ENGG5781 Matrix Analysis and Computations Lecture 1: Basic Concepts

Wing-Kin (Ken) Ma

> 2023-24 First Term

Department of Electronic Engineering
The Chinese University of Hong Kong

Lecture 1: Basic Concepts

- notation and conventions
- subspace, linear independence, basis, dimension
- rank, determinant, invertible matrices
- vector norms, inner product
- projections onto subspaces, orthogonal complements
- orthonormal basis, Gram Schmidt
- matrix multiplications and representations, block matrix manipulations
- complexity, floating point operations (flops)

Notation and Conventions

\mathbb{R}	the set of real numbers, or real space
\mathbb{C}	the set of complex numbers, or complex space
\mathbb{R}^{n}	n-dimensional real space
\mathbb{C}^{n}	n-dimensional complex space
$\mathbb{R}^{m \times n}$	set of all $m \times n$ real-valued matrices
$\mathbb{C}^{m \times n}$	set of all $m \times n$ complex-valued matrices \mathbf{x}
column vector	
$x_{i},[\mathbf{x}]_{i}$	i th entry of \mathbf{x}
\mathbf{A}	matrix
$a_{i j},[\mathbf{A}]_{i j}$	(i, j) th entry of \mathbf{A} \mathbb{S}^{n}
set of all $n \times n$ real symmetric matrices; i.e, $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{i j}=a_{j i}$ for all i, j	
\mathbb{H}^{n}	set of all $n \times n$ complex Hermitian matrices; i.e, $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{i j}=a_{j i}^{*}$ for all i, j

Notation and Conventions

- vector: $\mathbf{x} \in \mathbb{R}^{n}$ means that \mathbf{x} is a real-valued n-dimensional column vector; i.e.,

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad x_{i} \in \mathbb{R} \text { for all } i
$$

Similarly, $\mathbf{x} \in \mathbb{C}^{n}$ means that \mathbf{x} is a complex-valued n-dimensional column vector.

- transpose: let $\mathbf{x} \in \mathbb{R}^{n}$. The notation \mathbf{x}^{T} means that

$$
\mathbf{x}^{T}=\left[\begin{array}{llll}
x_{1}, & x_{2}, & \ldots, & x_{n}
\end{array}\right]
$$

- Hermitian transpose: let $\mathbf{x} \in \mathbb{C}^{n}$. The notation \mathbf{x}^{H} means that

$$
\mathbf{x}^{H}=\left[\begin{array}{llll}
x_{1}^{*}, & x_{2}^{*}, & \ldots, & x_{n}^{*}
\end{array}\right]
$$

where the superscript $*$ denotes the complex conjugate.

Notation and Conventions

- matrix: $\mathbf{A} \in \mathbb{R}^{m \times n}$ means that \mathbf{A} is real-valued $m \times n$ matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right], \quad a_{i j} \in \mathbb{R} \text { for all } i, j
$$

Similarly, $\mathbf{A} \in \mathbb{C}^{m \times n}$ means that \mathbf{A} is a complex-valued $m \times n$ matrix.

- unless specified, we denote the i th column of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ as $\mathbf{a}_{i} \in \mathbb{R}^{m}$; i.e.,

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{a}_{1}, & \mathbf{a}_{2}, & \ldots, & \mathbf{a}_{n}
\end{array}\right]
$$

The same notation applies to $\mathbf{A} \in \mathbb{C}^{m \times n}$.

Notation and Conventions

- transpose: let $\mathbf{A} \in \mathbb{R}^{m \times n}$. The notation \mathbf{A}^{T} means that

$$
\mathbf{A}^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
\vdots & & & \vdots \\
a_{1 n} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \in \mathbb{R}^{n \times m}
$$

- or, we have $\mathbf{B}=\mathbf{A}^{T} \Longleftrightarrow b_{i j}=a_{j i}$ for all i, j.
- properties:
* $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$
* $\left(\mathbf{A}^{T}\right)^{T}=\mathbf{A}$
* $(\mathbf{A}+\mathbf{B})^{T}=\mathbf{A}^{T}+\mathbf{B}^{T}$

Notation and Conventions

- Hermitian transpose: let $\mathbf{A} \in \mathbb{C}^{m \times n}$. The notation \mathbf{A}^{H} means that

$$
\mathbf{A}^{H}=\left[\begin{array}{cccc}
a_{11}^{*} & a_{21}^{*} & \ldots & a_{m 1}^{*} \\
a_{12}^{*} & a_{22}^{*} & \ldots & a_{m 2}^{*} \\
\vdots & & & \vdots \\
a_{1 n}^{*} & a_{m 2}^{*} & \ldots & a_{m n}^{*}
\end{array}\right] \in \mathbb{C}^{n \times m}
$$

- or, we have $\mathbf{B}=\mathbf{A}^{T} \Longleftrightarrow b_{i j}=a_{j i}^{*}$ for all i, j.
- properties (same as transpose):
* $(\mathbf{A B})^{H}=\mathbf{B}^{H} \mathbf{A}^{H}$
* $\left(\mathbf{A}^{H}\right)^{H}=\mathbf{A}$
* $(\mathbf{A}+\mathbf{B})^{H}=\mathbf{A}^{H}+\mathbf{B}^{H}$

Notation and Conventions

- trace: let $\mathbf{A} \in \mathbb{R}^{n \times n}$. The trace of \mathbf{A} is

$$
\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i i}
$$

- properties:

$$
\begin{aligned}
& * \operatorname{tr}\left(\mathbf{A}^{T}\right)=\operatorname{tr}(\mathbf{A}) \\
& * \operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B}) \\
& * \operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B} \mathbf{A}) \text { for } \mathbf{A}, \mathbf{B} \text { of appropriate sizes }
\end{aligned}
$$

- matrix power: let $\mathbf{A} \in \mathbb{R}^{n \times n}$. The notation \mathbf{A}^{2} means $\mathbf{A}^{2}=\mathbf{A} \mathbf{A}$, and \mathbf{A}^{k} means

$$
\mathbf{A}^{k}=\underbrace{\mathbf{A} \mathbf{A} \cdots \mathbf{A}}_{k \mathbf{A}^{\prime} \mathrm{s}} .
$$

Notation and Conventions

- all-one vectors: we use the notation

$$
\mathbf{1}=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]
$$

to denote a vector of all 1's.

- zero vectors or matrices: we use the notation $\mathbf{0}$ to denote either a vector of all zeros, or a matrix of all zeros.
- unit vectors: unit vectors are vectors that have only one nonzero element and the nonzero element is 1 . We use the notation

$$
\mathbf{e}_{i}=\left[\begin{array}{lllllll}
0 & \cdots & 0 & 1 & 0 & \cdots & 0
\end{array}\right]^{T}
$$

to denote a unit vector with the nonzero element at the i th entry.

Notation and Conventions

- identity matrix:

$$
\mathbf{I}=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

where, as a convention, the empty entries are assumed to be zero.

- diagonal matrices: we use the notation

$$
\operatorname{Diag}\left(a_{1}, \ldots, a_{n}\right)=\left[\begin{array}{lll}
a_{1} & & \\
& \ddots & \\
& & a_{n}
\end{array}\right]
$$

to denote a diagonal matrix with diagonals a_{1}, \ldots, a_{n}. We also use the shorthand notation $\operatorname{Diag}(\mathbf{a})=\operatorname{Diag}\left(a_{1}, \ldots, a_{n}\right)$.

Notation and Conventions

- A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to be
- square if $m=n$;
- tall if $m>n$;
- fat if $m<n$.
- A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be
- upper triangular if $a_{i j}=0$ for all $i>j$;
- lower triangular if $a_{i j}=0$ for all $i<j$.

