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Lecture 1: Basic Concepts

e notation and conventions

e subspace, linear independence, basis, dimension

e rank, determinant, invertible matrices

e vector norms, inner product

e projections onto subspaces, orthogonal complements

e orthonormal basis, Gram Schmidt

e matrix multiplications and representations, block matrix manipulations

e complexity, floating point operations (flops)
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Notation and Conventions

R the set of real numbers, or real space

C the set of complex numbers, or complex space

R™ n-dimensional real space

cn n-dimensional complex space

R X set of all m x n real-valued matrices

Cmxn set of all m x n complex-valued matrices

X column vector

T, [X]; ith entry of x

A matrix

Qij, [A]zg (’L,])th entry of A

S" set of all n X n real symmetric matrices; i.e, A € R"*™ and a;; = aj;
for all 7,7

H™ set of all n x n complex Hermitian matrices; i.e, A € R"*™ and a;; = aji
for all 7,7
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Notation and Conventions

e vector: x € R™ means that x is a real-valued n-dimensional column vector; i.e.,

L1

9 .
x=| “|, x; € R for all 7.

Similarly, x € C™ means that x is a complex-valued n-dimensional column vector.
e transpose: let x € R™. The notation x! means that

T
X :[LU;[, Ly v vy an}

e Hermitian transpose: let x € C™. The notation x means that
H
X = [:1:’{, Ty oo :1:*],

where the superscript * denotes the complex conjugate.
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Notation and Conventions

e matrix: A € R™*™ means that A is real-valued m X n matrix

aii ai2 A1n
asi a9 as ..
A = _ " ) aijERfor all 7, 7.
_a,ml Am?2 .. a,mn_

Similarly, A € C™*™ means that A is a complex-valued m x n matrix.

e unless specified, we denote the ith column of a matrix A € R™*™ as a;, € R™:;
l.e.,
A=la;, ay ..., a,.

The same notation applies to A € C"™*™,
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Notation and Conventions

e transpose: let A € R™*™. The notation A’ means that

aii asq .. aAm1
AT _ a2 Q22 ... M2 c RXm
_aln Am2 o . amn_

— or, we have B = AT «— bij = aj; for all 4, j.

— properties:
+ (AB)I = BTAT
+ (AT = A
+ (A+B)'=AT +BY
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Notation and Conventions

e Hermitian transpose: let A € C™*". The notation A" means that

% * * ]
alll a/21 e o o a/ml
H ai, as a’
A — .12 22 7?7,2 c (C’nXm.
* * *
_aln Ao - amn_

— or, we have B = AH «— bij = a}'fz- for all 7, 5.
— properties (same as transpose):

+ (AB)Y =BHAH

+ (A)H = A

« (A+B)H = Al 4 BH
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Notation and Conventions

e trace: let A € R™ ™, The trace of A is

tI‘(A) = Z Ay

1=1

3

— properties:

x tr(AT) =tr(A)
x tr(A + B) = tr(A) + tr(B)
x tr(AB) = tr(BA) for A, B of appropriate sizes

e matrix power: let A € R™ ™. The notation A? means A2 = AA, and A”

means
AF = AA ... A.

kK's
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Notation and Conventions

e all-one vectors: we use the notation

to denote a vector of all 1's.

e zero vectors or matrices: we use the notation 0 to denote either a vector of all
zeros, or a matrix of all zeros.

e unit vectors: unit vectors are vectors that have only one nonzero element and
the nonzero element is 1. We use the notation

ei:[o -0 1 0 --- O}T

to denote a unit vector with the nonzero element at the ith entry.

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term. 3



Notation and Conventions

e identity matrix:

I= . ,
1

where, as a convention, the empty entries are assumed to be zero.

e diagonal matrices: we use the notation

Diag(ay,...,a,) =
Qn

to denote a diagonal matrix with diagonals a4, ..., a,. We also use the shorthand
notation Diag(a) = Diag(aq,...,an,).
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Notation and Conventions

e A matrix A € R™*" is said to be

— square if m = n;
— tallif m > n;
— fat if m < n.

e A matrix A € R™*" |s said to be

— upper triangular if a;; = 0 for all ¢ > j;
— lower triangular if a;; = 0 for all ¢ < j.

