
ELEG 2310B: Principles of Communication Systems 2021-22 First Term

Handout 12: Error Probability Analysis of Binary Detection

Instructor: Wing-Kin Ma

Suggested Reading: Chapter 8 of Simon Haykin and Michael Moher, Communication Systems
(5th Edition), Wily & Sons Ltd; or Chapter 13 of B. P. Lathi and Z. Ding, Modern Digital and
Analog Communication Systems (4th Edition), Oxford University Press.

In the previous handout, we are faced with a binary detection problem. Specifically, in Section 3
of the last Handout, “Detection in Noise,” a concept called the correlation receiver was introduced
for detection of 2-ary PAM in the presence of noise. There, the correlation receiver first yields a
signal sample

y0 = a0 · Eg + v0 (1)

where a0 is the transmitted (or true) symbol at the 0th symbol interval, Eg is pulse energy and v0
is noise. Then, the receiver detects a0 by the decision rule

â0 =

{
−1, if y0 ≤ 0
1, if y0 > 0

(2)

Now, the question arising is how frequent or unfrequent the correlation receiver makes an incorrect
decision in the presence of noise. This handout addresses this question by probabilistic performance
analysis.

Note that in this particular handout, probability concepts and properties are extensively used.
Do not hesitate to ask if you have any question.

1 Formulation

We use random variables and apply probability models to characterize (1). The formulation is
described as follows. Let y be a random variable, which characterizes y0 in (1). The signal model
for y is formulated as

y =

{
−ρ+ ν, a = −1
ρ+ ν, a = 1

(3)

where ρ > 0 is a constant, ν is a random variable characterizing the noise term v0 in (1), and a is
a discrete random variable taking the value of either −1 and 1. Moreover, we make the following
two probabilistic assumptions

1. a is equiprobable; i.e, Pr(a = −1) = Pr(a = 1) = 1
2 .

2. ν follows a Gaussian distribution with mean zero and variance σ2; i.e., the probability density
function of ν is given by

pν(v) =
1√
2πσ

e−
1

2σ2
v2 . (4)
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The first assumption seems reasonable since the distribution of “0” and “1” in binary data
should usually be quite uniform (like tossing a coin). The second assumption, which assumes noise
to be Gaussian, may not be as obvious to you. Simply stated, many of noises encountered in
communications are found to be Gaussian, or can be well approximated as Gaussian.

Let â be a decision of the random variable a based on the observation y. The decision rule is to
decide â = 1 if y > 0, and â = 1 if y ≤ 0—the same as (2). Our task is to solve the error probability

Pr(â 6= a).

To be specific, the probability Pr(â 6= a) is the symbol error probability as well as the bit error
probability.

Before we proceed, we should note that the variance σ2 physically represents the noise power.
Thus, the quantity

ρ2

σ2

describes the signal-to-noise ratio (SNR) of the model in (3).

2 Error Probability Analysis

We divide the error probability analysis into three steps.
Step 1) Consider the hypothesis a = −1. We aim at deriving the conditional probability

Pr(â = 1 | a = −1);

i.e., the probability of making the decision â = 1, given the event that the true symbol is a = −1.
The expression is as follows:

Pr(â = 1 | a = −1) = Pr(y > 0 | a = −1) (5a)

= Pr(−ρ+ ν > 0) (5b)

= Pr(ν > ρ) (5c)

=

∫ ∞
ρ

pν(v)dv (5d)

=

∫ ∞
ρ

1√
2πσ

e−
1

2σ2
v2dv. (5e)

Note that (5b) is obtained by applying the uppercase of (3). By a change of variable z = v/σ, we
can simplify (5e) to

Pr(â = 1 | a = −1) =

∫ ∞
ρ/σ

1√
2π

e−
1
2
z2dz. (6)

Unfortunately, the integral at the right-hand side of (6) does not admit a simple expression. How-
ever, it can be numerically computed. For convenience, let

Q(x) =

∫ ∞
x

1√
2π

e−
1
2
z2dz. (7)
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Note that Q(x) is known as the Q-function. The Q-function is frequently encountered in digital
communications, and software like MATLAB has specific functions for evaluating the numerical
values of the Q-function. Eq. (6) can be written as

