qn

• Fact: Suppose that a1, . . . ,an are linearly independent. The collection of vectors
q1, . . . ,qn produced by the Gram-Schmidt procedure is orthonormal and satisfies

span{a1, . . . ,an} = span{q1, . . . ,qn}.

• here we use Gram-Schmidt to identify the existence of an orthonormal basis for a
subspace, but it is a numerical algorithm
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Gram-Schmidt Procedure

Proof of the fact on the last page:

• assume linearly independent a1, . . . ,an

• consider i = 2.

– q̃2 is a linear combination of a1,a2 and is nonzero:

q̃2 = a2 − (qT
1 a2)q1 = a2 − (qT

1 a2/‖a1‖2)a1; (†)

the linear independence of a1,a2 implies q̃2 6= 0.

– a2 is a linear combination of q1,q2: seen from (†)
– consequence: span{a1,a2} = span{q1,q2} (why?)

– q̃2 is orthogonal to q1:

qT
1 q̃2 = qT

1 (a2 − (qT
1 a2)q1) = qT

1 a2 − qT
1 a2 = 0.
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Gram-Schmidt Procedure

• consider i ≥ 2.

– q̃i is a linear combination of a1, . . . ,ai−1 and is nonzero: by induction,
q1, . . .qi−1 are linear combinations of a1, . . . ,ai−1. So,

q̃i = ai −
∑i−1

j=1(q
T
j ai)qj (‡)

is a linear combination of a1, . . . ,ai. The linear independence of a1, . . . ,ai
implies q̃i 6= 0.

– ai is a linear combination of q1, . . . ,qi: seen from (‡)
– consequence: span{a1, . . . ,ai} = span{q1, . . . ,qi} (why?)

– q̃i is orthogonal to q1, . . . ,qi−1: by induction, q1, . . . ,qi−1 are orthonormal.
For any k ∈ {1, . . . , i− 1},

qT
k q̃i = qT

k (ai −
∑i−1

j=1(q
T
j ai)qj) = qT

k ai − qT
k ai = 0.
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Gram-Schmidt Procedure

More comments:

• the step
q̃i = ai −

∑i−1
j=1(q

T
j ai)qj

can be shown to be equivalent to

q̃i = Πspan{q1,...,qi−1}⊥(ai) = Πspan{a1,...,ai−1}⊥(ai);

this will be seen in the LS lecture.

• the Gram-Schmidt procedure can be modified in various ways

– e.g., it can be modified to do linear independence test, or to find a maximal
linearly independent vector subset

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024–25 First Term. 50



Matrix Product Representations

Let A ∈ Rm×k, B ∈ Rk×n, and consider

C = AB.

• column representation:
ci = Abi, i = 1, . . . , n

(I didn’t say anything so I assume you know that ci and bi are the ith column of
C and B, resp.)

• inner-product representation: redefine ai ∈ Rk as the ith row of A.

AB =



aT1
...

aTm


 [b1 · · · bn

]
=



aT1 b1 · · · aT1 bn

... ...
aTmb1 · · · aTmbn




Thus,
cij = aTi bj, for any i, j.
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Matrix Product Representations

• outer-product representation: redefine bi ∈ Rk as the ith row of B.

C = A(I)B = A

(
k∑

i=1

eie
T
i

)
B =

k∑

i=1

Aeie
T
i B

Thus,

C =

k∑

i=1

aib
T
i
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Matrix Product Representations

• a matrix of the form X = abT for some a,b is called a rank-one outer product.
It can be verified that rank(X) ≤ 1, and rank(X) = 1 if a 6= 0,b 6= 0.

• the outer-product representation C =
∑k

i=1 aib
T
i is a sum of k rank-one outer

products

• does it mean that rank(C) = k?

– rank(C) ≤∑k
i=1 rank(aib

T
i ) ≤ k is true 3

– but the above equality is generally not attained; e.g., k = 2, a1 = a2, b1 = −b2

leads to C = 0

– rank(C) = k only when A has full-column rank and B has full-row rank
(requires a proof)

3use the rank inequality rank(A + B) ≤ rank(A) + rank(B).
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Block Matrix Manipulations

Sometimes it may be useful to manipulate matrices in a block form.

