
ELEG 2310B: Principles of Communication Systems 2021-22 First Term

Handout 8: Aspects of FM

Instructor: Wing-Kin Ma

Suggested Reading: Chapter 4 of Simon Haykin and Michael Moher, Communication Systems
(5th Edition), Wily & Sons Ltd; and Chapter 5 of B. P. Lathi and Z. Ding, Modern Digital and
Analog Communication Systems (4th Edition), Oxford University Press.

This handout continues with our study on FM.

1 Generation of FM Signals

The modulation process of FM requires a device that can output a sinusoidal wave whose instanta-
neous frequency varies in accordance with the message signal m(t). In analog circuits, FM signals
may be directly generated by a device called the voltage-controlled oscillator (VCO). A classical
example of VCO is a Hartley oscillator, shown in Figure 1. Simply speaking, the circuit shown in
Figure 1 is a highly selective frequency-determining resonant network, whose oscillating frequency
is

fi(t) =
1

2π
√

(L1 + L2)C(t)
,

where L1 and L2 are the two inductances of the Hartley oscillator, and C(t) is the capacitance that
can vary with time. In particular, the capacitive component for C(t) consists of a fixed capacitor
shunted by a voltage-variable capacitor. A voltage-variable capacitor is one whose capacitance
depends on the voltage applied across its electrodes; it is also known as a varactor or varicap. By
selecting the inductances and capacitances appropriately, an FM wave may be accurately generated
by the Hartley oscillator.

Figure 1: A Hartley oscillator.

Note that there are more sophisticated VCOs, as well as more advanced systems for FM modu-
lation wherein the VCO is just a building block of the whole system. Such designs aim at providing

1



good oscillator stability, and this is more related to the circuits topic. Also, in Armstrong’s original
method for FM signal generations, VCOs are not used. Interested students are referred to the
textbooks for details.

2 Demodulation of FM Signals via Differentiation

There is more than one way to demodulate FM signals. Here, we focus on concepts by considering
a simple method based on time differentiation. Let s′(t) = ds(t)

dt denote the time differentiation of
the FM signal. We have

s′(t) =
d

dt

{
Ac cos

[
2πfct+ 2πkf

∫ t

−∞
m(τ)dτ

]}
= −Ac[2πfc + 2πkfm(t)] sin

[
2πfct+ 2πkf

∫ t

−∞
m(τ)dτ

]
. (1)

Eq. (1) suggests that the envelope of s′(t) is Ac[2πfc + 2πkfm(t)], if we assume 1 +
kf
fc
m(t) ≥ 0

for all t. In fact, the latter condition is justified since fc is often large in real-world applications.
Hence, by extracting the envelope of s′(t), we may recover the message signal m(t)1.

The mathematical operations shown above can be practically realized by the system in Figure 2.
We first apply a differentiator to carry out the differentiation process in (1). The differentiator can
be implemented by a filter; in an ideal setting the filter response should achieve H(f) = j2πf
(why?). Then, an envelope detector, like those used in AM, is applied to extract the envelope of
s′(t). The FM demodulation system in Figure 2 is commonly called a frequency discriminator,
since it discriminates the instantaneous frequency from the FM signal. Note that a frequency
discriminator is a noncoherent detector.

Figure 2: Block diagram of a frequency discriminator.

There are improved or more sophisticated versions of the frequency discriminator, e.g., the
balanced frequency discriminator. They follow a similar principle as that described above. For
details, please see the Haykin-Moher textbook or other communication textbooks.

3 Phase-Locked Loop

Simply speaking, a phase-locked loop (PLL) is a device that can track the instantaneous frequency
of an incoming angle-modulated signal. Thus, it serves the purpose of FM demodulation. It
is worthwhile to note that PLLs also have several other applications, such as synchronization,
frequency division/multiplication, and frequency modulation.

1As in AM, we may assume that the the presence of the DC component in the envelope is not a problem.
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Figure 3 shows a system diagram of the PLL. It consists of a multiplier, a loop filter and a
VCO. The objective is to have the phase angle of the VCO output locked to that of the input FM
signal—and this is done so via feedback control.

Figure 3: Block diagram of a phase-locked loop.