Examples: i i ]
1 2 3 1 0 O
A=10 4 5|, A=1| 2 0
0 0 6 _z 3 0
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Subspace

A subset S of R™ is said to be a subspace if

X,y €8,
0. B €R — ax+ Py eS.
e if S is a subspace and ay,...,a, € S, any linear combination of aq, ..

Z?:l o;a; for some o € R”, lies in S.

e some quick facts: let 81, So be subspaces of R™.

— 81 + 85 is a subspace !
— 51N Sy is a subspace

Inote the notation X + ) = {x+y|xe X,y eV}

., a,, lL.e.,
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Span

The span of a collection of vectors a;,...,a,, € R™ is defined as
n
span{ai,...,a,} = {y e R™ | y = Zaiai, o € R”}.
i=1

e the set of all linear combinations of a;,...,a,
e a subspace

e Question: any span is a subspace. But can any subspace be written as a span?

Theorem 1.1. Let S be a subspace of R™. There exists a positive integer n and
a collection of vectors ay,...,a, € S such that S = span{aj,...,a,}.

— Implication: we can always represent a subspace by a span
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Range Space and Nullspace

The range space of A € R™*" is defined as
R(A)={y e R" |y = Ax, x € R"}.
e essentially the same as span
The nullspace of A € R™*™ is defined as
N(A) ={x e R" | Ax = 0}.

e a nullspace is a subspace (verify as a mini exercise)

e by Theorem 1.1, we can represent a nullspace by N(A) = R(B) for some
B € R™*" and positive integer r.
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Linear Independence

A collection of vectors ay,...,a, € R™ is said to be linearly independent if
n
Zaiai =+ 0, forall € R" with a # 0;
i=1

and linearly dependent otherwise.

e an equivalent way of defining linear dependence: {ai,...,a,} C R™ is a linearly
dependent vector set if there exists a € R", a # 0, such that

n
E o;a; = 0.
1=1
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Linear Independence

Some known facts (some easy to show, some not):

o if {a;,...a,} C R™ is linearly independent, then any a; cannot be a linear
combination of the other a;’s; i.e., a; # Zi#j «;a; for any q;'s.

o if {a;,...a,} C R™ is linearly dependent, then there exists an a; such that a; is
a linear combination of the other a;'s; i.e., a; = Zi#j o;a; for some q;'s.

e if {aj,...a,} C R™ is linearly independent, then n < m must hold.

e let {a;,...,a,,} C R™ be a linearly independent vector set. Suppose y €
span{ai,...,a,}. Then the coefficient a for the representation

n
y = E ;A
i=1

is unique; i.e., there does not exist a B € R, B # «, such thaty =" | f;a;.
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Linear Independence

Let {a;,...a,} C R™, and denote {i1,...,ix} C {1,...,n} as an index subset with

k <mnand; #14 forall j #1.

A vector subset {a; ,...,a;_} is called a maximal linearly independent subset of

{ai,...a,} if

1. {a;,...,a;,} is linearly independent;

2. {aj;,...,a;} is not contained by any other linearly independent subset of
{ai,...a,}.

e physical meaning: find a set of non-redundant vectors from {ay,...a,}
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Linear Independence

e example: - - . o
1 0 0 0

a] — 0 , do) — 1 , az — 0 , aq — 1

0] 0] 1] 1]

The linearly independent subets of {a;, a3, a3, a4} are

{al}7 {8-2}7 {8.3}, {34}7

{ala 32}7 {3_1, 33}7 {alv 34}7 {327 a3}7 {a27 34}, {3-37 3.4},

{a17327a3}7 {&1,&2,&4}, {3.1,3.3,&4}.

But the maximal linearly independent subsets are

{317327a3}7 {&1,82,3.4}, {&1,&3,&4}.
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Linear Independence

Facts:

e {a;,,...,a; } is a maximal linearly independent subset of {a;,...a,} if and only
if {a; ,...,a;,,a;} is linearly dependent for any j € {1,....n ST 7
1 ko A y yJ

o if {a;,,...,a; } is a maximal linearly independent subset of {a;,...a,}, then

span{a;,,...,a;, } = span{ay,...a,}.
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Basis

Let S C R™ be a subspace with S # {0}.

