
ENGG 5781: Matrix Analysis and Computations 2024–25 First Term

Lecture 1: Basic Concepts

Instructor: Wing-Kin Ma

This note is not a supplementary material for the main slides. I will write notes such as this one
when certain concepts cannot be put on slides. This time, the aim is to elaborate upon subspace
concepts at a more fundamental level.

1 Subspace and Linear Independence

1.1 Subspace

A nonempty subset S of Rm is called a subspace of Rm if, for any α, β ∈ R,

x,y ∈ S =⇒ αx + βy ∈ S.

It can be verified that if S ⊆ Rm is a subspace and a1, . . .an ∈ S, then any linear combination of
a1, . . .an, i.e.,

∑n
i=1 αiai, where α ∈ Rn, also lies in S.

Given a collection of vectors a1, . . .an ∈ Rm, the span of {a1, . . .an} is defined as

span{a1, . . .an} =

{
y =

n∑
i=1

αiai

∣∣∣∣ α ∈ Rn

}
.

In words, span{a1, . . .an} is the set of all possible linear combinations of the vectors a1, . . .an. It
is easy to verify that span{a1, . . .an} is a subspace for any given a1, . . .an. In the literature, span
is commonly used to represent a subspace. For example, we can represent Rm by

Rm = span{e1, . . . , em}.

In fact, any subspace can be written as a span:

Theorem 1.1 For every subspace S ⊆ Rm, there exists a positive integer n and a collection of
vectors a1, . . . ,an ∈ Rm such that S = span{a1, . . . ,an}.

In the literature you would notice that we take the result in Theorem 1.1 for granted—in a way that
is almost like a common sense and without elaboration. There is an easy way to prove Theorem 1.1,
but the proof requires some result in linear independence. We relegate the proof to the later part
of this note.

1.2 Linear Independence

A set of vectors {a1, . . .an} ⊂ Rm is said to be linearly independent if

n∑
i=1

αiai 6= 0, for all α ∈ Rn with α 6= 0.

Otherwise, it is called linearly dependent. A subset {ai1 , . . . ,aik}, where {i1, . . . , ik} ⊆ {1, . . . , n}
with ij 6= il for any j 6= l, and 1 ≤ k ≤ n, is called a maximal linearly independent subset of
{a1, . . . ,an} if it is linearly independent and is not contained by any other linearly independent
subset of {a1, . . . ,an}. From the above definitions, we see that
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1. if {a1, . . . ,an} is linearly independent, then any aj cannot be a linear combination of the set
of the other vectors {ai}i∈{1,...n},i 6=j ;

2. if {a1, . . . ,an} is linearly dependent, then there exists a vector aj such that it is a linear
combination of the other vectors;

3. {ai1 , . . . ,aik} is a maximal linearly independent subset of {a1, . . . ,an} if and only if
{ai1 , . . . ,aik ,aj} is linearly dependent for any j ∈ {1, . . . , n} \ {i1, . . . , ik}.

Thus, roughly speaking, we may see a linearly independent {a1, . . . ,an} as a non-redundant (or
sufficiently different) set of vectors, and a maximal linearly independent {ai1 , . . . ,aik} as an irre-
ducibly non-redundant set of vectors for representing the whole vector set {a1, . . . ,an}. It can be
easily shown that for any maximal linearly independent subset {ai1 , . . . ,aik} of {a1, . . . ,an}, we
have

span{a1, . . . ,an} = span{ai1 , . . . ,aik}.

We also have the following results which are very basic and we again take them almost for
granted:

1. Let {a1, . . . ,an} ⊂ Rm be a linearly independent vector set. Suppose y ∈ span{a1, . . . ,an}.
Then the coefficient α for the representation

y =

n∑
i=1

αiai

is unique; i.e., there does not exist a β ∈ Rn, β 6= α, such that y =
∑n

i=1 βiai.