Examples:

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 2 & 0 \\
\frac{1}{8} & 3 & 0
\end{array}\right]
$$

Subspace

A subset \mathcal{S} of \mathbb{R}^{m} is said to be a subspace if

$$
\begin{aligned}
& \mathbf{x}, \mathbf{y} \in \mathcal{S}, \\
& \alpha, \beta \in \mathbb{R}
\end{aligned} \quad \Longrightarrow \quad \alpha \mathbf{x}+\beta \mathbf{y} \in \mathcal{S} .
$$

- if \mathcal{S} is a subspace and $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathcal{S}$, any linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, i.e., $\sum_{i=1}^{n} \alpha_{i} \mathbf{a}_{i}$ for some $\boldsymbol{\alpha} \in \mathbb{R}^{n}$, lies in \mathcal{S}.
- some quick facts: let $\mathcal{S}_{1}, \mathcal{S}_{2}$ be subspaces of \mathbb{R}^{m}.
- $\mathcal{S}_{1}+\mathcal{S}_{2}$ is a subspace ${ }^{1}$
- $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ is a subspace

[^0]
Span

The span of a collection of vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$ is defined as

$$
\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}=\left\{\mathbf{y} \in \mathbb{R}^{m} \mid \mathbf{y}=\sum_{i=1}^{n} \alpha_{i} \mathbf{a}_{i}, \boldsymbol{\alpha} \in \mathbb{R}^{n}\right\}
$$

- the set of all linear combinations of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$
- a subspace
- Question: any span is a subspace. But can any subspace be written as a span?

Theorem 1.1. Let \mathcal{S} be a subspace of \mathbb{R}^{m}. There exists a positive integer n and a collection of vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathcal{S}$ such that $\mathcal{S}=\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$.

- Implication: we can always represent a subspace by a span

Range Space and Nullspace

The range space of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$
\mathcal{R}(\mathbf{A})=\left\{\mathbf{y} \in \mathbb{R}^{m} \mid \mathbf{y}=\mathbf{A} \mathbf{x}, \mathbf{x} \in \mathbb{R}^{n}\right\} .
$$

- essentially the same as span

The nullspace of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$
\mathcal{N}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{A} \mathbf{x}=\mathbf{0}\right\} .
$$

- a nullspace is a subspace (verify as a mini exercise)
- by Theorem 1.1, we can represent a nullspace by $\mathcal{N}(\mathbf{A})=\mathcal{R}(\mathbf{B})$ for some $\mathbf{B} \in \mathbb{R}^{n \times r}$ and positive integer r.

Linear Independence

A collection of vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$ is said to be linearly independent if

$$
\sum_{i=1}^{n} \alpha_{i} \mathbf{a}_{i} \neq \mathbf{0}, \quad \text { for all } \boldsymbol{\alpha} \in \mathbb{R}^{n} \text { with } \boldsymbol{\alpha} \neq \mathbf{0}
$$

and linearly dependent otherwise.

- an equivalent way of defining linear dependence: $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\} \subset \mathbb{R}^{m}$ is a linearly dependent vector set if there exists $\boldsymbol{\alpha} \in \mathbb{R}^{n}, \boldsymbol{\alpha} \neq \mathbf{0}$, such that

$$
\sum_{i=1}^{n} \alpha_{i} \mathbf{a}_{i}=\mathbf{0}
$$

Linear Independence

Some known facts (some easy to show, some not):

- if $\left\{\mathbf{a}_{1}, \ldots \mathbf{a}_{n}\right\} \subset \mathbb{R}^{m}$ is linearly independent, then any \mathbf{a}_{j} cannot be a linear combination of the other \mathbf{a}_{i} 's; i.e., $\mathbf{a}_{j} \neq \sum_{i \neq j} \alpha_{i} \mathbf{a}_{i}$ for any α_{i} 's.
- if $\left\{\mathbf{a}_{1}, \ldots \mathbf{a}_{n}\right\} \subset \mathbb{R}^{m}$ is linearly dependent, then there exists an \mathbf{a}_{j} such that \mathbf{a}_{j} is a linear combination of the other \mathbf{a}_{i} 's; i.e., $\mathbf{a}_{j}=\sum_{i \neq j} \alpha_{i} \mathbf{a}_{i}$ for some α_{i} 's.
- if $\left\{\mathbf{a}_{1}, \ldots \mathbf{a}_{n}\right\} \subset \mathbb{R}^{m}$ is linearly independent, then $n \leq m$ must hold.
- let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\} \subset \mathbb{R}^{m}$ be a linearly independent vector set. Suppose $\mathbf{y} \in$ $\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\}$. Then the coefficient $\boldsymbol{\alpha}$ for the representation

$$
\mathbf{y}=\sum_{i=1}^{n} \alpha_{i} \mathbf{a}_{i}
$$

is unique; i.e., there does not exist a $\boldsymbol{\beta} \in \mathbb{R}^{n}, \boldsymbol{\beta} \neq \boldsymbol{\alpha}$, such that $\mathbf{y}=\sum_{i=1}^{n} \beta_{i} \mathbf{a}_{i}$.

Linear Independence

Let $\left\{\mathbf{a}_{1}, \ldots \mathbf{a}_{n}\right\} \subset \mathbb{R}^{m}$, and denote $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$ as an index subset with $k \leq n$ and $i_{j} \neq i_{l}$ for all $j \neq l$.

A vector subset $\left\{\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{k}}\right\}$ is called a maximal linearly independent subset of $\left\{\mathbf{a}_{1}, \ldots \mathbf{a}_{n}\right\}$ if

1. $\left\{\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{k}}\right\}$ is linearly independent;
2. $\left\{\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{k}}\right\}$ is not contained by any other linearly independent subset of $\left\{\mathbf{a}_{1}, \ldots \mathbf{a}_{n}\right\}$.

- physical meaning: find a set of non-redundant vectors from $\left\{\mathbf{a}_{1}, \ldots \mathbf{a}_{n}\right\}$

Linear Independence

- example:

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{a}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \mathbf{a}_{4}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
$$

The linearly independent subets of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$ are

$$
\begin{gathered}
\left\{\mathbf{a}_{1}\right\},\left\{\mathbf{a}_{2}\right\},\left\{\mathbf{a}_{3}\right\},\left\{\mathbf{a}_{4}\right\}, \\
\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\},\left\{\mathbf{a}_{1}, \mathbf{a}_{3}\right\},\left\{\mathbf{a}_{1}, \mathbf{a}_{4}\right\},\left\{\mathbf{a}_{2}, \mathbf{a}_{3}\right\},\left\{\mathbf{a}_{2}, \mathbf{a}_{4}\right\},\left\{\mathbf{a}_{3}, \mathbf{a}_{4}\right\}, \\
\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}, \quad\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}\right\}, \quad\left\{\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\} .
\end{gathered}
$$

But the maximal linearly independent subsets are

$$
\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}, \quad\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}\right\}, \quad\left\{\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}
$$

Linear Independence

Facts:

- $\left\{\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{k}}\right\}$ is a maximal linearly independent subset of $\left\{\mathbf{a}_{1}, \ldots \mathbf{a}_{n}\right\}$ if and only if $\left\{\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{k}}, \mathbf{a}_{j}\right\}$ is linearly dependent for any $j \in\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{k}\right\}$
- if $\left\{\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{k}}\right\}$ is a maximal linearly independent subset of $\left\{\mathbf{a}_{1}, \ldots \mathbf{a}_{n}\right\}$, then

$$
\operatorname{span}\left\{\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{k}}\right\}=\operatorname{span}\left\{\mathbf{a}_{1}, \ldots \mathbf{a}_{n}\right\} .
$$

Basis

Let $\mathcal{S} \subseteq \mathbb{R}^{m}$ be a subspace with $\mathcal{S} \neq\{\mathbf{0}\}$.
A vector set $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\} \subset \mathbb{R}^{m}$ is called a basis for \mathcal{S} if $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ is linearly independent and

$$
\mathcal{S}=\operatorname{span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}
$$

- examples: let $\left\{\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{k}}\right\}$ be a maximal linearly independent vector subset of $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$. Then, $\left\{\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{k}}\right\}$ is a basis for $\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$.