A vector set {b1,...,bix} C R™ is called a basis for S if {by,..., by} is linearly
independent and
S = span{b,...,b}.

o examples: let {a;,,...,a;_ } be a maximal linearly independent vector subset of
{ai,...,an}. Then, {a;,,...,a; } is a basis for span{ai,...,a,}.
Some facts:

e we may have more than one basis for &

e all bases for S have the same number of elements; i.e., if {by,...,bs} and
{c1,...,c;} are bases for S, then k =
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Dimension of a Subspace

The dimension of a subspace S, with § # {0}, is defined as the number of elements
of a basis for S. The dimension of {0} is defined as 0.

e dim S will be used as the notation for denoting the dimension of §

e physical meaning: effective degrees of freedom of the subspace

e examples:
— dimR™ =m

— if k£ is the number of maximal linearly independent vectors of {ai,...,a,},
then dimspan{a,...,a,} = k.
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Dimension of a Subspace

Property 1.1. Let 5,571,552 C R™ be subspaces.

1. If §§ € &5, then dim Sy < dim Ss.

2. If 5 C S5 and dim §7 = dim Ss, then §1 = Ss.

3. dimS =m if and only if § = R"™.

4. dim (81 + S2) 4+ dim(S; N S2) = dim 7 + dim Ss.

5. d1m(81 + 82) < dim &7 + dim Ss.
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Rank

The rank of a matrix A € R™*", denoted by rank(A), is defined as the number of
elements of a maximal linearly independent subset of {ay,...,a,}.

e or, rank(A) is the maximum number of linearly independent columns of A

e dimR(A) = rank(A) by definition

Facts:

e rank(A) = rank(A’), i.e., the rank of A is also the maximum number of linearly
independent rows of A

e rank(A + B) < rank(A) + rank(B)

e rank(AB) < min{rank(A),rank(B)}. Also, the equality above holds if the
columns of A are linearly independent and the rows of B are linearly independent.
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Rank

e A is said to have

— full column rank if the columns of A are linearly independent (more precisely,
the collection of all columns of A is linearly independent)

x A € R™*" being of full-column rank <= m > n,rank(A) =n

— full row rank if the rows of A are linearly independent

x A € R™*" being of full-row rank <= m < n,rank(A) =m

— full rank if rank(A) = min{m,n}; i.e., it has either full column rank or full
row rank

— rank deficient if rank(A) < min{m,n}
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Invertible Matrices

A square matrix A is said to be nonsingular or invertible if the columns of A are
linearly independent, and singular otherwise.

e alternatively, we say A is singular if Ax = 0 for some x # 0.

The inverse of an invertible A, denoted by A~ is a square matrix that satisfies

A TA =T
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Invertible Matrices

Facts (for a nonsingular A):

e A~! always exists and is unique (or there are no two inverses of A)
e A~!is nonsingular

e AA~ =1

o (A-H)"1=A

e (AB)"!=B 1A~ where A, B are square and nonsingular

o (AT)"1 = (A—1)T

— as a shorthand notation, we will denote A~1 = (A”1)~1
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Determinant
Let A € R™*™. The determinant of A, denoted by det(A), is defined inductively.
o if m—= 1, th(A) = a11-

o if m > 2, we have the following:

— let A;; € R(m=1x(m=1) he 3 submatrix of A obtained by deleting the ith row
and jth column of A. Let ¢;; = (—1)""7 det(A,;).

— cofactor expansion:

™m

det(A) — Zaijcij, for any 1= 1, 1’
j=1

det(A) = Zaijcij, forany j=1,...,m

1

1

— remark: c¢;;'s are called the cofactors, det(A;;)'s are called the minors
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Determinant

Some interpretations of determinant:

e (important) Ax = 0 for some x # 0 if and only if det(A) =0

e | det(A)|is the volume of the parallelepiped P = {y = >_." , aa; | a; € [0, 1] Vi}

r1+r3

r1+r2+r3

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

Source: Wiki. 71, 12, 73 are aj, as, ag on R°.
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Determinant

Properties:

e det(AB) = det(A)det(B) for any A,B € R™*™
e det(A) = det(AT)

e det(aA) = a"det(A) for any a € R, A € R™*™
o det(A~1) =1/det(A) for any nonsingular A

o det(B~1AB) = det(A) for any nonsingular B

1 1

= det(A)A’ where a;; = ¢;; (the cofactor) for all i,j (A is nonsingular)

— remark: A is called the adjoint of A
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| Determinant
More properties:

o if A € R"™*™ is triangular, either upper or lower,
m

det(A) = H A;q
i=1

— proof: apply cofactor expansion inductively

o if A € R"™*™ takes a block upper triangular form

B C
SO

where B and D are square (and can be of different sizes), then
det(A) = det(B) det(D).