2. If {a1, . . .an} ⊂ Rm is linearly independent, then n ≤ m must hold.

The first result is simple: if there exists a β 6= α such that y =
∑n

i=1 βiai, then we have
∑n

i=1(αi−
βi)ai = y − y = 0, which contradicts the linear independence of {a1, . . . ,am}. For the second
result, I show you in the proof in [2]. The proof is done by induction. Suppose m = 1. Then it is
easy to see that n ≤ 1 must hold. Next suppose m ≥ 2. We need to show that n ≤ m. Partition
the ai’s as

ai =

[
bi

ci

]
, i = 1, . . . , n,

where bi ∈ Rm−1, ci ∈ R. If c1 = . . . = cn = 0, then the linear independence of {a1, . . . ,an} implies
that {b1, . . . ,bn} is also linearly independent. By induction, we know that for any collection of n
linearly independent vectors in Rm−1, it must hold that n ≤ m − 1. It follows that {b1, . . . ,bn}
must satisfy n ≤ m−1 too; hence, we get n ≤ m. If ci 6= 0 for some i, we need more work. Assume
w.l.o.g. that cn 6= 0 (we can always reshuffle the ordering of a1, . . . ,an). For any α1, . . . , αn−1 ∈ R,
choose αn as follows

αn = − 1

cn

(
n−1∑
i=1

αici

)
.

Then we see that

n∑
i=1

αiai =

[∑n−1
i=1 αibi −

∑n−1
i=1

ci
cn
αibn

0

]
=

[∑n−1
i=1 αi

(
bi − ci

cn
bn

)
0

]
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Let b̃i = bi − (ci/cn)bn for ease of explanation. From the above equation, we see that the linear
independence of {a1, . . . ,an} implies that {b̃1, . . . , b̃n−1} is linearly independent. By induction, we
know that {b̃1, . . . , b̃n−1} must satisfy n− 1 ≤ m− 1; hence, we get n ≤ m. The proof is complete.

1.3 Orthogonality and Orthonormality

A collection of vectors a1, . . . ,an ∈ Rm is said to be orthogonal if aTi aj = 0 for all i, j with i 6= j,
and orthonormal if aTi aj = 0 for all i, j with i 6= j and ‖ai‖2 = 1 for all i. Some basic results arising
from such a definition are as follows.

1. An orthogonal or orthonormal collection of vectors is also linearly independent.

2. Let {a1, . . . ,an} ⊂ Rm be an orthonormal set of vectors. Suppose y ∈ span{a1, . . . ,an}.
Then the coefficient α for the representation

y =

n∑
i=1

αiai

is uniquely given by αi = aTi y, i = 1, . . . , n.

3. Let {a1, . . . ,an} ⊂ Rm be a linearly independent set of vectors. There exists an orthonormal
set of vectors {q1, . . . ,qn} such that

span{a1, . . . ,an} = span{q1, . . . ,qn}.

The first and second results above are easy to verify. The proof of the third result is constructive
and is a consequence of the Gram-Schmidt procedure; this will be covered later.

1.4 Proof of Theorem 1.1

We now prove Theorem 1.1. Suppose that the subspace S does not equal {0}; the case of S = {0}
is trivial to prove. Let n be a positive integer and a1, . . . ,an ∈ S. We have

span{a1, . . . ,an} ⊆ S,

and the reason is that any linear combination of vectors in S also lies in S. Now we wish to show
that there exists a linearly independent collection of a1, . . . ,an ∈ S such that S ⊆ span{a1, . . . ,an}.
We adopt a constructive proof.

First, pick any nonzero vector a1 ∈ S. If any y ∈ S can be written as y = α1a1 for some α1,
then we finish. If not, consider the following recursive process. Suppose that we have previously
picked a linearly independent collection of vectors a1, . . . ,ak−1 ∈ S, but there exists y ∈ S such
that y 6=

∑k−1
i=1 αiai for any αi’s. Note that we have the case of k = 1 already. Then we pick ak as

any y ∈ S that satisfies y 6=
∑k−1

i=1 αiai for any αi’s. Clearly, a1, . . . ,ak are linearly independent.

If any y ∈ S can be written as y =
∑k

i=1 αiai for some αi’s, then it means S ⊆ span{a1, . . . ,ak}
and we finish. Otherwise, we increase k by one and repeat the above steps.

The question is whether the recursive process above will stop; if yes, our proof is complete.
Suppose that the process has reached an iteration number of k > m. On one hand, the process says
that {a1, . . . ,ak} is linearly independent. On the other hand, if {a1, . . . ,ak} is linearly independent,
then k ≤ m must hold (a take-it-for-granted fact in linear independence). Hence, by contradiction,
the process must stop; k = m is the largest possible iteration number. The proof is complete.
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2 Basis and Dimension

Let S ⊆ Rm, S 6= {0}, be a subspace. A set of vectors {b1, . . . ,bk} ⊂ Rm is called a basis for S
if {b1, . . . ,bk} is linearly independent and S = span{b1, . . . ,bk}. Taking S = span{a1, . . . ,an} as
an example, any maximal linearly independent subset of {a1, . . . ,an} is a basis for S. From the
definition of bases, the following facts can be shown:

1. A subspace may have more than one basis.

2. A subspace always has an orthonormal basis (if it does not equal {0}).

3. All bases for a subspace S have the same number of elements; i.e., if {b1, . . . ,bk} and
{c1, . . . , cl} are both bases for S, then k = l.