3.1 Problem Setup

Let us describe the problem setup. The input signal of the PLL is an FM signal

s(t) = Ac sin[2πfct+ φ1(t)], (2)

where

φ1(t) = 2πkf

∫ t

−∞
m(τ)dτ. (3)

The VCO generates an angle-modulated wave whose instantaneous frequency depends on the VCO
input v(t). Specifically, the VCO output is modeled as

r(t) = Ac cos[2πfct+ φ2(t)], (4)

where

φ2(t) = 2πkv

∫ t

−∞
v(τ)dτ, (5)

with kv denoting the frequency sensitivity of the VCO. At the multiplier, we have an output

e(t) = s(t) · r(t). (6)

The output e(t) passes through a loop filter, and the consequent filtered signal is fed to the VCO
input v(t). The loop filter is a linear time-invariant system and thus its input-output relation can
be described by the convolution formula

v(t) =

∫ ∞
−∞

h(t− τ)e(τ)dτ, (7)

where h(t) is the impulse response of the loop filter. Note that the loop filter requires design.
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3.2 A Simplified Analysis

To understand why and how the PLL works, we resort to analysis. In this regard, it is worthwhile to
mention that analysis of the PLL can be a sophisticated topic. Here we give a rough but simplified
analysis, with an emphasis on insights. We divide the analysis into three steps.

Step 1) We aim at writing out the relationship between φ1(t) and φ2(t). Consider the multiplier
output

e(t) = s(t) · r(t)
= AcAv sin[2πfct+ φ1(t)] cos[2πfct+ φ2(t)]

=
AcAv

2
{sin[φ1(t)− φ2(t)] + sin[4πfct+ φ1(t) + φ2(t)]} . (8)

The purpose of the multiplier is to help us extract the phase difference φ1(t) − φ2(t) from the
signals. Thus, we may be interested in the first term of (8) only. With this objective this mind,
we make the following assumption: the loop filter is a lowpass filter such that the second term in
(8) is removed from the loop filter output. Consequently, the loop filter output v(t) in (7) can be
simplified to

v(t) =
AcAv

2

∫ ∞
−∞

h(t− τ) sin[φ1(τ)− φ2(τ)]dτ. (9)

Next, we apply another assumption: the PLL is in near-phase lock, such that φ1(t)−φ2(t) is small
and the term sin[φ1(t)− φ2(t)] may be accurately approximated by

sin[φ1(t)− φ2(t)] ≈ φ1(t)− φ2(t). (10)

By the above approximation, we may further simplify (9) to

v(t) =
AcAv

2

∫ ∞
−∞

h(t− τ)[φ1(τ)− φ2(τ)]dτ. (11)

Moreover, in the VCO relationship of v(t) and φ2(t) in (5), we can differentiate (5) to obtain

dφ2(t)

dt
= 2πkvv(t). (12)

By substituting (12) into (11), we obtain

1

2πkv

dφ2(t)

dt
=
AcAv

2

∫ ∞
−∞

h(t− τ)[φ1(τ)− φ2(τ)]dτ. (13)

In particular, Eq. (13) describes the relation of φ1(t) and φ2(t) under the aforementioned assump-
tions and approximation.

Step 2) We wish to understand when φ1(t) equals φ2(t) under the relation in (13). To do so,
we take the Fourier transform of (13) to obtain

1

2πkv
× [j2πf · Φ2(f)] =

AcAv
2

H(f)[Φ1(f)− Φ2(f)]. (14)
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Eq. (14) can be reorganized as

Φ2(f) =
(πkvAcAv) ·H(f)

(πkvAcAv) ·H(f) + j2πf
Φ1(f) (15)

To simplify our analysis, we choose H(f) in the following way: Let W denote the bandwidth of
φ1(t). Particularly, we assume Φ1(f) = 0 for all |f | > W . The frequency response H(f) is chosen
to be such that

H(f) = k`, for all |f | ≤W, (16)

where k` is a constant and describes the loop filter gain. In words, the loop filter is almost like a
straight amplifier for the frequency band of interest, although we should also note that the loop
filter has to be lowpass so as to be able to eliminate the second (and high-frequency) term of e(t)
in (8). By the above choice of the loop filter, (15) can be reduced to

Φ2(f) =
K0

K0 + j2πf
Φ1(f), (17)

where K0 = πkvAcAvk`. Interestingly, in (17), the term K0
K0+j2πf is equivalent to the frequency

response of a lowpass filter whose bandwidth increases with K0. By choosing a sufficiently large K0

compared to W , which can be made possible by increasing the loop filter gain k`, we may further
reduce (17) to

Φ2(f) ' Φ1(f). (18)

This means that

φ2(t) ' φ1(t), (19)

that is, the result we desire to achieve.
Step 3) It is shown in Step 2) that if the loop filter gain k` is sufficiently large, then we have

φ2(t) ' φ1(t). As the last step, we are interested in recovering the message signal from the PLL. It
turns out that the loop filter output v(t) already outputs the message signal. To see this, consider
(12) under the condition φ2(t) ' φ1(t):

v(t) =
1

2πkv

dφ2(t)

dt

' 1

2πkv

dφ1(t)

dt

=
kf
kv
m(t), (20)

where (20) follows from (3).

