
ELEG 2310B: Principles of Communication Systems 2021-22 First Term

Handout 7: Phase and Frequency Modulation

Instructor: Wing-Kin Ma

Suggested Reading: Chapter 4 of Simon Haykin and Michael Moher, Communication Systems
(5th Edition), Wily & Sons Ltd; or Chapter 5 of B. P. Lathi and Z. Ding, Modern Digital and
Analog Communication Systems (4th Edition), Oxford University Press.

1 Basic Concepts

We start out with introducing a general carrier-modulation approach called angle modulation. An
angle-modulated wave is expressed as

s(t) = Ac cos[θi(t)] (1)

where Ac is the carrier amplitude, θi(t) is called the angle of the modulated wave. In angle
modulation, the angle θi(t) is used to carry information.

There is an important concept we must understand here—that of instantaneous frequency. The
instantaneous frequency of the angle-modulated signal s(t) is defined as

fi(t) = lim
∆t→0

θi(t+ ∆t)− θi(t)
2π∆t

=
1

2π

dθi(t)

dt
. (2)

To get some insight, consider an example where the angle is given by

θi(t) = 2πfct+ φc,

for some frequency fc and phase φc; i.e., the corresponding angle-modulated signal s(t) is a pure
sinusoidal wave. From (2), the instantaneous frequency is obtained as fi(t) = fc.

There are many different ways one can put information in θi(t). Here, we consider two repre-
sentative schemes, namely, phase modulation and frequency modulation.

Phase Modulation (PM): PM has the angle taking the form

θi(t) = 2πfct+ kpm(t), (3)

where fc is the carrier frequency, m(t) is the message signal, and kp is a constant and is called the
phase sensitivity of the modulator. In words, the angle is used to carry information in a direct and
linear manner. The phase-modulated signal is thus described by

s(t) = Ac cos[2πfct+ kpm(t)]. (4)
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Figure 1: An illustration of phase-modulated and frequency-modulated signals.

Frequency Modulation (FM): The principle of FM is to use the instantaneous frequency to carry
information in a linear manner. Specifically, FM aims at having the instantaneous frequency taking
the form

fi(t) = fc + kfm(t), (5)

where fc and m(t) are again the carrier frequency and message signal, respectively; kf is a constant
and is called the frequency sensitivity of the modulator. Eq. (5) may be achieved by choosing the
angle as

θi(t) = 2πfct+ 2πkf

∫ t

−∞
m(τ)dτ, (6)

where we should note that in the second term of the right-hand side of (6), indefinite integrals is
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employed. By substituting (6) into (2), the key FM expression in (5) is shown to be satisfied. The
frequency-modulated signal can be written as

s(t) = Ac cos

[
2πfct+ 2πkf

∫ t

−∞
m(τ)dτ

]
. (7)

Figure 1 gives an illustration of the phase-modulated and frequency-modulated signals, wherein
we also show the DBS-SC modulated signal for the purpose of comparison. From the figure we see
that the PM and FM signals both exhibit constant envelope. In fact, the transmitted power of PM
and FM signals is constant for a given Ac, and does not vary with the message signal. Moreover,
the FM wave appears to vary faster when the value of the message signal m(t) is large, and slower
when the value of the message signal m(t) is small.

It is interesting to compare the AM-based and angle modulation schemes. AM-based schemes
have non-constant envelope, while angle modulation always has constant envelope. In AM-based
schemes, the modulated signal s(t) usually has a linear relationship with respect to (w.r.t.) the
message signal m(t). This enables us to use simple Fourier transform properties to derive the
Fourier transforms of the modulated signals and perform spectral analysis, e.g., determining the
transmission bandwidth. Angle modulation schemes has a nonlinear relationship between s(t) and
m(t). The nonlinear nature of angle modulation makes spectral analysis difficult.

2 A Case Study Based on a Single-Tone Message Signal

Analyzing how FM or PM works for a general message signal can be both difficult and complicated.
A logical engineering approach would therefore be to narrow down attention to special cases, thereby
attempting to extract useful insights from a simpler problem setting. Specifically, we consider the
special case of single-tone modulating signals

m(t) = Am cos(2πfmt),

where fm denotes the frequency of the tone, and Am is the tone amplitude. Also, we are interested
in FM only, although it is possible to extend the study to PM. The instantaneous frequency in this
special case is given by

fi(t) = fc + kfAm cos(2πfmt)

= fc + ∆f cos(2πfmt), (8)

where
∆f = kfAm (9)

is called the frequency deviation. The frequency deviation describes the maximum difference of the
instantaneous frequency fi(t) and the carrier frequency fc. By (6), the angle of the FM signal is
obtained as

θi(t) = 2πfct+ 2πkf

∫ t

−∞
Am cos(2πfmτ)dτ

= 2πfct+
∆f

fm
sin(2πfmt). (10)
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Let us denote

β =
∆f

fm
. (11)

The quantity β is called the modulation index of the FM signal. Consequently, we can write

θi(t) = 2πfct+ β sin(2πfmt), (12)

and hence the corresponding FM signal is given by

s(t) = Ac cos[2πfct+ β sin(2πfmt)]. (13)

We examine two cases, namely, narrowband FM and wideband FM, respectively.