The same result also holds when A takes a block lower triangular form.
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Vector Norms

A function f : R™ — R is called a vector norm if

1. f(x) >0 for any x € R"
2. f(x)=0ifandonly if x =0

3. f(x+y) < f(x)+ f(y) for any x,y € R"

4. f(ax) = |a|f(x) for any a € R, x € R”

e used to measure the length of a vector
e we usually use the notation || - || to denote a norm

e also used to measure the distance of two vectors, specifically, via ||x — y|| where
X,y are the two vectors
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Vector Norm

Examples of norm:

2-norm or Euclidean norm:

3wl = ()12
1=1

Ix[l2 = \

n

1-norm or Manhattan norm: ||x||; = Z ||
i=1

oo-norm:  ||x||ee = _max kA
=1,...,

" 1
V%
prorm, p > 1t |x]], = (Z \xm)
1=1
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¢, Function
Let

1=1
p=x . p=20.5
L p=2 I p=20.3
p=1 J L p= 0.1
(a) Region of fy(x) =1, p > 1. (b) Region of f,(x) =1, p < 1.

e foisnotanormfor0<p<1
e when p — 0, f, is like the cardinality function card(x) = > ., 1{x; # 0}, where
I{x #0}=1ifx#0and 1{z #0} =0 if z = 0.
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Inner Product and Angle

The inner product of two vectors x,y € R" is defined as
<X7 Y> — Z Yili = yTX'
i=1

e X,y are said to be orthogonal to each other if (x,y) =0

e X,y are said to be parallel if x = ay for some «

— for paraIIeI X,y we have <X, y> — iHX||2H}’||2

The angle between two vectors x,y € R" is defined as

0 = cos ! ( yTx ) .
1x|l2[ly |2

e x,y are orthogonal if § = +7/2

e X,y are parallel if 6 =0 or 0 = £7
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Important Inequalities for Inner Product

Cauchy-Schwarz inequality:
x"y| < [Ix[2llyll2-

Also, the above equality holds if and only if either x = ay for some a € R or
y = aX for some a € R.

e proof: suppose y # 0; the case of y = 0 is trivial. For any 8 € R,

0 < [lx = Byllz = (x = By)" (x = By) = IIx[z — 28x"y + B[yl := f(B) (+)

The function f is minimized when 3 = (x'y)/|ly||3. Plugging this 8 back to
(%) gives |x1y| < ||x||2]ly]l2- Equality in (%) holds if and only if x — Sy = 0, or
equivalently, x = ayy for some a € R.
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Important Inequalities for Inner Product
Holder inequality: for any p,q € [1,00] such that 1/p+1/q =1,

Xyl < [x[lplly g,

If one of the x and y is 0, then equality holds. If both x and y do not equal 0,

— for p > 1, equality holds if and only if (i) |x;|? = a|y;|? for all ¢ and for some
a >0, and (ii) sgn(z;) = Bsgn(y;) for all 7 and for some 8 € {—1,1}?

— for (p,q) = (1,00), equality holds if (i) |y1| = -+ = |yn|, and (ii) sgn(x;) =
Bsgn(y;) for all i and for some 8 € {—1,1}

e examples:
— (p,q) = (2,2): Cauchy-Schwarz inequality
— (p,q) = (1,00): [x"y| < [Ix[1]|y]lo- In fact,

Xy | < 320 iyl < max; Jy;] 05 2il) = [Ix[l1lly -

Here we define sgn(z) = 1ifz > 0, sgn(z) = 0if z = 0, and sgn(z) = —1ifz < 0
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Projections on Subspaces
Let S C R™ be a nonempty closed set (not necessarily a subspace).
Let y € R™ be given.