Given a subspace S ⊆ Rm with S 6= {0}, the dimension of S is defined as the number of
elements of a basis for S. Also, by convention, the dimension of the subspace {0} is defined as zero.
The notation dimS is used to denote the dimension of S. Some examples are as follows: We have
dimRm = dim span{e1, . . . , em} = m. If {ai1 , . . . ,aik} is a maximal linearly independent subset
of {a1, . . . ,an}, then dim span{a1, . . . ,an} = k. We have the following properties for subspace
dimension.

Property 1.1 Let S,S1,S2 ⊆ Rm be subspaces.

1. We have dimS = m if and only if S = Rm.

2. If S1 ⊆ S2, then dimS1 ≤ dimS2.

3. If S1 ⊆ S2 and dimS1 = dimS2, then S1 = S2.

4. dim(S1 + S2) + dim(S1 ∩ S2) = dimS1 + dimS2.

5. dim(S1 + S2) ≤ dimS1 + dimS2 (this is a consequence of Statement 4).

6. dim(S1 ∩ S2) ≥ dimS1 + dimS2 −m (this is a consequence of Statement 4).

Note that the notation X + Y denotes the sum of the sets X and Y; i.e., X + Y = {x + y | x ∈
X ,y ∈ Y}.

3 Projections onto Subspaces

Let S ⊆ Rm be a nonempty closed set, and let y ∈ Rm be any given vector. A projection of y onto
S is any solution to the following problem

min
z∈S

‖z− y‖22.

In words, a projection of y onto S is a point in S that is closest to y in the Euclidean sense. In
general, there may be more than one such closest point. If every y ∈ Rm has only one projection
of y onto S, we will use the following notation

ΠS(y) = arg min
z∈S

‖z− y‖22.

to denote the projection of y onto S.
We are interested in projections onto subspaces. Such concepts play a crucial role in linear

algebra and matrix analysis. Consider the following theorem:
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Theorem 1.2 Let S be a subspace of Rm.

1. For every y ∈ Rm, there exists a unique vector ys ∈ S that minimizes ‖z−y‖2 over all z ∈ S.
Thus, we can write ΠS(y) = arg minz∈S ‖z− y‖22.

2. Given y ∈ Rm, we have ys = ΠS(y) if and only if

ys ∈ S, zT (ys − y) = 0, for all z ∈ S. (1)

The above theorem is a special case of the projection theorem in convex analysis and optimiza-
tion [1, Proposition B.11], which deals with projections onto closed convex sets. In the following
we provide a proof that is enough for the subspace case.

Proof: First, we should mention that there always exists a vector in S at which the minimum
of ‖z − y‖22 over all z ∈ S is attained; in this claim we only need S to be closed. This result is
shown by applying the Weierstrass theorem, and readers are referred to [1, proof of Proposition
B.11] for details.

Second, we show the sufficiency of Statement 2. Let ys ∈ S be a vector that minimizes ‖z−y‖2
over all z ∈ S. Since ‖z− y‖22 ≥ ‖ys − y‖22 for all z ∈ S, and

‖z− y‖22 = ‖z− ys + ys − y‖22
= ‖z− ys‖22 + 2(z− ys)

T (ys − y) + ‖ys − y‖22,

we have
‖z− ys‖22 + 2(z− ys)

T (ys − y) ≥ 0, for all z ∈ S.

The above equation is equivalent to

‖z‖22 + 2zT (ys − y) ≥ 0, for all z ∈ S;

the reason is that z ∈ S implies z − ys ∈ S, and the converse is also true. Now, suppose that
there exists a point z̄ ∈ S such that z̄T (ys − y) 6= 0. Then, by choosing z = αz̄, where α =
−z̄T (ys−y)/‖z̄‖22, one can verify that ‖z‖22+2zT (ys−y) < 0 and yet z ∈ S. Thus, by contradiction,
we must have zT (ys − y) = 0 for all z ∈ S.