Some facts:

- we may have more than one basis for \mathcal{S}
- all bases for \mathcal{S} have the same number of elements; i.e., if $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$ and $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{l}\right\}$ are bases for \mathcal{S}, then $k=l$

Dimension of a Subspace

The dimension of a subspace \mathcal{S}, with $\mathcal{S} \neq\{\mathbf{0}\}$, is defined as the number of elements of a basis for \mathcal{S}. The dimension of $\{0\}$ is defined as 0 .

- $\operatorname{dim} \mathcal{S}$ will be used as the notation for denoting the dimension of \mathcal{S}
- physical meaning: effective degrees of freedom of the subspace
- examples:
$-\operatorname{dim} \mathbb{R}^{m}=m$
- if k is the number of maximal linearly independent vectors of $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$, then $\operatorname{dim} \operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}=k$.

Dimension of a Subspace

Property 1.1. Let $\mathcal{S}, \mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{R}^{m}$ be subspaces.

1. If $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$, then $\operatorname{dim} \mathcal{S}_{1} \leq \operatorname{dim} \mathcal{S}_{2}$.
2. If $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$ and $\operatorname{dim} \mathcal{S}_{1}=\operatorname{dim} \mathcal{S}_{2}$, then $\mathcal{S}_{1}=\mathcal{S}_{2}$.
3. $\operatorname{dim} \mathcal{S}=m$ if and only if $\mathcal{S}=\mathbb{R}^{m}$.
4. $\operatorname{dim}\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right)+\operatorname{dim}\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right)=\operatorname{dim} \mathcal{S}_{1}+\operatorname{dim} \mathcal{S}_{2}$.
5. $\operatorname{dim}\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right) \leq \operatorname{dim} \mathcal{S}_{1}+\operatorname{dim} \mathcal{S}_{2}$.

Rank

The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted by $\operatorname{rank}(\mathbf{A})$, is defined as the number of elements of a maximal linearly independent subset of $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$.

- or, $\operatorname{rank}(\mathbf{A})$ is the maximum number of linearly independent columns of \mathbf{A}
- $\operatorname{dim} \mathcal{R}(\mathbf{A})=\operatorname{rank}(\mathbf{A})$ by definition

Facts:

- $\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{T}\right)$, i.e., the rank of \mathbf{A} is also the maximum number of linearly independent rows of \mathbf{A}
- $\operatorname{rank}(\mathbf{A}+\mathbf{B}) \leq \operatorname{rank}(\mathbf{A})+\operatorname{rank}(\mathbf{B})$
- $\operatorname{rank}(\mathbf{A B}) \leq \min \{\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B})\}$. Also, the equality above holds if the columns of \mathbf{A} are linearly independent and the rows of \mathbf{B} are linearly independent.

Rank

- \mathbf{A} is said to have
- full column rank if the columns of \mathbf{A} are linearly independent (more precisely, the collection of all columns of \mathbf{A} is linearly independent)
* $\mathbf{A} \in \mathbb{R}^{m \times n}$ being of full-column rank $\Longleftrightarrow m \geq n, \operatorname{rank}(\mathbf{A})=n$
- full row rank if the rows of \mathbf{A} are linearly independent
* $\mathbf{A} \in \mathbb{R}^{m \times n}$ being of full-row rank $\Longleftrightarrow m \leq n, \operatorname{rank}(\mathbf{A})=m$
- full rank if $\operatorname{rank}(\mathbf{A})=\min \{m, n\}$; i.e., it has either full column rank or full row rank
- rank deficient if $\operatorname{rank}(\mathbf{A})<\min \{m, n\}$

Invertible Matrices

A square matrix \mathbf{A} is said to be nonsingular or invertible if the columns of \mathbf{A} are linearly independent, and singular otherwise.

- alternatively, we say \mathbf{A} is singular if $\mathbf{A x}=\mathbf{0}$ for some $\mathbf{x} \neq \mathbf{0}$.

The inverse of an invertible \mathbf{A}, denoted by \mathbf{A}^{-1}, is a square matrix that satisfies

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}
$$

Invertible Matrices

Facts (for a nonsingular A):

- \mathbf{A}^{-1} always exists and is unique (or there are no two inverses of \mathbf{A})
- \mathbf{A}^{-1} is nonsingular
- $\mathbf{A A}^{-1}=\mathbf{I}$
- $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$
- $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$, where \mathbf{A}, \mathbf{B} are square and nonsingular
- $\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}$
- as a shorthand notation, we will denote $\mathbf{A}^{-T}=\left(\mathbf{A}^{T}\right)^{-1}$

Determinant

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$. The determinant of \mathbf{A}, denoted by $\operatorname{det}(\mathbf{A})$, is defined inductively.

- if $m=1, \operatorname{det}(\mathbf{A})=a_{11}$.
- if $m \geq 2$, we have the following:
- let $\mathbf{A}_{i j} \in \mathbb{R}^{(m-1) \times(m-1)}$ be a submatrix of \mathbf{A} obtained by deleting the i th row and j th column of \mathbf{A}. Let $c_{i j}=(-1)^{i+j} \operatorname{det}\left(\mathbf{A}_{i j}\right)$.
- cofactor expansion:

$$
\begin{aligned}
& \operatorname{det}(\mathbf{A})=\sum_{j=1}^{m} a_{i j} c_{i j}, \quad \text { for any } i=1, \ldots, m \\
& \operatorname{det}(\mathbf{A})=\sum_{i=1}^{m} a_{i j} c_{i j}, \quad \text { for any } j=1, \ldots, m
\end{aligned}
$$

- remark: $c_{i j}$'s are called the cofactors, $\operatorname{det}\left(\mathbf{A}_{i j}\right)$'s are called the minors

Determinant

Some interpretations of determinant:

- (important) $\mathbf{A x}=\mathbf{0}$ for some $\mathbf{x} \neq \mathbf{0}$ if and only if $\operatorname{det}(\mathbf{A})=0$
- $|\operatorname{det}(\mathbf{A})|$ is the volume of the parallelepiped $\mathcal{P}=\left\{\mathbf{y}=\sum_{i=1}^{m} \alpha_{i} \mathbf{a}_{i} \mid \alpha_{i} \in[0,1] \forall i\right\}$

Source: Wiki. r_{1}, r_{2}, r_{3} are $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ on \mathbb{R}^{3}.

Determinant

Properties:

- $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$ for any $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times m}$
- $\operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}^{T}\right)$
- $\operatorname{det}(\alpha \mathbf{A})=\alpha^{m} \operatorname{det}(\mathbf{A})$ for any $\alpha \in \mathbb{R}, \mathbf{A} \in \mathbb{R}^{m \times m}$
- $\operatorname{det}\left(\mathbf{A}^{-1}\right)=1 / \operatorname{det}(\mathbf{A})$ for any nonsingular \mathbf{A}
- $\operatorname{det}\left(\mathbf{B}^{-1} \mathbf{A B}\right)=\operatorname{det}(\mathbf{A})$ for any nonsingular \mathbf{B}
- $\mathbf{A}^{-1}=\frac{1}{\operatorname{det}(\mathbf{A})} \tilde{\mathbf{A}}$, where $\tilde{a}_{i j}=c_{j i}$ (the cofactor) for all i, j (\mathbf{A} is nonsingular)
- remark: $\tilde{\mathbf{A}}$ is called the adjoint of \mathbf{A}

Determinant

More properties:

- if $\mathbf{A} \in \mathbb{R}^{m \times m}$ is triangular, either upper or lower,

$$
\operatorname{det}(\mathbf{A})=\prod_{i=1}^{m} a_{i i}
$$

- proof: apply cofactor expansion inductively
- if $\mathbf{A} \in \mathbb{R}^{m \times m}$ takes a block upper triangular form

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{B} & \mathbf{C} \\
\mathbf{0} & \mathbf{D}
\end{array}\right]
$$

where \mathbf{B} and \mathbf{D} are square (and can be of different sizes), then

$$
\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{B}) \operatorname{det}(\mathbf{D})
$$

The same result also holds when \mathbf{A} takes a block lower triangular form.

