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ABSTRACT

We recently reported a criterion for blind separation of-negative
sources, using a new concept called convex analysis founeixtof
non-negative sources (CAMNS). Under some assumptionsateat
considered realistic for sparse or high-contrast sigtiaéscriterion

is that the true source signals can be perfectly recoverdihting
the extreme points of some observation-constructed coseexin
our last work we also developed methods for fulfilling the CKBI
criterion, but only for two to three sources. In this papermsapose

a systematic linear programming (LP) based method thatakcap
ble to any number of sources. The proposed method has twa-adv
tages. First, its dependence on LP means that the methochdbes
suffer from local minima. Second, the maturity of LP solvers
ables efficient implementation of the proposed method ictjma.
Simulation results are provided to demonstrate the efficddhe
proposed method.

Index Terms— Blind separation, Non-negative sources, Convex

analysis criterion, Linear program

1. INTRODUCTION

The problem of blind separation of non-negative sources)oor
negative blind source separation (nBSS), has received atiga-
tion in a variety of fields, such as analytical chemistry [yper-
spectral imaging [2], and biomedical imaging [3]. Existimgthods
for solving the nBSS problem usually adopt the statistisauanp-
tion that the sources are mutually uncorrelated or indepete.g.,
non-negative independent component analysis (nICA) [4¢whs-
sumes uncorrelated sources, and Bayesian positive sogpegas
tion (BPSS) [5] which assumes independent sources. Rgcenithe
nBSS approaches requiring no assumption on source indepead
or zero correlations have emerged. One such nBSS approtuh is
non-negative matrix factorization (NMF) [6]. It decompesgke ob-
servation matrix as a product of two non-negative matrioee,serv-
ing as the estimate of the sources while the other the mixiagix

NMF, however, may be a non-unique decomposition and some-rem

dies have been suggested [7]. Here we are interested ineardeh
terministic approach proposed by us recently, called CAN8S].

CAMNS adopts a deterministic assumption callechl dominance
This assumption was initially proposed to capture the spahar-
acteristics of biomedical images [10], but we found it a gesd
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sumption or approximation for high contrast images as vegyj;, the
human face separation example in Section 5. Under the lacal d
inant assumption and some standard nBSS assumptions, wedpro
that the true source signals can be perfectly recovered loyngin
the extreme points of an observation-constructed polyiedt. We
also developed extreme-point search methods for CAMNS m ou
last published work [8]. However, those previously progbseeth-
ods can handle up to three sources only.

In this paper we propose an extreme-point search method that
fulfils the CAMNS criterion for any number of sources. Thedde
to use LP to systematically locate all the extreme pints ¢hlaire

Bthe true sources). As we will elaborate upon, the proposetdded

method does not suffer from local minima and can be impleatent
efficiently. Our simulation results will show that this CANBNLP
method has promising separation performance.

2. SYSTEM MODEL

Consider a noise-free linear mixing signal model

x[n] = Asln], n=1,...,L 1)
wheres[n] = [ s1]n],...,sn[n] |7 is the source vectox[n] =
[z1[n],...,zam[n] |7 is the observation vectoA € RM* is the

unknown mixing matrix, and. is the data length and we assume
L > max{M, N}. Note that (1) can be alternatively expressed as

N
wi:Zaiij7i:1,..47M7 (2)

j=1
wherea;; is the (4, 7)th element ofA, s; = [ s;[1],...,s;[L] |7
is the jth source signal vector ang; = [ z;[1],...,z;[L] | is the

ith observed signal vector. The CAMNS criterion to be preseig
based on the following assumptions:

(A1) All s; are componentwise non-negative; i.e., for eac; €
R% (a set of non-negative redkvectors) ands; # 0.

(A2) Each source signal vector liscally dominant the definition

of which is as follows: For eache {1,..., N}, there exists
an (unknown) index; such thats;[¢;] > 0 ands;[¢;] = 0,
Vi # .