A projection of y onto § is any solution to

‘ G2
min ||z —y|l3

e a projection of y onto § is any point that is closest to y and lies in S

e notation: if, for every y € R™, there is always only one projection of y onto S,
then we denote

I1 — i — vyl
s(y) arg min |z —y|I5

and Ils is called the projection (or projection operator) of y onto S.
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Projections onto Subspaces

Theorem 1.2 (Projection Theorem). Let S be a subspace of R™.

1. for every y € R™, there exists a unique vector y, € S that minimizes ||z — y||3

2

over z € §. Thus, we can use the notation Ils(y) = argmingcs ||z — y||5.

2. given' y € R™, we have the equivalence

ys =1ls(y) <= ys€S, ZT(ys—y):()foraIIzES.

e a special case of the projection theorem for convex sets

— the latter plays a key role in convex optimization

e the subspace projection theorem above is very useful, as we will see
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Projections onto Subspaces
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Orthogonal Complements

Let S C R™ be a nonempty closed set.

The orthogonal complement of S is defined as

= {y cR™ | z'y =0 for all z € S}.

e S is a subspace (easy to verify)

e any z € S,y € S+ are orthogonal

o either SNST ={0} or SNS+ =1

e some facts for subspaces:
- R(A)L = N(AT) (also easy to verify)
- N(A) =R(A")"
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Orthogonal Complements

What happens to the orthogonal complement if S is a subspace?
Theorem 1.3. Let S C R™ be a subspace.

1. for every y € R™, there exists a unique (ys,y.) € S x St such that

Y =Y¥Yst+Ye

Also, such a (ys,yc) isys = ls(y),y. =y — ILs(y).

2. the projection of y onto S+ can be determined by Il5.(y) =y — ls(y).

e proof sketch: by the projection theorem. We can rephrase the projection theorem
as
ys€S, y—ys €St — ysells(y).

This leads us to Statement 1 of Theorem 1.3.
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Orthogonal Complements

Consequences of Theorem 1.3:

Property 1.2. Let S C R™ be a subspace.
1. S+S+t =R™:

2. dimS + dim S+ = m:

3. (§H)t =8

e examples: let A € R™*™,
— dimR(A) +dimR(A)L =m
— and then dimR(A) + dim N (AT) =m
— and then dim N (A) = n — dim R(AT) = n — rank(A) > n — min{m, n}
+ implication: if A is fat, the dim. of N(A) is at least n — m

Property 1.3. S; NSy = (Si- + S3)+, where S;, S, € R™ are subspaces.
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Orthogonal Bases and Matrices

A collection of nonzero vectors a;,...,a, € R™ is said to be

e orthogonal if ala; = 0 for all 7,5 with i # j

e orthonormal if ||a;||2 = 1 for all 7 and a; a; = 0 for all 7,5 with i # j.

The same definition applies to complex a;'s, but we need to replace “I” with “H”.

Examples:
e {e1,...,e,} CR™is orthonormal; in fact, it's an orthonormal basis for R™
e any subset of {eq,...,e,} is orthornormal

e (to be learnt) discrete Fourier transform (DFT), Haar transform, etc., form
orthonormal bases
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Orthogonal Bases and Matrices

Some immediate facts:

e an orthonormal set of vectors is also linearly independent.

e let {aj,...,a,} C R™ be an orthonormal set of vectors. Suppose y €
span{ay,...,a,}. Then the coefficient o for the representation

n
y = Z oiay
i=1

is uniquely given by a; = aly, i=1,...,n.

A not so immediate fact:

e (important) every subspace S with § # {0} has an orthonormal basis.

— this will be clear when we consider Gram-Schmidt
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Orthogonal Bases and Matrices

A real matrix Q is said to be

e orthogonal if it is square and its columns are orthonormal (why we call it an
orthogonal matrix, but not an orthonormal matrix?)

e semi-orthogonal if its columns are orthonormal

— a semi-orthogonal Q must be tall or square

A complex matrix Q is said to be unitary if it is square and its columns are
orthonormal, and semi-unitary if its columns are orthonormal.