Third, we show the necessity of Statement 2. Suppose that there exists a vector ȳs ∈ S such
that zT (ȳs − y) = 0 for all z ∈ S. The aforementioned condition can be rewritten as

(z− ȳs)
T (ȳs − y) = 0, for all z ∈ S,

where we have used the equivalence z− ȳs ∈ S ⇐⇒ z ∈ S. Now, for any z ∈ S, we have

‖z− y‖22 = ‖z− ȳs‖22 + 2(z− ȳs)
T (ȳs − y) + ‖ȳs − y‖22

= ‖z− ȳs‖22 + ‖ȳs − y‖22
≥ ‖ȳs − y‖22. (2)

The above inequality implies that ȳs minimizes ‖z − y‖2 over all z ∈ S. This, together with
the previous sufficiency proof, completes the proof of Statement 2. In addition, we note that the
equality in (2) holds if and only if z− ȳs = z. This implies that ȳs is the only minimizer of ‖z−y‖2
over all z ∈ S. Thus, we also obtain the uniqueness claim in Statement 1. �.

Theorem 1.2 has many implications, e.g., in least squares and orthogonal projections which we
will learn in later lectures. In the next section we will consider an application of Theorem 1.2 to
subspaces.
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4 Orthogonal Complements

Let S a nonempty subset in Rm. The orthogonal complement of S is defined as the set

S⊥ =
{
y ∈ Rm | zTy = 0 for all z ∈ S

}
.

It is easy to verify that S⊥ is always a subspace even if S is not. From the definition, we see that

1. any z ∈ S, y ∈ S⊥ are orthogonal, i.e., S⊥ consists of all vectors that are orthogonal to all
vectors of S;

2. we have either S ∩ S⊥ = {0} or S ∩ S⊥ = ∅; i.e., if we exclude 0, the sets S and S⊥ are
non-intersecting.

The following theorem is a direct consequence of the projection theorem in Theorem 1.2.

Theorem 1.3 Let S be a subspace of Rm.

1. For every y ∈ Rm, there exists a unique 2-tuple (ys,yc) ∈ S × S⊥ such that

y = ys + yc.

Also, such a (ys,yc) is given by ys = ΠS(y),yc = y −ΠS(y).

2. The projection of y onto S⊥ is given by ΠS⊥(y) = y −ΠS(y).

Proof: Let us rephrase the problem in Statement 1 as follows: Given a vector y ∈ Rm, find
a vector ys such that ys ∈ S and y − ys ∈ S⊥. This problem is exactly the same as (1) in
Theorem 1.2. Thus, by Theorem 1.2 the solution is uniquely given by ys = ΠS(y). Also, we have
yc = y −ΠS(y) ∈ S⊥.

To show Statement 2, let us consider the following problem: Given a vector y ∈ Rm, find a
vector ȳc such that ȳc ∈ S⊥ and y − ȳc ∈ (S⊥)⊥, or equivalently,

ȳc ∈ S⊥, z̄T (y − ȳc) = 0, for all z̄ ∈ S⊥.

By Theorem 1.2, the solution is uniquely given by ȳc = ΠS⊥(y). On the other hand, the above
conditions are seen to satisfy if we choose ȳc = y−ΠS(y) ∈ S⊥. It follows that ΠS⊥(y) = y−ΠS(y).
movmov �

Armed with Theorem 1.3, we can easily prove the following results.

Property 1.2 The following properties hold for any subspace S ⊆ Rm:

1. S + S⊥ = Rm;

2. dimS + dimS⊥ = m;

3. (S⊥)⊥ = S. 1

1We also have the following result: Let S be any subset (and not necessarily a subspace) in Rm. Then, we have
(S⊥)⊥ = span S, where span S is defined as the set of all finite linear combinations of points in S.
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Proof: Statement 1 is merely a consequence of the first statement in Theorem 1.3. For State-
ment 2, let us assume S does not equal either {0} or Rm; the cases of {0} and Rm are trivial.
Let {u1, . . . ,vk} and {v1, . . . ,vl} be orthonormal bases of S and S⊥, respectively; here note that
k = dimS, l = dimS⊥. We can write

S + S⊥ = span{u1, . . . ,uk,v1, . . . ,vl}.

Also, from the definition of orthogonal complements, it is immediate that uT
i vj = 0 for all i, j.

Hence, {u1, . . . ,uk,v1, . . . ,vl} is an orthonormal basis for S + S⊥, and consequently we have
dim(S + S⊥) = k + l. Moreover, since S + S⊥ = Rm, we also have dim(S + S⊥) = m. The result
m = dimS + dimS⊥ therefore holds.