(A3) The mixing matrix has unit row sum; i.e., for all =

1,...,M,
N
Zaij =1. (3)
j=1



(A4) M > N andA is of full column rank.
AssumptiongAl) and(A4) are standard in nBSS [4]. Assump-

tion (A2) is special and instrumental to CAMNS. For high-contrast

sources or sparse sources which contain many zéd@3,may be
completely satisfied or serve as a good approximation. Apam
(A3) is automatically satisfied in MRI due to the partial volume ef
fect [10], and in hyperspectral images due to the full adijticon-

dition [2]. When(A3) is not satisfied, the normalization procedure

in [10] can be used to enfor¢&3).

3. CONVEX ANALYSIS OF MIXTURES OF
NON-NEGATIVE SOURCES: THEORY

The purpose of this section is to provide a concise, selfainad
description to CAMNS [8, 9]. Of particular significance i®thBSS
criterion derived from CAMNS, which will be stated in Theore.

3.1. Some Basic Concepts of Convex Analysis

Before proceeding to describing CAMNS, it is useful to rewiev-
eral basic results in convex analysis [11]. Given a set oforsc

{s1,...,s5} C R (a set of realL-vectors), theaffine hullis de-
fined as
N
aff{s1,...,sn} = { T = Zéh-si 0ecRY 179 =1 }, 4)
i=1

whered = [61,...,0x |7 and1 is an all-one vector. An affine hull
can be represented by a polyhedral set, in form of
aﬁ{s1,...,sN}:{w:Ca+d|aGRP} 5)
for some (non-uniquedl € RY and full column rankC € RE*P,
whereP is the affine dimension which must be less tihén
Given a set of vector§si,...,sn} C R, theconvex hullis
defined as

N
xr = Z@ZSL

i=1

conv{si,...,SN} = {

aeRf,1T0:1}.

(6)
A point x € conv{si,...,sn} iS an extreme point of
conv{si,...,sn} if & cannot be a nontrivial convex combination
of s1,...,sn, (more specificallyr # Zf;l 6;s; forall @ € RY,

Zf\rzl 0; = 1, and@ # e; for anyi, wheree; is anN x 1 unit vector
with the:th entry equal td).
A situation particularly relevant to this work is when

{s1,...,sn} is linearly independent. In this situation, the affine
dimension ofaff{si,...,sy} is P = N — 1. Moreover,
{s1,...,8n} is the set of extreme points @bnv{si,...,sn}.

To provide some insights into the concepts above, Fig. 1 shiba
geometry of an affine hull and convex hull ff = 3.

3.2. New nBSS Criterion by CAMNS

S
Let us turn our attention back to the nBSS problem stated @ Se

tion 2, with the convex analysis concepts incorporatedmR@2), it
can be shown that the true source vectofset . . ., sy } is linearly
independent. Based on the affine hull concepts describecatie
source affine hulhff{s1, ..., sn} can be represented by
aff{s1,....,sn}={z=Ca+d|a eRV! } £ A(C,d)
@)

aff{s1, 89, 83} = {x = Ca +d|a € R?}

7 32\\\\\

Fig. 1. Example of 3-dimensional signal space geometry\fos 3.

for some(C,d) € RE*V-1 » RE such thatank(C) = N — 1.
In addition, from (2) and assumptiqA3), each observatior; is
seen to be an affine combination{efi, ..., sn};i.e.,

z; € A(C,d) (8)

foralli = 1,..., M. The first key ingredient of CAMNS is identi-
fication of the source affine hull parametéfs, d) from the obser-
vations{z1, ...,z um}. Consider the following theorem:

Theorem 1. ( Source affine set construction [8])Under (A2) to
(A4), the observation affine hull is identical to the source affing:
A(C,d) = aff{x1,...,zm}. 9)

Moreover, (C, d) can be obtained fro{x1, ...,z } by the fol-
lowing closed-form solution

1 M
d=+ ;w (10)
C=[q:(UU"),q(UU"), ... qnv_1(UUT)], (12)

whereU = [z1 —d,...,zax —d ] € R¥*M andg;(R) denotes
the eigenvector associated with thb principal eigenvalue oR..

We should add that the above source affine set closed-fourticol
is based on an optimization that finds an affine set that yteklbest
fitting with respect to the observations [8].