Vector Norms

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called a vector norm if

1. $f(\mathbf{x}) \geq 0$ for any $\mathbf{x} \in \mathbb{R}^{n}$
2. $f(\mathbf{x})=0$ if and only if $\mathbf{x}=\mathbf{0}$
3. $f(\mathbf{x}+\mathbf{y}) \leq f(\mathbf{x})+f(\mathbf{y})$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$
4. $f(\alpha \mathbf{x})=|\alpha| f(\mathbf{x})$ for any $\alpha \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^{n}$

- used to measure the length of a vector
- we usually use the notation $\|\cdot\|$ to denote a norm
- also used to measure the distance of two vectors, specifically, via $\|\mathbf{x}-\mathbf{y}\|$ where \mathbf{x}, \mathbf{y} are the two vectors

Vector Norm

Examples of norm:

- 2-norm or Euclidean norm: $\|\mathbf{x}\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}=\left(\mathbf{x}^{T} \mathbf{x}\right)^{1 / 2}$
- 1-norm or Manhattan norm: $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- ∞-norm: $\|\mathbf{x}\|_{\infty}=\max _{i=1, \ldots, n}\left|x_{i}\right|$
- p-norm, $p \geq 1:\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$

ℓ_{p} Function

Let

$$
f_{p}(\mathbf{x})=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \quad p>0
$$

(a) Region of $f_{p}(\mathrm{x})=1, p \geq 1$.

(b) Region of $f_{p}(\mathrm{x})=1, p \leq 1$.

- f_{p} is not a norm for $0<p<1$
- when $p \rightarrow 0, f_{p}$ is like the cardinality function $\operatorname{card}(\mathbf{x})=\sum_{i=1}^{n} \mathbb{1}\left\{x_{i} \neq 0\right\}$, where $\mathbb{1}\{x \neq 0\}=1$ if $x \neq 0$ and $\mathbb{1}\{x \neq 0\}=0$ if $x=0$.

Inner Product and Angle

The inner product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ is defined as

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} y_{i} x_{i}=\mathbf{y}^{T} \mathbf{x}
$$

- \mathbf{x}, \mathbf{y} are said to be orthogonal to each other if $\langle\mathbf{x}, \mathbf{y}\rangle=0$
- \mathbf{x}, \mathbf{y} are said to be parallel if $\mathbf{x}=\alpha \mathbf{y}$ for some α
- for parallel \mathbf{x}, \mathbf{y} we have $\langle\mathbf{x}, \mathbf{y}\rangle= \pm\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}$

The angle between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ is defined as

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{y}^{T} \mathbf{x}}{\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}}\right)
$$

- \mathbf{x}, \mathbf{y} are orthogonal if $\theta= \pm \pi / 2$
- \mathbf{x}, \mathbf{y} are parallel if $\theta=0$ or $\theta= \pm \pi$

Important Inequalities for Inner Product

Cauchy-Schwarz inequality:

$$
\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}
$$

Also, the above equality holds if and only if $\mathbf{x}=\alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$.

- proof: suppose $\mathbf{y} \neq \mathbf{0}$; the case of $\mathbf{y}=\mathbf{0}$ is trivial. For any $\alpha \in \mathbb{R}$,

$$
\begin{equation*}
0 \leq\|\mathbf{x}-\alpha \mathbf{y}\|_{2}^{2}=(\mathbf{x}-\alpha \mathbf{y})^{T}(\mathbf{x}-\alpha \mathbf{y})=\|\mathbf{x}\|_{2}^{2}-2 \alpha \mathbf{x}^{T} \mathbf{y}+\alpha^{2}\|\mathbf{y}\|_{2}^{2} \tag{*}
\end{equation*}
$$

Also, the equality above holds if and only if $\mathbf{x}=\beta \mathbf{y}$ for some β. Let

$$
f(\alpha)=\|\mathbf{x}\|_{2}^{2}-2 \alpha \mathbf{x}^{T} \mathbf{y}+\alpha^{2}\|\mathbf{y}\|_{2}^{2}
$$

The function f is minimized when $\alpha=\left(\mathbf{x}^{T} \mathbf{y}\right) /\|\mathbf{y}\|_{2}^{2}$. Plugging this α back to $(*)$ leads to the desired result.

Important Inequalities for Inner Product

Hölder inequality:

$$
\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}
$$

for any p, q such that $1 / p+1 / q=1, p \geq 1$.

- examples:
- $(p, q)=(2,2):$ Cauchy-Schwarz inequality
$-(p, q)=(1, \infty):\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|_{1}\|\mathbf{y}\|_{\infty}$. This can be easily verified to be true:

$$
\left|\mathbf{x}^{T} \mathbf{y}\right| \leq \sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq \max _{j}\left|y_{j}\right|\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)=\|\mathbf{x}\|_{1}\|\mathbf{y}\|_{\infty}
$$

Projections on Subspaces

Let $\mathcal{S} \subseteq \mathbb{R}^{m}$ be a nonempty closed set (not necessarily a subspace).
Let $\mathbf{y} \in \mathbb{R}^{m}$ be given.
A projection of \mathbf{y} onto \mathcal{S} is any solution to

$$
\min _{\mathbf{z} \in \mathcal{S}}\|\mathbf{z}-\mathbf{y}\|_{2}^{2}
$$

- a projection of \mathbf{y} onto \mathcal{S} is any point that is closest to \mathbf{y} and lies in \mathcal{S}
- notation: if, for every $\mathbf{y} \in \mathbb{R}^{m}$, there is always only one projection of \mathbf{y} onto \mathcal{S}, then we denote

$$
\Pi_{\mathcal{S}}(\mathbf{y})=\arg \min _{\mathbf{z} \in \mathcal{S}}\|\mathbf{z}-\mathbf{y}\|_{2}^{2}
$$

and $\Pi_{\mathcal{S}}$ is called the projection (or projection operator) of \mathbf{y} onto \mathcal{S}.

Projections onto Subspaces

Theorem 1.2 (Projection Theorem). Let \mathcal{S} be a subspace of \mathbb{R}^{m}.