Example: consider a transformation y = Qx, where

Q[ ca®) o]

where 6 € [0,2m). This Q is orthogonal. Also, it performs rotation and reflection.
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Orthogonal Bases and Matrices

Facts:

e Q'Q =1 and QQ*’ =1 for orthogonal Q
e QT'Q =1 (but not necessarily QQ* = I) for semi-orthogonal Q

o ||Qx|]2 = ||x||2 for orthogonal Q

— physical meaning: rotation and reflection do not affect the vector length

e for every tall and semi-orthogonal matrix Q; € R"™**, there exists a matrix
Q, € R™*(™=F) sych that [ Q; Q2 | is orthogonal
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Orthogonal Bases and Matrices

Question: given a subspace &, how do we know that it has an orthonormal basis?
e we know that every subspace has a basis, c.f. Theorem 1.1
e but the theorem doesn't say if that basis is orthonormal

e we can construct an orthonormal basis from a basis—and one way to do it is the
Gram-Schmidt procedure
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Gram-Schmidt Procedure

Algorithm: Gram-Schmidt
input: a collection of vectors ay,...,a,, presumably linearly independent
a1 =ag, q1 = q1/||q1lf2
fortr=2,....n
~ 1—1, T
q; = a; — Zj:1(qj' a;)q;
q; = 4;/||q:l[2
end
output: qi,...,q,

e Fact: Suppose that ay,...,a, are linearly independent. The collection of vectors
di,...,q, produced by the Gram-Schmidt procedure is orthonormal and satisfies

span{ay,...,a,} = span{qi,...,qn}-

e here we use Gram-Schmidt to identify the existence of an orthonormal basis for a
subspace, but it is a numerical algorithm

W.-K. Ma, ENGG 5781 Matrix Analysis and Computations, CUHK, 2024-25 First Term. 47



Gram-Schmidt Procedure

Proof of the fact on the last page:

e assume linearly independent ay,...,a,

e consider 1 = 2.

— Q2 Is a linear combination of aj, as and is nonzero:

Qe = as — (Qipa2)Q1 — az — (qlTaz/HalHQ)al;

the linear independence of a;, as implies g5 # 0.
— ay is a linear combination of q1,qs: seen from ()
— consequence: span{aj,as} = span{qi,qz2} (why?)

— Q32 Is orthogonal to q:

ai 42 = q; (a2 — (i a2)q1) = q; a2 — qj as = 0.

(1)
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Gram-Schmidt Procedure

e consider 1 > 2.

— q; is a linear combination of aj,..

.,a;_1 and is nonzero: by induction,

qi,...9;—1 are linear combinations of a;,...,a;_1. So,
~ 1—1, T
qi = a5 — Zj:l(qj a;)q; (1)
is a linear combination of aj,...,a;. The linear independence of aj,...,a;
implies q; # 0.
— a; is a linear combination of qi,...,q;: seen from (I)
— consequence: span{ai,...,a;} = span{qi,...,q;} (why?)
— q; Is orthogonal to q1,...,q;_1: by induction, qi,...,q;_1 are orthonormal.

Forany ke {1,...,71—1},

~ 1—1
q;, 9 = q (ai — > _1(q

jai)q;) = gja; —qja; = 0.
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Gram-Schmidt Procedure

More comments:

e the step
~ — 1 T
qQ; = a; — 2221(% a;)q;
can be shown to be equivalent to

(ii — Hspan{ql,...,qi_l}J-(ai) — Hspan{al,...,ai_l}L(ai);
this will be seen in the LS lecture.

e the Gram-Schmidt procedure can be modified in various ways

— e.g., it can be modified to do linear independence test, or to find a maximal

linearly independent vector subset
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Matrix Product Representations

Let A € R™*%k B ¢ R**" and consider

C = AB.

e column representation:
Ci:Abi, z':l,...,n

(I didn't say anything so | assume you know that c; and b; are the ith column of
C and B, resp.)

e inner-product representation: redefine a; € R”* as the ith row of A.

