
ELEG 2310B: Principles of Communication Systems 2021-22 First Term

Handout 14: Digital Passband Transmission

Instructor: Wing-Kin Ma

Suggested Reading: Chapter 9 of Simon Haykin and Michael Moher, Communication Systems
(5th Edition), Wily & Sons Ltd.

We previously learnt digital transmission over a baseband channel. This handout studies digital
transmission over a bandpass channel.

1 Binary Modulation Schemes

We introduce three basic digital carrier-modulation schemes, namely, amplitude-shift keying (ASK),
phase-shift keying (PSK) and frequency-shift keying (FSK). Figure 1 illustrates how the three
schemes work. It can be seen that

• ASK switches the carrier wave off and on to represent “0” and “1” of the transmitted bit
stream, respectively;

• PSK uses 180◦ and 0◦ phase shifts of the carrier wave to represent “0” and “1” of the bit
stream, respectively;

• FSK uses two different frequencies to represent “0” and “1” of the bit stream, respectively.

1.1 Signal Representations

The mathematical expressions of the three schemes are described as follows. Let {bn} denote the
bit stream. In ASK, the transmitted signal can be expressed as

s(t) =

[

∞
∑

k=−∞

bng(t− kT )

]

· Ac cos(2πfct) (1)

where T is the bit interval; g(t) is a full-width rectangular pulse whose specific form is g(t) = 1
for 0 ≤ t < T and g(t) = 0 otherwise; and fc and Ac are the carrier frequency and amplitude,
respectively. Following the same rationale as in our PAM study in Handout 11 (specifically, Section
3.1 there), let us focus only on the 0th bit interval for simplicity, i.e., 0 ≤ t < T . From (1), the
transmitted ASK signal over 0 ≤ t < T is given by

s(t) =

{

0, b0 = 0
Ac cos(2πfct), b0 = 1

(2)

Likewise, for PSK, the transmitted signal over 0th bit interval can be represented by

s(t) =

{

Ac cos(2πfct+ π) = −Ac cos(2πfct), b0 = 0
Ac cos(2πfct), b0 = 1

(3)
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Figure 1: Illustration of ASK, PSK and FSK waveforms.

where 0 ≤ t < T . Also, for FSK, we can write

s(t) =

{

Ac cos(2πf0t), b0 = 0
Ac cos(2πf1t), b0 = 1

(4)

for 0 ≤ t < T , where f0 and f1 are the two frequencies used to represent “0” and “1”, respectively.
Note that a common choice of f0 and f1 is to have f0 = fc −∆f , f1 = fc +∆f , for some ∆f > 0.

1.2 Detection

The above three binary carrier-modulation schemes can be coherently detected by a two-path
correlation receiver, which is similar to the (one-path) correlation receiver considered in Handout
11. To describe the method, it would be convenient to represent the three schemes under a unifying
signal model

s(t) =

{

s0(t), b0 = 0
s1(t), b0 = 1

(5)
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for 0 ≤ t < T , where s0(t) and s1(t) denote two waveforms for representing “0” and “1”. For
example, for ASK, we have s0(t) = 0 and s1(t) = Ac cos(2πfct), 0 ≤ t < T .

Figure 2 shows the two-path correlation receiver. We assume that the received signal is just a
noisy version of the transmitted signal s(t):

x(t) = s(t) + η(t) (6)

where η(t) is noise. The idea of the two-path correlation receiver is to consider the correlations of
the two binary-representing waveforms

r0 =

∫ T

0

x(t)s0(t)dt, (7)

r1 =

∫ T

0

x(t)s1(t)dt; (8)

and then to make decision by comparing the values of r0 and r1, seeing which one is higher.
Specifically, the decision rule is

b̂0 =

{

0, r1 − r0 < λ
1, r1 − r0 ≥ λ

(9)

where λ is a threshold value. An example for the choice of λ is as follows.

Figure 2: The two-path correlation receiver.

Example 1 Consider PSK where s0(t) = −Ac cos(2πfct), s1(t) = Ac cos(2πfct), 0 ≤ t < T . Also,
for simplicity, assume that noise is absent. We evaluate the difference r1 − r0 under the two
hypotheses of the bit b0, and then use them to determine the value of the threshold λ.

Let us start with hypothesis b0 = 0. Under a mild assumption that fc = m/T for some integer
m, we can easily show that

r0 =
A2

cT

2
, (10)

r1 = −
A2

cT

2
. (11)
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The difference of r1 and r0 is r1 − r0 = −A2
cT . We denote ℓ = −A2

cT to be the value of r1 − r0
under hypothesis b0 = 0.

Similarly, under hypothesis b0 = 1, it can be shown that

r0 = −
A2

cT

2
, (12)

r1 =
A2

cT

2
, (13)

under the assumption fc = m/T for some integer m. We denote u = A2
cT to be the value of r1− r0

under hypothesis b0 = 1.
Intuitively, it seems logical to choose the decision threshold λ to be the midpoint of ℓ and u.

By this belief, we have

λ =
ℓ+ u

2
= 0. (14)

2 M-ary Modulation Schemes

Just like M -ary PAM for digital baseband transmission, we can also consider M -ary data transmis-
sion for passband transmission. Here we study two such schemes, namely the M -ary QAM scheme
and the M -ary PSK scheme.