3.3 Discussions

The PLL considered above, which uses a simple loop filter [See Step 2) in the analysis in the last
subsection], is commonly called a first-order PLL. The first-order PLL is possibly the simplest form
of PLLs, but is seldom used in practice. Better designs for PLLs would consider a more complex
loop filter response H(f) to improve performance under practical constraints.
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4 Advantages of FM

We describe two advantages for using FM.

4.1 Trading the Transmission Bandwidth for Improved Performance in Noise

In the study of amplitude modulation, one of our interests has been in the transmission bandwidth
requirements of the various AM-based schemes. We should first mention that FM has no advantage
in terms of bandwidth savings. Carson’s rule states that the FM transmission bandwidth approx-
imately equals BT = 2W (D + 1), where W is the message bandwidth and D = ∆f

W > 0 is the
deviation ratio. Since 2W (D+ 1) ≥ 2W , the transmission bandwidth of FM is no better than that
of AM.

While FM does not help save transmission bandwidth, FM is known to be able to trade the
transmission bandwidth for improved performance against noise. Specifically, given a fixed message
bandwidth W , the demodulated signals at the receiver exhibit better suppression of noise as the
transmission bandwidth BT increases. This has been found to be so by experiments (for a long
time), and there is mathematical analysis that gives us the clue on why the bandwidth-performance
tradeoffs are possible in FM. The details are beyond the scope of this course. At this point, we
should mention that practical FM systems are often wideband FM, taking a transmission bandwidth
several or many times greater than the message bandwidth. For example, in FM broadcast radios,
the transmission bandwidth is roughly about 200 kHz and the message bandwidth is 53 kHz.
Also, in Advanced Mobile Phone Service (AMPS), a 1G mobile system in North America, voice
transmission is done by FM. The transmission bandwidth is 30 kHz for each voice message signal,
and the message bandwidth is 3 kHz.

4.2 Resistance to Amplitude Nonlinearities

FM is a constant envelope transmission scheme. This brings about an advantage, namely, that FM
signals are immune to a class of amplitude nonlinearity effects introduced by the transmitter. At
the RF stage of the transmitter side, there are cases where the power amplifier exhibits nonlinear
effects w.r.t. the signal amplitudes. Such nonlinear effects arise from practical limitations of RF
amplifier circuitry and/or considerations of power efficiency in specific applications. Simply speak-
ing, “cheap” transmitters tend to exhibit stronger nonlinear effects. Also, amplifier nonlinearities
are not too uncommon in existing systems such as satellite communications. To put into context,
consider a special (and artificially created) example where the input-output relation of the nonlinear
effects is described by

vo(t) = a1vi(t) + a2v
2
i (t) + a3v

3
i (t), (21)

where vi(t) and vo(t) are the input and output, respectively; a1, a2 and a3 are some coefficients
that characterize the nonlinearities in (21). In particular, vi(t) is the modulated signal we desire
to transmit, and vo(t) is the signal actually transmitted by the transmitter. Now, consider the FM
signal

vi(t) = Ac cos[2πfct+ φ(t)], (22)
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where φ(t) = 2πkf
∫ t
−∞m(τ)dτ . It can be shown that

vo(t) =
1

2
a2A

2
c +

(
a1Ac +

3

4
a3A

3
c

)
cos[2πfct+ φ(t)]

+
1

2
a2A

2
c cos[4πfct+ 2φ(t)] +

1

4
a3A

3
c cos[6πfct+ 3φ(t)].

(23)

While the transmitted signal vo(t) is not identical to the original FM signal, the receiver can easily
retrieve the desired FM signal component from (23), i.e.,

(
a1Ac + 3

4a3A
3
c

)
cos[2πfct+ φ(t)]. It can

be shown that by applying on vo(t) a bandpass filter with passband [fc −BT /2, fc +BT /2] (which
will be needed even though we have no nonlinear effects), and by assuming a sufficiently large
fc, the receiver may keep the term

(
a1Ac + 3

4a3A
3
c

)
cos[2πfct + φ(t)] and eliminate other terms in

(23). As a result, the receiver may safely demodulate the FM signal without being affected by
the amplitude nonlinearities. It is important to note that this is not the case with any AM-based
scheme: Some simple derivations (which you may try) would show that the nonlinear relation in
(21) would distort the envelope of an AM modulated wave (as well as DSB-SC, SSB and so on),
and the subsequently, the corresponding demodulated signal.2

The discussion above by no means implies that FM is robust against any kind of nonlinearities.
FM is sensitive to phase nonlinearities, as well as phase noise. For example, phase noise may be
introduced by the oscillator, owing to device non-ideality and some other reasons. Better designs,
in terms of employing better devices and/or more sophisticated systems, would be required to
suppress such effects.

2It should be mentioned though in some recent systems for non-constant envelope modulation, an idea called
pre-distortion has been used to neutralize or reduce the amplitude nonlinearity effects.
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