The proof of Statement 3 is as follows. One can verify from the orthogonal complements
definition that y ∈ S implies y ∈ (S⊥)⊥. On the other hand, any y ∈ (S⊥)⊥ satisfies

y = Π(S⊥)⊥(y)

= y −ΠS⊥(y) = y − (y −ΠS(y))

= ΠS(y),

where the first equation above is due to the equivalence y ∈ S ⇐⇒ y = ΠS(y) (which is easy to
verify), and the second equation above is due to the second statement of Theorem 1.3. The equality
y = ΠS(y) shown above implies that y ∈ S. �

Let us give an example on the application of Property 1.2. It is known that

dimN (A) = n− rank(A).

The above result can be shown by Property 1.2. First, we use N (A) = R(AT )⊥. Second, from the
second result in Property 1.2 we have

n = dimR(AT )⊥ + dimR(AT ).

Third, it is known that dimR(AT ) = rank(AT ) = rank(A). Combining these results together gives
dimN (A) = n− rank(A).

We close this section by mentioning one more property.

Property 1.3 Let S1,S2 ⊆ Rm be subspaces. It holds that S1 ∩ S2 = (S⊥1 + S⊥2 )⊥.

This property is left as an exercise. I should mention that this is a challenging exercise.

5 Gram Schmidt

We consider the Gram-Schmidt (GS) procedure. Note that the following explanation is different
from that in the lecture slides; we use the perspective of projection to explain how the GS procedure
works.
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5.1 GS as a Matrix Decomposition Result

Let A ∈ Rm×n be a full-column rank matrix (or a matrix with linearly independent columns). The
matrix A can be decomposed as

A = QR, (3)

for some semi-orthogonal Q ∈ Rm×n and upper triangular R ∈ Rn×n with rii > 0 for all i The
procedure for performing such decomposition is called the GS procedure. From the matrix product

QR = [ q1 q2 . . .qn ]


r11 r12 . . . r1,n−1 r1,n

r22
...

. . .
...

rn−1,n−1 rn−1,n
rnn

 =
[
r11q1 r12q1 + r22q2 . . .

∑n
i=1 ri,nqi

]

we can see that the GS decomposition (3) is equal to

a1 = r11q1,

a2 = r12q1 + r22q2,

...

ak = r1kq1 + · · ·+ rkkqk,

...

an = r1,nq1 + · · ·+ rnnqn.

5.2 GS and Orthonormal Bases for Subspaces

In Section 2 we mentioned that every subspace S ⊆ Rm has an orthonormal basis; i.e., there exists
an orthonormal set of vectors {q1, . . . ,qn} such that S = span{q1, . . . ,qn}. We want to take a
closer look into this property. Let S ⊆ Rm be a given subspace. From Theorem 1.1 we know that
there exists a vector set {a1, . . . ,an} such that S = span{a1, . . . ,an}. Without loss of generality,
let us assume that {a1, . . . ,an} is linearly independent. Let A = [ a1, . . . ,an ], and let A = QR
be the corresponding GS decomposition. We have

S = R(A) = R(QR). (4)

Consider the following properties.

Property 1.4 Let A ∈ Rm×n, B ∈ Rn×p. If B has full row rank, then R(AB) = R(B).

Property 1.5 Let R ∈ Rn×n be upper triangular with rii 6= 0 for all i. It holds that R(R) = Rn.
Or, R has full rank.

The proof of Property 1.4 is left an exercise for you. The proof of Property 1.5 is shown by the end
of this subsection. Applying Properties 1.4 and 1.5 to (4) gives

S = R(Q).
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We therefore confirm that every subspace has an orthonormal basis.

Proof of Property 1.5: There are two ways to prove Property 1.5. The first proof is to utilize
the property that if R has nonzero determinant, then R is invertible (or has full rank). Since R
is triangular, we have det(R) =

∏n
i=1 rii 6= 0. Hence, we come to the first conclusion R has full

rank. Using the property that a subspace S ⊆ Rn has dimS = n if and only if S = Rn, we have
the second conclusion that R(R) = Rn.

Our second proof goes as follows. We want to show that, given any vector y ∈ Rn, there exists
an x ∈ Rn such that y = Rx. If this is true, then we have Rn = R(R); consequently we also have
dimR(R) = n which is equivalent to saying that R has full rank. Suppose that y = Rx holds. We
can write 

y1
...

yn−1
yn

 =


r11 r1,n−1 r1,n

. . .
...

rn−1,n−1 rn−1,n
rnn



x1
...

xn−1
xn


From the above equation, we see that we can recursively calculate the components of x by

xn = yn/rnn

xn−1 = (yn−1 − rn−1,nxn)/rn−1,n−1
...

x1 = (y1 −
∑n

i=2 xiri,n)/r11.