1. for every $\mathbf{y} \in \mathbb{R}^{m}$, there exists a unique vector $\mathbf{y}_{s} \in \mathcal{S}$ that minimizes $\|\mathbf{z}-\mathbf{y}\|_{2}^{2}$ over $\mathbf{z} \in \mathcal{S}$. Thus, we can use the notation $\Pi_{\mathcal{S}}(\mathbf{y})=\arg \min _{\mathbf{z} \in \mathcal{S}}\|\mathbf{z}-\mathbf{y}\|_{2}^{2}$.
2. given $\mathbf{y} \in \mathbb{R}^{m}$, we have the equivalence

$$
\mathbf{y}_{s}=\Pi_{\mathcal{S}}(\mathbf{y}) \quad \Longleftrightarrow \quad \mathbf{y}_{s} \in \mathcal{S}, \quad \mathbf{z}^{T}\left(\mathbf{y}_{s}-\mathbf{y}\right)=0 \text { for all } \mathbf{z} \in \mathcal{S}
$$

- a special case of the projection theorem for convex sets
- the latter plays a key role in convex optimization
- the subspace projection theorem above is very useful, as we will see

Projections onto Subspaces

Orthogonal Complements

Let $\mathcal{S} \subseteq \mathbb{R}^{m}$ be a nonempty closed set.
The orthogonal complement of \mathcal{S} is defined as

$$
\mathcal{S}^{\perp}=\left\{\mathbf{y} \in \mathbb{R}^{m} \mid \mathbf{z}^{T} \mathbf{y}=0 \text { for all } \mathbf{z} \in \mathcal{S}\right\}
$$

- \mathcal{S}^{\perp} is a subspace (easy to verify)
- any $\mathbf{z} \in \mathcal{S}, \mathbf{y} \in \mathcal{S}^{\perp}$ are orthogonal
- either $\mathcal{S} \cap \mathcal{S}^{\perp}=\{\mathbf{0}\}$ or $\mathcal{S} \cap \mathcal{S}^{\perp}=\emptyset$
- some facts for subspaces:
- $\mathcal{R}(\mathbf{A})^{\perp}=\mathcal{N}\left(\mathbf{A}^{T}\right)$ (also easy to verify)
$-\mathcal{N}(\mathbf{A})=\mathcal{R}\left(\mathbf{A}^{T}\right)^{\perp}$

Orthogonal Complements

What happens to the orthogonal complement if \mathcal{S} is a subspace?
Theorem 1.3. Let $\mathcal{S} \subseteq \mathbb{R}^{m}$ be a subspace.

1. for every $\mathbf{y} \in \mathbb{R}^{m}$, there exists a unique $\left(\mathbf{y}_{s}, \mathbf{y}_{c}\right) \in \mathcal{S} \times \mathcal{S}^{\perp}$ such that

$$
\mathbf{y}=\mathbf{y}_{s}+\mathbf{y}_{c} .
$$

Also, such a $\left(\mathbf{y}_{s}, \mathbf{y}_{c}\right)$ is $\mathbf{y}_{s}=\Pi_{\mathcal{S}}(\mathbf{y}), \mathbf{y}_{c}=\mathbf{y}-\Pi_{\mathcal{S}}(\mathbf{y})$.
2. the projection of \mathbf{y} onto \mathcal{S}^{\perp} can be determined by $\Pi_{\mathcal{S}^{\perp}}(\mathbf{y})=\mathbf{y}-\Pi_{\mathcal{S}}(\mathbf{y})$.

- proof sketch: by the projection theorem. We can rephrase the projection theorem as

$$
\mathbf{y}_{s} \in \mathcal{S}, \mathbf{y}-\mathbf{y}_{s} \in \mathcal{S}^{\perp} \quad \Longleftrightarrow \quad \mathbf{y}_{s} \in \Pi_{\mathcal{S}}(\mathbf{y})
$$

This leads us to Statement 1 of Theorem 1.3.

Orthogonal Complements

Consequences of Theorem 1.3:
Property 1.2. Let $\mathcal{S} \subseteq \mathbb{R}^{m}$ be a subspace.

1. $\mathcal{S}+\mathcal{S}^{\perp}=\mathbb{R}^{m}$;
2. $\operatorname{dim} \mathcal{S}+\operatorname{dim} \mathcal{S}^{\perp}=m$;
3. $\left(\mathcal{S}^{\perp}\right)^{\perp}=\mathcal{S}$.

- examples: let $\mathbf{A} \in \mathbb{R}^{m \times n}$.
$-\operatorname{dim} \mathcal{R}(\mathbf{A})+\operatorname{dim} \mathcal{R}(\mathbf{A})^{\perp}=m$
- and then $\operatorname{dim} \mathcal{R}(\mathbf{A})+\operatorname{dim} \mathcal{N}\left(\mathbf{A}^{T}\right)=m$
- and then $\operatorname{dim} \mathcal{N}(\mathbf{A})=n-\operatorname{dim} \mathcal{R}\left(\mathbf{A}^{T}\right)=n-\operatorname{rank}(\mathbf{A}) \geq n-\min \{m, n\}$
* implication: if \mathbf{A} is fat, the dim. of $\mathcal{N}(\mathbf{A})$ is at least $n-m$

Property 1.3. $\mathcal{S}_{1} \cap \mathcal{S}_{2}=\left(\mathcal{S}_{1}^{\perp}+\mathcal{S}_{2}^{\perp}\right)^{\perp}$, where $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{R}^{m}$ are subspaces.

Orthogonal Bases and Matrices

A collection of nonzero vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$ is said to be

- orthogonal if $\mathbf{a}_{i}^{T} \mathbf{a}_{j}=0$ for all i, j with $i \neq j$
- orthonormal if $\left\|\mathbf{a}_{i}\right\|_{2}=1$ for all i and $\mathbf{a}_{i}^{T} \mathbf{a}_{j}=0$ for all i, j with $i \neq j$.

The same definition applies to complex \mathbf{a}_{i} 's, but we need to replace " T " with " H ".
Examples:

- $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right\} \subset \mathbb{R}^{m}$ is orthonormal; in fact, it's an orthonormal basis for \mathbb{R}^{m}
- any subset of $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right\}$ is orthornormal
- (to be learnt) discrete Fourier transform (DFT), Haar transform, etc., form orthonormal bases

Orthogonal Bases and Matrices

Some immediate facts:

- an orthonormal set of vectors is also linearly independent.
- let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\} \subset \mathbb{R}^{m}$ be an orthonormal set of vectors. Suppose $\mathbf{y} \in$ $\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$. Then the coefficient $\boldsymbol{\alpha}$ for the representation

$$
\mathbf{y}=\sum_{i=1}^{n} \alpha_{i} \mathbf{a}_{i}
$$

is uniquely given by $\alpha_{i}=\mathbf{a}_{i}^{T} \mathbf{y}, i=1, \ldots, n$.

A not so immediate fact:

- (important) every subspace \mathcal{S} with $\mathcal{S} \neq\{\mathbf{0}\}$ has an orthonormal basis.
- this will be clear when we consider Gram-Schmidt

Orthogonal Bases and Matrices

A real matrix \mathbf{Q} is said to be

- orthogonal if it is square and its columns are orthonormal (why we call it an orthogonal matrix, but not an orthonormal matrix?)
- semi-orthogonal if its columns are orthonormal
- a semi-orthogonal \mathbf{Q} must be tall or square

A complex matrix \mathbf{Q} is said to be unitary if it is square and its columns are orthonormal, and semi-unitary if its columns are orthonormal.

Example: consider a transformation $\mathbf{y}=\mathbf{Q x}$, where

$$
\mathbf{Q}=\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right],
$$

where $\theta \in[0,2 \pi)$. This \mathbf{Q} is orthogonal. Also, it performs rotation and reflection.

Orthogonal Bases and Matrices

Facts:

- $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}$ and $\mathbf{Q Q}^{T}=\mathbf{I}$ for orthogonal \mathbf{Q}
- $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}$ (but not necessarily $\mathbf{Q Q}^{T}=\mathbf{I}$) for semi-orthogonal \mathbf{Q}
- $\|\mathbf{Q x}\|_{2}=\|\mathbf{x}\|_{2}$ for orthogonal \mathbf{Q}
- physical meaning: rotation and reflection do not affect the vector length
- for every tall and semi-orthogonal matrix $\mathbf{Q}_{1} \in \mathbb{R}^{n \times k}$, there exists a matrix $\mathbf{Q}_{2} \in \mathbb{R}^{n \times(n-k)}$ such that $\left[\mathbf{Q}_{1} \mathbf{Q}_{2}\right]$ is orthogonal

Orthogonal Bases and Matrices

Question: given a subspace \mathcal{S}, how do we know that it has an orthonormal basis?