• let A ∈ Rm×n, x ∈ Rn. By partitioning

A =
[
A1 A2

]
, x =

[
x1

x2

]

where A1 ∈ Rm×n1,A2 ∈ Rm×n2,x1 ∈ Rn1,x2 ∈ Rn2, with n1 +n2 = n, we can
write

Ax = A1x1 + A2x2

• similarly, by partitioning

A =

[
A11 A12

A21 A22

]
, x =

[
x1

x2

]
,

we can write

Ax =

[
A11x1 + A12x2

A21x1 + A22x2

]
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Block Matrix Manipulations

• consider AB. By an appropriate partitioning,

AB =
[
A1 A2

] [B1

B2

]
= A1B1 + A2B2

• similarly, by an appropriate partitioning,

AB =

[
A1

A2

] [
B1 B2

]
=

[
A1B1 A1B2

A2B1 A2B2

]

• we showcase two-block partitioning only, but the same manipulations apply to
multi-block partitioning like

A =



A11 · · · A1q

... ...
Ap1 · · · Apq



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Extension to Cn

• all the concepts described above apply to the complex case

• we only need to replace every “R” with “C”, and every “T” with “H”; e.g.,

span{a1, . . . ,an} = {y ∈ Cm | y =
∑n

i=1αiai, α ∈ Cn},

〈x,y〉 = yHx, ‖x‖2 =
√
xHx, and so forth.
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Extension to Rm×n

• the concepts also apply to the matrix case

– e.g., we may write

span{A1, . . . ,Ak} = {Y ∈ Rm×n | Y =
∑k

i=1αiAi, α ∈ Rk}.

– sometimes it is more convenient to vectorize X as a vector x ∈ Rmn, and use
the same treatment as in the Rn case

– inner product for Rm×n:

〈X,Y〉 =
∑m

i=1

∑n
j=1 xijyij = tr(YTX),

– the matrix version of the Euclidean norm is called the Frobenius norm:

‖X‖F =
√∑m

i=1

∑n
j=1 |xij|2 =

√
tr(XTX)

• extension to Cm×n is just as straightforward as in that to Cn
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Complexities of Matrix Computations

• every vector/matrix operation such as x + y, yTx, Ax, . . . incurs computational
costs, and they cost more as the vector and matrix sizes get bigger

• we typically look at floating point arithmetic operations, such as add, subtract,
multiply, and divide
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Complexities of Matrix Computations

• flops: one flop means one floating point arithmetic operation.

• flop counts of some standard vector/matrix operations:

for x,y ∈ Rn, A ∈ Rm×n, B ∈ Rn×p,

– x + y: n adds, so n flops

– yTx: n multiplies and n− 1 adds, so 2n− 1 flops

– Ax: m inner products, so m(2n− 1) flops

– AB: do “Ax” above p times, so pm(2n− 1) flops
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Complexities of Matrix Computations

• we are often interested in the order of the complexity

• big O notation: given two functions f(n), g(n), the notation

f(n) = O(g(n))

means that there exists a constant C > 0 and n0 such that |f(n)| ≤ C|g(n)| for
all n ≥ n0.

• big O complexities of standard vector/matrix operations:

– x + y: O(n) flops

– yTx: O(n) flops

– Ax: O(mn) flops

– AB: O(mnp) flops

– (we’ll learn it later) solve y = Ax for x, with A ∈ Rn×n: O(n3) flops
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Complexities of Matrix Computations

• big O complexities are commonly used, although we should be careful sometimes

• example: suppose you have an algorithm whose exact flop count is

f(n) = 3n3 + 8n2 + 2n+ 1234.

– O(n3) flops

– big O makes sense for large n; n3 dominates as n is large

– but be careful: for small n, it’s 1234 that consumes more

• example: suppose you have two algorithms for the same problem. Their exact
flop counts are

f1(n) = n3, f2(n) =
1

2
n3.

– their big O complexities are the same: O(n3)

– but two times faster is two times faster!
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Complexities of Matrix Computations

• example: suppose our algorithm deals with complex vector and matrix operations.
Define one flop as one real flop.

– one complex add = 2 real adds = 2 flops

– one complex multiply = 4 real multiplies + 2 real adds = 6 flops
...