_ar{_ _alTbl ‘e alTbn_
AB=|: |[b; -+ b,|= : :
al _a%bl fe a%bn_

Thus,

T .o
cij = a; b;, foranyz¢,j.
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Matrix Product Representations

e outer-product representation: redefine b; € R” as the ith row of B.

k k
C=A0B=A|) ee/ |B=) Aee/B
1=1 1=1

Thus,

k
C=)> ab]
1=1

b; b; bg
— _I_
|

I-:- H B H[_]
4.+

|:al ...... ak:| a] ao a;
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Matrix Product Representations

e a matrix of the form X = ab? for some a, b is called a rank-one outer product.
It can be verified that rank(X) < 1, and rank(X) =1 if a # 0,b # 0.

e the outer-product representation C = Zle a;b! is a sum of k rank-one outer
products

e does it mean that rank(C) = k7
— rank(C) < 32, rank(a;b?) < k is true 3

— but the above equality is generally not attained; e.g., kK = 2, a; = as, b1 = —bs
leads to C =0

— rank(C) = k only when A has full-column rank and B has full-row rank
(requires a proof)

Suse the rank inequality rank(A + B) < rank(A) + rank(B).
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Block Matrix Manipulations

Sometimes it may be useful to manipulate matrices in a block form.

o let A € R™*"™ x € R™. By partitioning

A=T[A, A,], x= [’“]

X2

where A; € R™*"_ A, € R™*"2 x; € R™, x5 € R"2, with ny +ns = n, we can
write
Ax = A1X1 + A2X2

e similarly, by partitioning

All A12
A =
[A21 A22]’ =

I
e
=T

we can write
A1x1 + Aqaxo

Ax =
* [A21X1+A22X2]
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Block Matrix Manipulations

e consider AB. By an appropriate partitioning,

AB=[A, A [

e similarly, by an appropriate partitioning,

. A1 . AlBl A1B2
AB = [AJ [B1 B = [AQB1 A232]

e we showcase two-block partitioning only, but the same manipulations apply to
multi-block partitioning like
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Extension to C”
e all the concepts described above apply to the complex case
e we only need to replace every “R" with “C", and every “I" with “"H"; e.g.,
span{ai,...,a,} ={y e C” |y =>", oa;, a € C"},

(x,y) = yx, [|x]|2 = Vx*¥x, and so forth.
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Extension to R™M*"

e the concepts also apply to the matrix case

— e.g., we may write
span{A;,..., A} ={Y e R™" | Y =3¢  a;A;, a € RF}.

— sometimes it is more convenient to vectorize X as a vector x € R™"™ and use
the same treatment as in the R"™ case

— inner product for R"*"™:

(X,Y) =300, > wigysy = tr(Y X)),

— the matrix version of the Euclidean norm is called the Frobenius norm:

IXllF = /320 Y feyl? = Ver(XTX)

e extension to C™*" is just as straightforward as in that to C"
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Complexities of Matrix Computations

e every vector/matrix operation such as x +y, y'x, Ax, ... incurs computational
costs, and they cost more as the vector and matrix sizes get bigger

e we typically look at floating point arithmetic operations, such as add, subtract,
multiply, and divide
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Complexities of Matrix Computations

e flops: one flop means one floating point arithmetic operation.

e flop counts of some standard vector/matrix operations:
for x,y € R", A e R™*", B € R"*P,

— X+ y: n adds, so n flops
— y'x: n multiplies and n — 1 adds, so 2n — 1 flops
— Ax: m inner products, so m(2n — 1) flops

— AB: do “Ax" above p times, so pm(2n — 1) flops
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Complexities of Matrix Computations

e we are often interested in the order of the complexity

e big O notation: given two functions f(n), g(n), the notation

means that there exists a constant C' > 0 and ng such that |f(n)| < Clg(n)| for
all n > 0.

e big O complexities of standard vector/matrix operations:
- x+y: O(n) flops
— yI'x: O(n) flops
- Ax: O(mn) flops
— AB: O(mnp) flops
— (we'll learn it later) solve y = Ax for x, with A € R"*": O(n?) flops
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Complexities of Matrix Computations

e big O complexities are commonly used, although we should be careful sometimes

e example: suppose you have an algorithm whose exact flop count is
f(n) = 3n° + 8n° 4 2n + 1234.

— O(n?) flops
— big O makes sense for large n; n® dominates as n is large

— but be careful: for small n, it's 1234 that consumes more

e example: suppose you have two algorithms for the same problem. Their exact
flop counts are

1
filn) =n,  fa(n) = 5”3-
— their big O complexities are the same: O(n?)