- we know that every subspace has a basis, c.f. Theorem 1.1
- but the theorem doesn't say if that basis is orthonormal
- we can construct an orthonormal basis from a basis-and one way to do it is the Gram-Schmidt procedure

Gram-Schmidt Procedure

```
Algorithm: Gram-Schmidt
input: a collection of vectors \(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\), presumably linearly independent
\(\tilde{\mathbf{q}}_{1}=\mathbf{a}_{1}, \mathbf{q}_{1}=\tilde{\mathbf{q}}_{1} /\left\|\tilde{\mathbf{q}}_{1}\right\|_{2}\)
for \(i=2, \ldots, n\)
    \(\tilde{\mathbf{q}}_{i}=\mathbf{a}_{i}-\sum_{j=1}^{i-1}\left(\mathbf{q}_{j}^{T} \mathbf{a}_{i}\right) \mathbf{q}_{j}\)
    \(\mathbf{q}_{i}=\tilde{\mathbf{q}}_{i} /\left\|\tilde{\mathbf{q}}_{i}\right\|_{2}\)
end
output: \(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\)
```

- Fact: Suppose that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ are linearly independent. The collection of vectors $\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}$ produced by the Gram-Schmidt procedure is orthonormal and satisfies

$$
\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}=\operatorname{span}\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right\} .
$$

- here we use Gram-Schmidt to identify the existence of an orthonormal basis for a subspace, but it is a numerical algorithm

Gram-Schmidt Procedure

Proof of the fact on the last page:

- assume linearly independent $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$
- consider $i=2$.
- $\tilde{\mathbf{q}}_{2}$ is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$ and is nonzero:

$$
\tilde{\mathbf{q}}_{2}=\mathbf{a}_{2}-\left(\mathbf{q}_{1}^{T} \mathbf{a}_{2}\right) \mathbf{q}_{1}=\mathbf{a}_{2}-\left(\mathbf{q}_{1}^{T} \mathbf{a}_{2} /\left\|\mathbf{a}_{1}\right\|_{2}\right) \mathbf{a}_{1}
$$

the linear independence of $\mathbf{a}_{1}, \mathbf{a}_{2}$ implies $\tilde{\mathbf{q}}_{2} \neq \mathbf{0}$.
$-\mathbf{a}_{2}$ is a linear combination of $\mathbf{q}_{1}, \mathbf{q}_{2}$: seen from (\dagger)

- consequence: $\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}=\operatorname{span}\left\{\mathbf{q}_{1}, \mathbf{q}_{2}\right\}$ (why?)
- $\tilde{\mathbf{q}}_{2}$ is orthogonal to \mathbf{q}_{1} :

$$
\mathbf{q}_{1}^{T} \tilde{\mathbf{q}}_{2}=\mathbf{q}_{1}^{T}\left(\mathbf{a}_{2}-\left(\mathbf{q}_{1}^{T} \mathbf{a}_{2}\right) \mathbf{q}_{1}\right)=\mathbf{q}_{1}^{T} \mathbf{a}_{2}-\mathbf{q}_{1}^{T} \mathbf{a}_{2}=0
$$

Gram-Schmidt Procedure

- consider $i \geq 2$.
- $\tilde{\mathbf{q}}_{i}$ is a linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{i-1}$ and is nonzero: by induction, $\mathbf{q}_{1}, \ldots \mathbf{q}_{i-1}$ are linear combinations of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{i-1}$. So,

$$
\tilde{\mathbf{q}}_{i}=\mathbf{a}_{i}-\sum_{j=1}^{i-1}\left(\mathbf{q}_{j}^{T} \mathbf{a}_{i}\right) \mathbf{q}_{j}
$$

is a linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}$. The linear independence of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}$ implies $\tilde{\mathbf{q}}_{i} \neq \mathbf{0}$.
$-\mathbf{a}_{i}$ is a linear combination of $\mathbf{q}_{1}, \ldots, \mathbf{q}_{i}$: seen from (\ddagger)

- consequence: $\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}\right\}=\operatorname{span}\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{i}\right\}$
- $\tilde{\mathbf{q}}_{i}$ is orthogonal to $\mathbf{q}_{1}, \ldots, \mathbf{q}_{i-1}$: by induction, $\mathbf{q}_{1}, \ldots, \mathbf{q}_{i-1}$ are orthonormal. For any $k \in\{1, \ldots, i-1\}$,

$$
\mathbf{q}_{k}^{T} \tilde{\mathbf{q}}_{i}=\mathbf{q}_{k}^{T}\left(\mathbf{a}_{i}-\sum_{j=1}^{i-1}\left(\mathbf{q}_{j}^{T} \mathbf{a}_{i}\right) \mathbf{q}_{j}\right)=\mathbf{q}_{k}^{T} \mathbf{a}_{i}-\mathbf{q}_{k}^{T} \mathbf{a}_{i}=0 .
$$

Gram-Schmidt Procedure

More comments:

- the step

$$
\tilde{\mathbf{q}}_{i}=\mathbf{a}_{i}-\sum_{j=1}^{i-1}\left(\mathbf{q}_{j}^{T} \mathbf{a}_{i}\right) \mathbf{q}_{j}
$$

can be shown to be equivalent to

$$
\tilde{\mathbf{q}}_{i}=\Pi_{\text {span }\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{i-1}\right\}^{\perp}}\left(\mathbf{a}_{i}\right)=\Pi_{\text {span }\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{i-1}\right\}^{\perp}}\left(\mathbf{a}_{i}\right) ;
$$

this will be seen in the LS lecture.

- the Gram-Schmidt procedure can be modified in various ways
- e.g., it can be modified to do linear independence test, or to find a maximal linearly independent vector subset

Matrix Product Representations

Let $\mathbf{A} \in \mathbb{R}^{m \times k}, \mathbf{B} \in \mathbb{R}^{k \times n}$, and consider

$$
\mathbf{C}=\mathbf{A B}
$$

- column representation:

$$
\mathbf{c}_{i}=\mathbf{A} \mathbf{b}_{i}, \quad i=1, \ldots, n
$$

(I didn't say anything so I assume you know that \mathbf{c}_{i} and \mathbf{b}_{i} are the i th column of C and B, resp.)

- inner-product representation: redefine $\mathbf{a}_{i} \in \mathbb{R}^{k}$ as the i th row of \mathbf{A}.

$$
\mathbf{A B}=\left[\begin{array}{c}
\mathbf{a}_{1}^{T} \\
\vdots \\
\mathbf{a}_{m}^{T}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{b}_{1} & \cdots & \mathbf{b}_{n}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{a}_{1}^{T} \mathbf{b}_{1} & \cdots & \mathbf{a}_{1}^{T} \mathbf{b}_{n} \\
\vdots & & \vdots \\
\mathbf{a}_{m}^{T} \mathbf{b}_{1} & \cdots & \mathbf{a}_{m}^{T} \mathbf{b}_{n}
\end{array}\right]
$$

Thus,

$$
c_{i j}=\mathbf{a}_{i}^{T} \mathbf{b}_{j}, \quad \text { for any } i, j
$$

Matrix Product Representations

- outer-product representation: redefine $\mathbf{b}_{i} \in \mathbb{R}^{k}$ as the i th row of \mathbf{B}.

$$
\mathbf{C}=\mathbf{A}(\mathbf{I}) \mathbf{B}=\mathbf{A}\left(\sum_{i=1}^{k} \mathbf{e}_{i} \mathbf{e}_{i}^{T}\right) \mathbf{B}=\sum_{i=1}^{k} \mathbf{A} \mathbf{e}_{i} \mathbf{e}_{i}^{T} \mathbf{B}
$$