The above equations indicate that, given any y ∈ Rn, there exists an x ∈ Rn such that y = Rx.
The proof is complete. �

5.3 Proof of the GS Decomposition

We now show how the GS decomposition comes about. The proof of the GS decomposition is
constructive, that is, we show the decomposition by showing how the factors Q and R are obtained,
or computed, from A. We will use the following property.

Property 1.6 Let Q ∈ Rm×n be semi-orthogonal and let S = R(Q). Given any vector y ∈ Rm, it
holds that ΠS(y) = QQTy.

The proof of Property 1.6 is left as an exercise. The GS decomposition is done by executing a
number of n steps in a sequential fashion.

Step 1: Let q1 = a1/‖a1‖2 and r11 = ‖a1‖2. Note that a1 6= 0 because {a1, . . . ,an} is linearly
independent. We have

a1 = r11q1. (5)

Also, to facilitate the subsequent proof, let S1 = span{a1} = span{a1}.

Step 2: According to Theorem 1.3.1, we can decompose a2 as

a2 = ΠS1(a2) + ΠS⊥1
(a2).
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Note that if ΠS⊥1
(a2) = 0, then we have a2 ∈ S1 which further implies that {a1, . . . ,an} is linearly

dependent. Since we assume linearly independent {a1, . . . ,an}, we must have ΠS⊥1
(a2) = 0. By

Property 1.6 it holds that
ΠS⊥1

(a2) = (qT
1 a2)︸ ︷︷ ︸

:=r12

q1.

Let q̃2 = ΠS⊥1
(a2) = a2 − r12q1, and let q2 = q̃2/‖q̃2‖2, r22 = ‖q̃2‖2. We have

a2 = r12q1 + r22q2. (6)

Since q1 ∈ S1 and q2 ∈ S⊥1 , q1 and q2 are orthogonal to each other. Let S2 = span{a1,a2}. We
have

S2 = R([ a1 a2 ]) = R
(

[ q1 q2 ]

[
r11 r12

r22

])
= span{q1,q2},

where the second equality is due to (5) and (6), and the third equality is due to Properties 1.4 and
1.5.

Let us proceed to Step k + 1, k ≤ n− 1.

Step k + 1: Suppose that, in Step k, we have obtained

Qk = [ q1, . . . ,qk ], Rk =


r11 r1,k−1 r1,k

. . .
...

rk−1,k−1 rk−1,k
rkk

 , Sk = span{a1, . . . ,ak} = R(Qk),

where Qk is semi-orthogonal, and rii > 0 for 1 ≤ i ≤ k. We decompose ak+1 as

ak+1 = ΠSk(ak+1) + ΠS⊥k
(ak+1)︸ ︷︷ ︸

:=q̃k+1

We must have q̃k+1 6= 0; if q̃k+1 = 0, we have ak+1 ∈ Sk which implies that {a1, . . . ,ak+1} is
linearly dependent. By Property 1.6,

ΠSk(ak+1) = Qk(QT
k ak+1).

Also, denote ri,k = qT
i ak+1. We get

q̃k+1 = ak+1 −
∑k

i=1 ri,kqi.

Let qk+1 = q̃k+1/‖q̃k+1‖2, rk+1,k+1 = ‖q̃k+1‖2. We can express ak+1 as

ak+1 = r1,k+1q1 + · · ·+ rk,k+1qk + rk+1,k+1qk+1.

Let Sk+1 = span{a1, . . . ,ak+1}. Let

Qk+1 = [ q1, . . . ,qk+1 ], Rk+1 =


r11 r1,k r1,k+1

. . .
...

rk,k rk,k+1

rk+1,k+1


10



It should be noted that Qk+1 is semi-orthogonal. This is because (i) {q1, . . . ,qk} is orthonormal,
and (ii) q1, . . . ,qk ∈ Sk and qk+1 ∈ Sk imply that qT

i qk+1 = 0 for all 1 ≤ i ≤ k. We have

Sk+1 = R(Qk+1Rk+1) = R(Qk+1),

where we have used Properties 1.4 and 1.5.

As we proceed to Step n, we obtain the QR decomposition (3). By writing down the proof
procedure as an algorithmic routine, we obtain the GS procedure in the lecture slides.
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