Pr(â = 1 | a = −1) = Q
(ρ
σ

)
. (8)

Step 2) Consider the hypothesis a = 1. Following the same spirit as in Step 1, we examine the
conditional probability Pr(â = −1 | a = 1):

Pr(â = −1 | a = 1) = Pr(y ≤ 0 | a = 1) (9a)

= Pr(ρ+ ν ≤ 0) (9b)

= Pr(ν ≤ −ρ) (9c)

=

∫ −ρ
−∞

1√
2πσ

e−
1

2σ2
v2dv. (9d)

By a change of variable w = −v/σ, Eq. (9d) is re-expressed as

Pr(â = −1 | a = 1) =

∫ ∞
ρ/σ

1√
2π

e−
1
2
w2
dw = Q

(ρ
σ

)
. (10)

Step 3) We are now ready to deal with the error probability Pr(â 6= a).

Pr(â 6= a) = Pr(â 6= a, a = −1) + Pr(â 6= a, a = 1) (11a)

= Pr(â = 1, a = −1) + Pr(â = −1, a = 1) (11b)

= Pr(â = 1 | a = −1)Pr(a = −1) + Pr(â = −1 | a = 1)Pr(a = 1) (11c)

= Q
(ρ
σ

)
· 1

2
+Q

(ρ
σ

)
· 1

2
(11d)

= Q
(ρ
σ

)
, (11e)

where (11c) is due to Bayes’ rule, and (11d) is obtained by substituting (8), (10) and Pr(a = −1) =
Pr(a = 1) = 1/2 into (11c).

To conclude, the error probability is

Pr(â 6= a) = Q
(ρ
σ

)
. (12)

Figure 1 shows the (numerically computed) error probability with respect to the SNR ρ2/σ2. It
can be seen that the error probability reduces very significant with the SNR.

3 Further Analysis and Implication

(Note that this is an advanced topic) While we can evaluate the error probability by numerically
computing the Q-function, we also want to analyze the error probability. In particular, can we
prove in what way the error probability reduces with the SNR ρ2/σ2?
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Figure 1: Error probability versus the SNR.

We answer the above question by proving an upper bound on the error probability. Let us
consider the Q-function in (7). Let u(z) be the unit step function, i.e., u(z) = 1 if z ≥ 0, and
u(z) = 0 otherwise. The Q-function can be equivalently expressed as

Q(x) =

∫ ∞
−∞

u(z − x)
1√
2π

e−
1
2
z2dz. (13)

The key trick we apply is that for any α ≥ 0, it holds true that

u(z) ≤ eαz for any z. (14)

Substituting (14) into (13) yields

Q(x) ≤
∫ ∞
−∞

eα(z−x)
1√
2π

e−
1
2
z2dz (15a)

= e−αx
∫ ∞
−∞

1√
2π

eαz · e−
1
2
z2dz (15b)

= e−αx
∫ ∞
−∞

1√
2π

e
α2

2 · e−
(z−α)2

2 dz (15c)

= e−αx · e
α2

2

∫ ∞
−∞

1√
2π

e−
(z−α)2

2 dz︸ ︷︷ ︸
=1

(15d)

= e−
x2

2
+

(α−x)2
2 . (15e)
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where the integral in (15d) integrates the area under a Gaussian probability density function (with
mean α and variance 1), which is one. Next, we wish to choose α ≥ 0 such that (15e) is the
smallest. It is seen that if x ≥ 0, then α = x leads to the smallest value of (15e). Hence, we obtain
the following upper bound for the Q-function:

Q(x) ≤ e−
x2

2 , for any x ≥ 0. (16)

The above upper bound is known as the Chernoff bound of the Q-function.
Now, let us apply the Chernoff bound to the error probability:

Pr(â 6= a) ≤ e−
1
2
· ρ

2

σ2 (17)

We see something appealing from the above equation: The error probability decreases at least in
an exponential manner with respect to the SNR—which is very good!
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