Thus,

$$
\mathbf{C}=\sum_{i=1}^{k} \mathbf{a}_{i} \mathbf{b}_{i}^{T}
$$

Matrix Product Representations

- a matrix of the form $\mathbf{X}=\mathbf{a b}^{T}$ for some \mathbf{a}, \mathbf{b} is called a rank-one outer product. It can be verified that $\operatorname{rank}(\mathbf{X}) \leq 1$, and $\operatorname{rank}(\mathbf{X})=1$ if $\mathbf{a} \neq \mathbf{0}, \mathbf{b} \neq \mathbf{0}$.
- the outer-product representation $\mathbf{C}=\sum_{i=1}^{k} \mathbf{a}_{i} \mathbf{b}_{i}^{T}$ is a sum of k rank-one outer products
- does it mean that $\operatorname{rank}(\mathbf{C})=k$?
$-\operatorname{rank}(\mathbf{C}) \leq \sum_{i=1}^{k} \operatorname{rank}\left(\mathbf{a}_{i} \mathbf{b}_{i}^{T}\right) \leq k$ is true ${ }^{2}$
- but the above equality is generally not attained; e.g., $k=2, \mathbf{a}_{1}=\mathbf{a}_{2}, \mathbf{b}_{1}=-\mathbf{b}_{2}$ leads to $\mathbf{C}=\mathbf{0}$
$-\operatorname{rank}(\mathbf{C})=k$ only when \mathbf{A} has full-column rank and \mathbf{B} has full-row rank (requires a proof)

[^1]
Block Matrix Manipulations

Sometimes it may be useful to manipulate matrices in a block form.

- let $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^{n}$. By partitioning

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]
$$

where $\mathbf{A}_{1} \in \mathbb{R}^{m \times n_{1}}, \mathbf{A}_{2} \in \mathbb{R}^{m \times n_{2}}, \mathbf{x}_{1} \in \mathbb{R}^{n_{1}}, \mathbf{x}_{2} \in \mathbb{R}^{n_{2}}$, with $n_{1}+n_{2}=n$, we can write

$$
\mathbf{A x}=\mathbf{A}_{1} \mathbf{x}_{1}+\mathbf{A}_{2} \mathbf{x}_{2}
$$

- similarly, by partitioning

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]
$$

we can write

$$
\mathbf{A} \mathbf{x}=\left[\begin{array}{l}
\mathbf{A}_{11} \mathbf{x}_{1}+\mathbf{A}_{12} \mathbf{x}_{2} \\
\mathbf{A}_{21} \mathbf{x}_{1}+\mathbf{A}_{22} \mathbf{x}_{2}
\end{array}\right]
$$

Block Matrix Manipulations

- consider AB. By an appropriate partitioning,

$$
\mathbf{A B}=\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2}
\end{array}\right]\left[\begin{array}{l}
\mathbf{B}_{1} \\
\mathbf{B}_{2}
\end{array}\right]=\mathbf{A}_{1} \mathbf{B}_{1}+\mathbf{A}_{2} \mathbf{B}_{2}
$$

- similarly, by an appropriate partitioning,

$$
\mathbf{A B}=\left[\begin{array}{l}
\mathbf{A}_{1} \\
\mathbf{A}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{B}_{1} & \mathbf{B}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{A}_{1} \mathbf{B}_{1} & \mathbf{A}_{1} \mathbf{B}_{2} \\
\mathbf{A}_{2} \mathbf{B}_{1} & \mathbf{A}_{2} \mathbf{B}_{2}
\end{array}\right]
$$

- we showcase two-block partitioning only, but the same manipulations apply to multi-block partitioning like

$$
\mathbf{A}=\left[\begin{array}{ccc}
\mathbf{A}_{11} & \cdots & \mathbf{A}_{1 q} \\
\vdots & & \vdots \\
\mathbf{A}_{p 1} & \cdots & \mathbf{A}_{p q}
\end{array}\right]
$$

Extension to \mathbb{C}^{n}

- all the concepts described above apply to the complex case
- we only need to replace every " \mathbb{R} " with " \mathbb{C} ", and every " T " with " H "; e.g.,

$$
\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}=\left\{\mathbf{y} \in \mathbb{C}^{m} \mid \mathbf{y}=\sum_{i=1}^{n} \alpha_{i} \mathbf{a}_{i}, \boldsymbol{\alpha} \in \mathbb{C}^{n}\right\}
$$

$\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{y}^{H} \mathbf{x},\|\mathbf{x}\|_{2}=\sqrt{\mathbf{x}^{H} \mathbf{x}}$, and so forth.

Extension to $\mathbb{R}^{m \times n}$

- the concepts also apply to the matrix case
- e.g., we may write

$$
\operatorname{span}\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}\right\}=\left\{\mathbf{Y} \in \mathbb{R}^{m \times n} \mid \mathbf{Y}=\sum_{i=1}^{k} \alpha_{i} \mathbf{A}_{i}, \boldsymbol{\alpha} \in \mathbb{R}^{k}\right\}
$$

- sometimes it is more convenient to vectorize \mathbf{X} as a vector $\mathbf{x} \in \mathbb{R}^{m n}$, and use the same treatment as in the \mathbb{R}^{n} case
- inner product for $\mathbb{R}^{m \times n}$:

$$
\langle\mathbf{X}, \mathbf{Y}\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j} y_{i j}=\operatorname{tr}\left(\mathbf{Y}^{T} \mathbf{X}\right)
$$

- the matrix version of the Euclidean norm is called the Frobenius norm:

$$
\|\mathbf{X}\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|x_{i j}\right|^{2}}=\sqrt{\operatorname{tr}\left(\mathbf{X}^{T} \mathbf{X}\right)}
$$

- extension to $\mathbb{C}^{m \times n}$ is just as straightforward as in that to \mathbb{C}^{n}

Complexities of Matrix Computations

- every vector/matrix operation such as $\mathbf{x}+\mathbf{y}, \mathbf{y}^{T} \mathbf{x}, \mathbf{A x}, \ldots$ incurs computational costs, and they cost more as the vector and matrix sizes get bigger
- we typically look at floating point arithmetic operations, such as add, subtract, multiply, and divide

Complexities of Matrix Computations

- flops: one flop means one floating point arithmetic operation.
- flop counts of some standard vector/matrix operations:
for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$,
$-\mathbf{x}+\mathbf{y}$: n adds, so n flops
$-\mathbf{y}^{T} \mathbf{x}$: n multiplies and $n-1$ adds, so $2 n-1$ flops
- Ax: m inner products, so $m(2 n-1)$ flops
- AB: do "Ax" above p times, so $p m(2 n-1)$ flops

Complexities of Matrix Computations

- we are often interested in the order of the complexity
- big O notation: given two functions $f(n), g(n)$, the notation

$$
f(n)=\mathcal{O}(g(n))
$$

means that there exists a constant $C>0$ and n_{0} such that $|f(n)| \leq C|g(n)|$ for all $n \geq n_{0}$.

- big O complexities of standard vector/matrix operations:
$-\mathbf{x}+\mathbf{y}: \mathcal{O}(n)$ flops
$-\mathbf{y}^{T} \mathbf{x}: \mathcal{O}(n)$ flops
- Ax: $\mathcal{O}(m n)$ flops
- AB: $\mathcal{O}(m n p)$ flops
- (we'll learn it later) solve $\mathbf{y}=\mathbf{A} \mathbf{x}$ for \mathbf{x}, with $\mathbf{A} \in \mathbb{R}^{n \times n}: \mathcal{O}\left(n^{3}\right)$ flops

Complexities of Matrix Computations

- big O complexities are commonly used, although we should be careful sometimes
- example: suppose you have an algorithm whose exact flop count is

$$
f(n)=3 n^{3}+8 n^{2}+2 n+1234
$$

- $\mathcal{O}\left(n^{3}\right)$ flops
- big O makes sense for large $n ; n^{3}$ dominates as n is large
- but be careful: for small n, it's 1234 that consumes more
- example: suppose you have two algorithms for the same problem. Their exact flop counts are

$$
f_{1}(n)=n^{3}, \quad f_{2}(n)=\frac{1}{2} n^{3} .
$$

- their big O complexities are the same: $\mathcal{O}\left(n^{3}\right)$
- but two times faster is two times faster!