— but two times faster is two times faster!
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Complexities of Matrix Computations

e example: suppose our algorithm deals with complex vector and matrix operations.
Define one flop as one real flop.

— one complex add = 2 real adds = 2 flops

— one complex multiply = 4 real multiplies 4+ 2 real adds = 6 flops

When we report big O complexity, the scaling factors above are not seen
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Exercise: Count the Complexity of Gram Schmidt

e recall the Gram-Schmidt procedure recursively computes

- 1 - - .
ai=a;—y _(aja)q;, di=4q/|als i=1,...,n

e consider iteration 1.

— every qja;, j=1,...,i =1, takes O(m)

— then, computing q; = a; — ijl(qfai)qj is almost the same as the operation
“Ax"; it takes O(mi)

— q; = Qi/||Qi||2 requires O(m) (one divide, one /-, one inner product q; q;
— total complexity for iteration i: (i — 1) x O(m) + O(mi) + O(m) = O(mi)

e total complexity of the whole algorithm:

O(m Y7 i) = O(m™ %)) = O(mn?)
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Complexities of Matrix Computations

e Discussion: flop counts do not always translate into the actual efficiency of the
execution of an algorithm, say, in terms of actual running time.

e things like pipelining, FPGA, parallel computing (multiple GPUs, multiple servers,
cloud computing), etc., can make the story different.

e flop counts also ignore memory usage and other overheads...

e that said, we need at least a crude measure of how computationally costly an
algorithm would be, and counting the flops serves that purpose.
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How to Save Computations

e computational complexities depend much on how we design and write an algorithm

e generally, it is about

— top-down, analysis-guided, designs: often seen in class, often look elegant

— street-smart, possibly bottom-up, tricks: usually not taught much in class, also
not commonplace in papers (unless you download and read somebody’s code),
subtly depends on your problem at hand, but a bunch of small differences can
make a big difference, say in actual running time

e here we give several, but by no means all, tips for saving computations
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How to Save Computations

e apply matrix operations wisely

e example: try this on MATLAB

>> A=randn(5000,2); B=randn(2,10000); C=randn(10000,10000) ;
>>

>> tic; D= A*BxC; toc

Elapsed time is 12.238567 seconds.

>> tic; D= (Ax*B)*C; toc

Elapsed time is 12.640961 seconds.

>> tic; D= A*(B*C); toc

Elapsed time is 0.222270 seconds.
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How to Save Computations

e let us analyze the complexities in the last example

— A e R™" B € R"P C & RP*P, with n < min{m, p}. We want to compute
D = ABC.

— if we compute AB first, and then D = (AB)C, the flop count will be
O(mnp) + O(mp?) = O(m(n + p)p) = O(mp?)
— if we compute BC first, and then D = A(BC), the flop count will be
O(np?) + O(mnp) = O((m + p)np).

— the 2nd option is preferable if n is much smaller than m, p
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How to Save Computations

e use structures, if available

p+1
e example: let A € R™™"™ and suppose that

a;; =0 for all i, such that |i — j| > p,

for some integer p > 0.

— such a structured A is called band diagonal

— if we don't use structures, computing Ax
requires O(n?)

\ 4

— if we use the band diagonal structures, we can compute Ax with O(pn)
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How to Save Computations

e use sparsity, if available

e a vector or matrix is said to be sparse if it contains many zero elements
— we assume unstructured sparsity

H
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How to Save Computations

e let nnz(x) denote the number of nonzero elements of a vector x; the same
notation applies to matrices

e flop counts: for x,y € R, A € R™*" B ¢ R"*P,

— x+7y: from 0 and min{nnz(x),nnz(y)} flops = O(min{nnz(x), nnz(y)})
— yIx: from 0 to 2min{nnz(x), nnz(y)} flops = O(min{nnz(x), nnz(y)})
— Ax, x being dense: from nnz(A) to 2nnz(A) flops = O(nnz(A))

— AB: no simple expression for the flops, but at most
2min{nnz(A)p,nnz(B)m} flops = O(min{nnz(A)p, nnz(B)m})

e reference: S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra — Vectors,
Matrices, and Least Squares, 2018. Available online at https://web.stanford.edu/~boyd/
vmls/vmls.pdf.
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