Recall that the source signals are non-negative. Henceawe h

s; € aff{s1,...,sn} NRE for anyi. Let us define
S =aff{s1,...,sn} NRY = A(C,d) NRY (12)
={z|z=Ca+d, x>0, acR" "} (13)

(where > is the componentwise inequality), which can be seen to
be a polyhedral set. The second important ingredient of CAVIN
leading to a new nBSS criterion, is as follows:

Theorem 2. (CAMNS criterion [8]) Under(Al) and (A2), the set
Sin (13)is also the source convex hull; that is,

;SN (14)
Moreover,S has N extreme points given by the true source vectors

S = conv{sy,...

1y..+9SN.

The theoretical implication of Theorem 2 is profound: It sug
gests that the true source vectors can be perfectly idehbfidind-
ing all the extreme points &. Hence, if we are able to develop re-
alizable methods for fulfilling the CAMNS criterion we canhégve
perfect blind separation in practice. There are simple otlof do-
ing this whenN equals2 or 3; see [8]. The next section considers
the situation wheréV is arbitrary.



4. LINEAR PROGRAMMING METHOD FOR CAMNS

We now describe the main contribution of this paper, namiedy t
systematic LP-based method for fulfilling the CAMNS criteri

We first concentrate on identifying one extreme point frém
Consider the following linear minimization problem:

LT
min r’s

: (15)
subject to (s.t.) s €S

*
p =

for some arbitrarily chosen directiane R”, wherep* denotes the
optimal objective value of (15). Using the polyhedral stame of S
in (13), problem (15) can be equivalently represented byRn L
p* = min r’ (Ca+d)
“ (16)
st. Ca+d*>=0.

A fundamental result in LP theory is that s, the objective
function of (15), attains the minimum at a point of the boumydaf
S. To provide more insights, some geometric illustratioresgiven
in Fig. 2. We can see that the solution of (15) may be uniquielgry
by one of the extreme points [Fig. 2(a)], or it may be any point on
a face [Fig. 2(b)]. The latter case poses a trouble to ourdbslen-

tifying s;, but it is arguably not a usual situation. For instance, @ th

demonstration in Fig. 2(b), must be normal ta2 — s3 which may
be unlikely to happen for a randomly pickedWith this intuition in
mind, we prove in the Appendix that

Lemma 1. Suppose that ~ A/(0,1.) (i.e.,r being Gaussian dis-
tributed with zero mean and covariance matrix equalte L iden-
tity matrix). Then, with probability 1, the solution of (1iS)uniquely
given bys; for somei € {1,..., N}.

The idea behind Lemma 1 is to show that undesired cases, such a

that in Fig. 2(b) happen with probability zero.
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Fig. 2. Geometric interpretation of an LP.

LP extreme-point finding procedure such that the searchesjzac
restricted to{s;; 1, ..., sy }. Todo so, leB € REX(L~D e a matrix
that satisfies

B'B=1,,
BT[Sl7 ceey Sl] =0.

(18a)
(18b)

Such a matriB can be obtained by standard procedures such as QR
decomposition [13]. We assume thatakes the form

r = Bw (19)

for somew € R*~!, and consider solving (16) and (17) with such
anr. Sincer is orthogonal to the old extreme poirts, ..., s;, the
intuitive expectation is that (16) and (17) should both Iéaghew
extreme points. Interestingly, we found theoreticallyt thgpectation

is not true, but close. Consider the following lemma:

Lemma 2. Suppose that = Bw, whereB € REX* (D satisfies
(18) andw ~ N(0,I,_,;). Then, with probability 1, at least one of
the optimal solutions of (16) and (17) is a new extreme paiat;s;

for somei € {l + 1, ..., N}. The certificate of finding new extreme
points is indicated byp*| # 0 for (16), and|g*| # 0 for (17).

Lemma 2 is proven using the same concept as that in the Appendi
We omit the proof due to lack of space here, and its detailsbgil
given in [9]. By repeating the above described procedurescan
identify all the extreme pointsy, ..., sy. The resultant CAMNS-LP
method is summarized in the following steps:

Given an affine set characterization 2-tup(®,(d).
Stepl. Setl =0,andB =1;.
Step 2. Randomly generate a vectas ~ A(0,I._;), and set
r := Bw.
Step 3. Solve the LPs (16) and (17), and obtain their optimal solu-

tions, denoted by andas, respectively.