When we report big O complexity, the scaling factors above are not seen
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Exercise: Count the Complexity of Gram Schmidt

• recall the Gram-Schmidt procedure recursively computes

q̃i = ai −
∑i−1

j=1(q
T
j ai)qj, qi = q̃i/‖q̃i‖2, i = 1, . . . , n.

• consider iteration i.

– every qT
j ai, j = 1, . . . , i = 1, takes O(m)

– then, computing q̃i = ai−
∑i−1

j=1(q
T
j ai)qj is almost the same as the operation

“Ax”; it takes O(mi)

– q̃i = q̃i/‖q̃i‖2 requires O(m) (one divide, one
√·, one inner product q̃T

i q̃i)

– total complexity for iteration i: (i− 1)×O(m) +O(mi) +O(m) = O(mi)

• total complexity of the whole algorithm:

O(m
∑n

i=1 i) = O(mn(n+1)
2 ) = O(mn2)
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Complexities of Matrix Computations

• Discussion: flop counts do not always translate into the actual efficiency of the
execution of an algorithm, say, in terms of actual running time.

• things like pipelining, FPGA, parallel computing (multiple GPUs, multiple servers,
cloud computing), etc., can make the story different.

• flop counts also ignore memory usage and other overheads...

• that said, we need at least a crude measure of how computationally costly an
algorithm would be, and counting the flops serves that purpose.
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How to Save Computations

• computational complexities depend much on how we design and write an algorithm

• generally, it is about

– top-down, analysis-guided, designs: often seen in class, often look elegant

– street-smart, possibly bottom-up, tricks: usually not taught much in class, also
not commonplace in papers (unless you download and read somebody’s code),
subtly depends on your problem at hand, but a bunch of small differences can
make a big difference, say in actual running time

• here we give several, but by no means all, tips for saving computations
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How to Save Computations

• apply matrix operations wisely

• example: try this on MATLAB

>> A=randn(5000,2); B=randn(2,10000); C=randn(10000,10000);

>>

>> tic; D= A*B*C; toc

Elapsed time is 12.238567 seconds.

>> tic; D= (A*B)*C; toc % ask MATLAB to do AB first

Elapsed time is 12.640961 seconds.

>> tic; D= A*(B*C); toc % ask MATLAB to do BC first

Elapsed time is 0.222270 seconds.
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How to Save Computations

• let us analyze the complexities in the last example

– A ∈ Rm×n,B ∈ Rn×p,C ∈ Rp×p, with n� min{m, p}. We want to compute
D = ABC.

– if we compute AB first, and then D = (AB)C, the flop count will be

O(mnp) +O(mp2) = O(m(n+ p)p) ≈ O(mp2)

– if we compute BC first, and then D = A(BC), the flop count will be

O(np2) +O(mnp) = O((m+ p)np).

– the 2nd option is preferable if n is much smaller than m, p
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How to Save Computations

• use structures, if available

• example: let A ∈ Rn×n and suppose that

aij = 0 for all i, j such that |i− j| > p,

for some integer p > 0.

– such a structured A is called band diagonal

– if we don’t use structures, computing Ax
requires O(n2)

– if we use the band diagonal structures, we can compute Ax with O(pn)
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How to Save Computations

• use sparsity, if available

• a vector or matrix is said to be sparse if it contains many zero elements

– we assume unstructured sparsity
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How to Save Computations

• let nnz(x) denote the number of nonzero elements of a vector x; the same
notation applies to matrices

• flop counts: for x,y ∈ Rn, A ∈ Rm×n, B ∈ Rn×p,

– x + y: from 0 and min{nnz(x),nnz(y)} flops =⇒ O(min{nnz(x),nnz(y)})
– yTx: from 0 to 2 min{nnz(x),nnz(y)} flops =⇒ O(min{nnz(x),nnz(y)})
– Ax, x being dense: from nnz(A) to 2nnz(A) flops =⇒ O(nnz(A))

– AB: no simple expression for the flops, but at most
Www 2 min{nnz(A)p,nnz(B)m} flops =⇒ O(min{nnz(A)p,nnz(B)m})

• reference: S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra – Vectors,

Matrices, and Least Squares, 2018. Available online at https://web.stanford.edu/~boyd/

vmls/vmls.pdf.
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