Complexities of Matrix Computations

- example: suppose our algorithm deals with complex vector and matrix operations. Define one flop as one real flop.
- one complex add $=2$ real adds $=2$ flops
- one complex multiply $=4$ real multiplies +2 real adds $=6$ flops :

When we report big O complexity, the scaling factors above are not seen

Exercise: Count the Complexity of Gram Schmidt

- recall the Gram-Schmidt procedure recursively computes

$$
\tilde{\mathbf{q}}_{i}=\mathbf{a}_{i}-\sum_{j=1}^{i-1}\left(\mathbf{q}_{j}^{T} \mathbf{a}_{i}\right) \mathbf{q}_{j}, \quad \mathbf{q}_{i}=\tilde{\mathbf{q}}_{i} /\left\|\tilde{\mathbf{q}}_{i}\right\|_{2}, \quad i=1, \ldots, n
$$

- consider iteration i.
- every $\mathbf{q}_{j}^{T} \mathbf{a}_{i}, j=1, \ldots, i=1$, takes $\mathcal{O}(m)$
- then, computing $\tilde{\mathbf{q}}_{i}=\mathbf{a}_{i}-\sum_{j=1}^{i-1}\left(\mathbf{q}_{j}^{T} \mathbf{a}_{i}\right) \mathbf{q}_{j}$ is almost the same as the operation "Ax"; it takes $\mathcal{O}(m i)$
- $\tilde{\mathbf{q}}_{i}=\tilde{\mathbf{q}}_{i} /\left\|\tilde{\mathbf{q}}_{i}\right\|_{2}$ requires $\mathcal{O}(m)$ (one divide, one $\sqrt{\cdot}$, one inner product $\tilde{\mathbf{q}}_{i}^{T} \tilde{\mathbf{q}}_{i}$)
- total complexity for iteration $i:(i-1) \times \mathcal{O}(m)+\mathcal{O}(m i)+\mathcal{O}(m)=\mathcal{O}(m i)$
- total complexity of the whole algorithm:

$$
\mathcal{O}\left(m \sum_{i=1}^{n} i\right)=\mathcal{O}\left(m \frac{n(n+1)}{2}\right)=\mathcal{O}\left(m n^{2}\right)
$$

Complexities of Matrix Computations

- Discussion: flop counts do not always translate into the actual efficiency of the execution of an algorithm, say, in terms of actual running time.
- things like pipelining, FPGA, parallel computing (multiple GPUs, multiple servers, cloud computing), etc., can make the story different.
- flop counts also ignore memory usage and other overheads...
- that said, we need at least a crude measure of how computationally costly an algorithm would be, and counting the flops serves that purpose.

How to Save Computations

- computational complexities depend much on how we design and write an algorithm
- generally, it is about
- top-down, analysis-guided, designs: often seen in class, often look elegant
- street-smart, possibly bottom-up, tricks: usually not taught much in class, also not commonplace in papers (unless you download and read somebody's code), subtly depends on your problem at hand, but a bunch of small differences can make a big difference, say in actual running time
- here we give several, but by no means all, tips for saving computations

How to Save Computations

- apply matrix operations wisely
- example: try this on MATLAB

```
>> A=randn(5000,2); B=randn(2,10000); C=randn(10000,10000);
>>
>> tic; D= A*B*C; toc
Elapsed time is 12.238567 seconds.
>> tic; D= (A*B)*C; toc % ask MATLAB to do AB first
Elapsed time is 12.640961 seconds.
>> tic; D= A*(B*C); toc % ask MATLAB to do BC first
Elapsed time is 0.222270 seconds.
```


How to Save Computations

- let us analyze the complexities in the last example
$-\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}, \mathbf{C} \in \mathbb{R}^{p \times p}$, with $n \ll \min \{m, p\}$. We want to compute $\mathbf{D}=\mathbf{A B C}$.
- if we compute $\mathbf{A B}$ first, and then $\mathbf{D}=(\mathbf{A B}) \mathbf{C}$, the flop count will be

$$
\mathcal{O}(m n p)+\mathcal{O}\left(m p^{2}\right)=\mathcal{O}(m(n+p) p) \approx \mathcal{O}\left(m p^{2}\right)
$$

- if we compute $\mathbf{B C}$ first, and then $\mathbf{D}=\mathbf{A}(\mathbf{B C})$, the flop count will be

$$
\mathcal{O}\left(n p^{2}\right)+\mathcal{O}(m n p)=\mathcal{O}((m+p) n p)
$$

- the 2 nd option is preferable if n is much smaller than m, p

How to Save Computations

- use structures, if available
- example: let $\mathbf{A} \in \mathbb{R}^{n \times n}$ and suppose that $a_{i j}=0$ for all i, j such that $|i-j|>p$, for some integer $p>0$.
- such a structured \mathbf{A} is called band diagonal
- if we don't use structures, computing $\mathbf{A x}$ requires $\mathcal{O}\left(n^{2}\right)$

- if we use the band diagonal structures, we can compute $\mathbf{A x}$ with $\mathcal{O}(p n)$

How to Save Computations

- use sparsity, if available
- a vector or matrix is said to be sparse if it contains many zero elements
- we assume unstructured sparsity

How to Save Computations

- let $n n z(\mathbf{x})$ denote the number of nonzero elements of a vector \mathbf{x}; the same notation applies to matrices
- flop counts: for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$,
$-\mathbf{x}+\mathbf{y}$: from 0 and $\min \{n n z(\mathbf{x}), n n z(\mathbf{y})\}$ flops $\Longrightarrow \mathcal{O}(\min \{n n z(\mathbf{x}), n n z(\mathbf{y})\})$
$-\mathbf{y}^{T} \mathbf{x}$: from 0 to $2 \min \{n n z(\mathbf{x}), \operatorname{nnz}(\mathbf{y})\}$ flops $\Longrightarrow \mathcal{O}(\min \{n n z(\mathbf{x}), \operatorname{nnz}(\mathbf{y})\})$
$-\mathbf{A x}, \mathbf{x}$ being dense: from $\mathrm{nnz}(\mathbf{A})$ to $2 \mathrm{nnz}(\mathbf{A})$ flops $\Longrightarrow \mathcal{O}(\mathrm{nnz}(\mathbf{A}))$
- AB: no simple expression for the flops, but at most

$$
2 \min \{\operatorname{nnz}(\mathbf{A}) p, \mathrm{nnz}(\mathbf{B}) m\} \text { flops } \Longrightarrow \mathcal{O}(\min \{\operatorname{nnz}(\mathbf{A}) p, \mathrm{nnz}(\mathbf{B}) m\})
$$

- reference: S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra - Vectors, Matrices, and Least Squares, 2018. Available online at https://web.stanford.edu/~boyd/ vmls/vmls.pdf.

[^0]: ${ }^{1}$ note the notation $\mathcal{X}+\mathcal{Y}=\{\mathrm{x}+\mathrm{y} \mid \mathrm{x} \in \mathcal{X}, \mathrm{y} \in \mathcal{Y}\}$.

[^1]: ${ }^{2}$ use the rank inequality $\operatorname{rank}(\mathbf{A}+\mathbf{B}) \leq \operatorname{rank}(\mathbf{A})+\operatorname{rank}(\mathbf{B})$.