2.1 Narrowband FM

Suppose that the modulation index β is small compared to one radian. To see how the FM signal
behaves, we first apply basic trigonometry results to rewrite (13) as

s(t) = Ac cos[β sin(2πfmt)] cos(2πfct)−Ac sin[β sin(2πfmt)] sin(2πfct). (14)

Next, we apply approximations, namely, that for |α| � 1 we have sin(α) ≈ α and cos(α) ≈ 1. By
using the above mentioned approximations, we may simplify (14) to

s(t) ≈ Ac cos(2πfct)− βAc sin(2πfmt) sin(2πfct) (15)

when β is small. Now, we argue that (15) is AM-like. To elaborate on this, the AM signal under
the same message signal is

sAM(t) = Ac[1 + kaAm cos(2πfmt)] cos(2πfct)

= Ac cos(2πfct) + µAc cos(2πfmt) cos(2πfct), (16)

where µ = kaAm is the modulation index of the AM signal. Comparing (15)-(16), we observe this:
If we replace − sin(2πfmt) in (15) by cos(2πfmt), replace sin(2πfct) in (15) by cos(2πfct), and set
β = µ, then the resulting modulated signal is identical to that in (16). In fact, it can be easily
shown that under the setting β = µ, Eqs. (15) and (16) have the same amplitude spectrum.

The observation suggests that for small β, the FM signal takes a form similar to the AM signal.
This case is commonly referred to as narrowband FM. By the AM-like nature of FM signals in the
narrowband FM case, we conclude that the transmission bandwidth of narrowband FM is 2fm Hz.

2.2 Wideband FM

Suppose that the modulation index β is large compared to one radian. This case is called wideband
FM, and is a (much) more interesting case. To study the wideband FM case, let us rewrite (13) as

s(t) = Re[Ace
j2πfct+jβ sin(2πfmt)]

= Re[s̃(t)ej2πfct], (17)

where we denote
s̃(t) = Ace

jβ sin(2πfmt). (18)
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Our attention is turned to analysis of s̃(t). Since sin(2πfmt) is a periodic signal with period
T0 = 1/fm, s̃(t) is also a periodic signal with the same period. As such, we can apply the Fourier
series expansion on s̃(t)

s̃(t) =
∞∑

n=−∞
cne

j2πnfmt, (19)

where the Fourier coefficients cn are to be determined. The coefficients cn are given by

cn =
1

T0

∫ T0
2

−T0
2

s̃(t)e
−j 2πnt

T0 dt

= fmAc

∫ 1
2fm

− 1
2fm

ej[β sin(2πfmt)−2πnfmt]dt. (20)

By the change of variable x = 2πfmt, we can rewrite (20) as

cn =
Ac
2π

∫ π

−π
ej[β sin(x)−nx]dx. (21)

At this point, we should mention that the integral in (21) does not have an explicit expression—at
least not in a simple manner. The integral in (21) is known as the nth order Bessel function of the
first kind, which is commonly denoted as

Jn(β) =
1

2π

∫ π

−π
ej[β sin(x)−nx]dx. (22)

While the Bessel function of the first kind does not have a simple closed form, its values can be
evaluated numerically by computers1. Note that Jn(β) can be shown to be real-valued, and that
Jn(β) = J−n(β). Figure 2 shows numerically computed values of Jn(β) w.r.t. n. By substituting
(19), (21) and (22) into (17), we obtain

s(t) = Ac · Re

[ ∞∑
n=−∞

Jn(β)ej2π(fc+nfm)t

]
(23)

= Ac

∞∑
n=−∞

Jn(β) cos[2π(fc + nfm)t]. (24)

With the FM signal expression in (25), we are now ready to examine the spectrum of the FM
signal. The Fourier transform of (25) is

S(f) =
Ac
2

∞∑
n=−∞

Jn(β)[δ(f − fc − nfm) + δ(f + fc + nfm)]. (25)

In Figure 3 we illustrate the corresponding amplitude spectra for various values of β. It can be seen
that the spectral content, in terms of significant components, occupies a larger frequency band as
the modulation index β increases.

It is important to point out that the FM spectrum in (25) is not bandlimited, since it is composed
of an infinite number of frequency components. In fact, it can be shown that for an arbitrary

1For example, in MATLAB, we use the command besselj to obtain the values of Jn(β).
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Figure 2: A plot of the Bessel function of the first kind.

message signal m(t), the Fourier transform of the corresponding FM signal is not bandlimited in
general (the proof is more difficult than that of the single tone case above). By the same spirit as
the discussion of bandwidth in Handout 3, we may evaluate the FM transmission bandwidth by
finding a frequency interval within which a significant portion of the frequency components lies.
For the single tone case, a common approximate rule of the FM transmission bandwidth is

BT ' 2∆f + 2fm = 2fm (β + 1) . (26)

We may at least observe from Figure 3 that the bandwidth estimate in (26) appears to be reasonable.

3 Carson’s Rule

Carson’s rule is a rule for approximating the FM transmission bandwidth of a general message
signal. The result is somehow reminiscent of the bandwidth estimate for the single tone case in
(26), although the proof is much more complex than that of the latter and takes a different set of
assumptions to obtain the bandwidth formula. We state Carson’s rule without giving the proof
(see the Lathi-Ding textbook for a description of how Carson’s rule is proven). Let

∆f = kf max
t
|m(t)| (27)

be the frequency deviation of a general message signal m(t). Also, let

D =
∆f

W
, (28)

which is called the deviation ratio. Note that the deviation ratio is somehow similar to the modu-
lation index β in the single tone case. The approximate FM transmission bandwidth by Carson’s
rule is

BT ' 2∆f + 2W = 2W (D + 1). (29)
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Figure 3: Amplitude spectra of FM signals of a single-tone message signal.
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