Step4. If Il =0,thenS = [Ca} +d, Caj+d],
else . .
If [p*| #0,thenS :=[S Caj +d],
If |¢*] # 0, thenS :=[S Cab +d].
Step 5. Updatel as the number of columns 8f
Step 6. Apply QR decomposition
& R
s—laal| .
whereQ; € RY*, Qo € REXUE-D andR, € RV
UpdateB := Q..
Step 7. RepeatStep 2to Step 6until [ = N.

Let us consider the implementation issues of the above peapo
method, which depends on those of LPs. Itis well known that d®

We may find another extreme point by solving the maximizationnot suffer from local minima. Moreover, the LPs we encouf(ts)

counterpart of (15)

¢* = max r’ (Ca +d)
“ (17

st. Ca+d>0.

or (17)] can be solved effectively by interior-point algbrns, with

a worst-case complexity aD(L*®(L(N — 1) + (N — 1)?)) ~
O(L*3(N — 1)) for L > N [12]. Since the algorithm solves
2(N — 1) LP problems in the worst case, we infer that its worst-
case complexity i€)(L'-°(N —1)?). Based on Theorem 2, Lemma

Using the same idea as above, we can show the following: Undek Lemma 2, and the above discussion, we assert that

the premise of Lemma 1, the solution of (17) is, with prohiabil,
uniquely given by an extreme poist different from that in (15).
Suppose that we have identifiégxtreme points, say, without

Proposition 1. Under (A1)-(A4), the CAMNS-LP method finds all
the true source vectors, ..., sy with probability 1. It does so with

loss of generality{si, ..., s;}. Our interest is to refine the above @ worst-case complexity 6?(L"*(N — 1)*).



Fig. 3. Human face images: (a) the sources, (b) the observatindgcathe extracted sources obtained by CAMNS-LP.

5. SIMULATIONS AND CONCLUSIONS 051

= Pr[v = 0] is of measure zero. This in turn implies that

p1 < p2 < --- < pn holds with probability 1.

We synthetically generated 5 mixtures [Fig. 3(b)] from 5 laum
face images [Fig. 3(a)]. The extracted sources obtaineddITS-
LP is displayed in Fig. 3(c). One can see that the extractartes

are very similar to the original, with separation residuaity being [1]
slightly noticeable in the 4th image. In [9], we will provideore
simulation results, such as comparisons with nICA [4] andANBI.
In conclusion, we have presented a systematic LP-basedtheth (2]
for realizing the nBSS criterion by CAMNS. The proposed réth
uses LPs to find the true source signals, the process of whialr i 3]
mune to local minima. Moreover, the method is efficient ingbase
that its worst-case complexity is of the orderIdf>, whereL is the
data length. Simulation results give a good validation ef bfind [4]
separability of the proposed method.
[8]
6. APPENDIX: PROOF OF LEMMA 1
Any pointinS = conv{su, ..., sn } can be equivalently represented
by s = Zfil 0;s:, whered > 0 andd”1 = 1. Then problem (15) (6]
can be reformulated as [7]
: N
ooy i O (20)
s.t. 071=1,60 >0, 8]
wherep; = r”s;. We assume without loss of generality that <
p2 < - < pn. I p1 < p2 < -+ < pnw, then it is easy to (9]
verify that the optimal solution to (20) is uniquely given®Yy = e;.
In its counterpart in (15), this translates indd = s;. But when [10]

p1=p2=---=ppandpp < ppy1 < --- < pn for someP,
the solution of (20) is not unique. In the latter case, thetsmh set
isO@={0]6"1=1,0>0,0p41 = --=0nN =0}

We now prove that the non-unique solution case happens with]
probability zero. Suppose that = p; for somei # j, which

[12]
means that
(si—s;) 't =0. (21)
Let v = (s; — s;)Tr. Apparently, v follows a distribution [13]
N(0, ||s; — s;||?). Sinces; # s;, the probabilityPr[p; =
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