2.1 M-ary QAM

M -ary PAM can also be used for digital passband transmission. Essentially, we simply carrier-
modulate a baseband M -ary PAM signal; that is,

s(t) =

[

∞
∑

k=−∞

ang(t− kT )

]

· Ac cos(2πfct), (15)

where {an} denotes the symbol stream. For ease of explanation later, we let A be the set of all
possible values of an. The set A is commonly called the constellation. For example,

• the constellation in 2-ary PAM is A = {±1}; and

• the constellation in 4-ary PAM is A = {±1,±3}.

Also, assuming that the standard full-width rectangular pulse is employed, the transmitted signal
over the 0th symbol interval reduces to

s(t) = a0 · Ac cos(2πfct), 0 ≤ t < T. (16)

Roughly speaking, M -ary QAM may be regarded as a complex-valued version of M -ary PAM.
Following the above setup for M -ary PAM, the M -ary QAM scheme is described as follows. The
M -ary QAM transmitted signal over the 0th symbol interval is given by

s(t) = Re[a0 ·Ace
2πfct], 0 ≤ t < T, (17)

where a0 (as well as the other symbols an) is a complex-valued symbol. Figure 3 shows two examples
of QAM constellations, namely, the 4-ary and 16-ary QAM constellations. Mathematically,
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• the 4-ary QAM constellation is A = {±1± j}; and

• the 16-ary QAM constellation A = {±1± j,±3 ± j,±1± 3j,±3 ± 3j}.

M -ary QAM can be seen as using analog QAM to multiplex two digital PAM signals. It can be
shown that (17) is equivalent to

s(t) = Re[a0] ·Ac cos(2πfct)− Im[a0] · Ac sin(2πfct), 0 ≤ t < T. (18)

We observe from (18) that M -ary QAM uses the carrier wave’s in-phase and quadrature-phase
components to send the symbol’s real and imagery parts, respectively. Also, for the example of
4-ary QAM, we see that Re[a0], Im[a0] ∈ {±1}—which means that the real and imagery parts of
a0 lie in the 2-ary PAM constellation. For the same reason, you should be able to see that a 16-ary
QAM symbol has its real and imagery parts lying in the 4-ary PAM constellation.

The bit rate of M -ary QAM, with M being a power of 2, is Rb = log2(M)/T bps.
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Figure 3: QAM Constellations. (a) 4-ary QAM. (b) 16-ary QAM. The notations “I” and “Q”
represent the real and imagery parts of the constellation points, respectively.

2.2 M-ary PSK

The M -ary QAM scheme uses the amplitudes of the in-phase and quadrature-phase carrier com-
ponents to perform M -ary signaling. M -ary PSK does the latter by using only the carrier phase.
Specifically, the M -ary PSK transmitted signal over the 0th symbol interval can also be expressed
as

s(t) = Re[a0 ·Ace
2πfct], 0 ≤ t < T, (19)

but with the constellation given by

A =

{

ejθ
∣

∣

∣

∣

θ =
2πm

M
,m = 0, 1, . . . ,M − 1

}

. (20)

Figure 4 illustrates two PSK constellations. Again, the bit rate of M -ary PSK is Rb = log2(M)/T
bps, assuming that M is a power of 2. It can be shown from (19)–(20) that the transmitted signal
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can be written as
s(t) = Ac cos(2πfct+ θ), 0 ≤ t < T, (21)

where θ = 2πm
M

, m = 0, 1, . . . ,M − 1. It is clear from the above equation that M -ary PSK uses
phase to carry information digitally.
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Figure 4: PSK constellations. (a) 4-ary PSK. (b) 8-ary PSK.

2.3 Detection

We have seen in (18) that M -ary QAM uses the in-phase and quadrature-phase carrier components
to transmit the real and imagery parts of the symbol, respectively. In fact, the same concept applies
to M -ary PSK. Hence, we can use a one-path correlation receiver (studied in Handout 11) to extract
the in-phase component of the received M -ary QAM or PSK signal, and, at the same time, use
another correlation receiver to extract the quadrature-phase component. Then, decision can be
made based on the extracted in-phase and quadrature-phase components. The idea is arguably a
straight extension of what we previously learnt in binary detection, and please see the textbooks if
you wish to see the details.

3 Further Discussion

We studied only coherent detection, specifically, the correlation receiver. As previously studied in
amplitude modulation-based schemes, phase synchronism at the receiver is the key assumption and
requirement in coherent detection. One can also consider noncoherent detection—and naturally
ASK and FSK are able to support noncoherent detection (how about PSK and QAM? Do you
think they can be noncoherently detected?).

To simplify our study in this handout, we assume full-width rectangular pulse. In fact, pulse
shaping can also be applied in digital carrier modulation. It should be noted that ISI also appears
in bandpass channels, especially when one wishes to transmit at a higher data rate. For example,
in wireless channels, ISI is caused by multipath propagation characteristics of RF signals. Read
the textbooks (or other digital communication textbooks) to get more inspiration.
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