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A Convex Analysis Framework for Blind
Separation of Non-Negative Sources
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Abstract

This paper presents a new framework for blind source sdparédBSS) of non-negative source
signals. The proposed framework, referred herein to aseomawnalysis of mixtures of non-negative
sources (CAMNS), is deterministic requiring no source petedence assumption, the entrenched premise
in many existing (usually statistical) BSS frameworks. Teeelopment is based on a special assumption
called local dominance. It is a good assumption for souigesds exhibiting sparsity or high contrast, and
thus is considered realistic to many real-world problenthsas multichannel biomedical imaging. Under
local dominance and several standard assumptions, we applex analysis to establish a new BSS
criterion, which states that the source signals can be giriidentified (in a blind fashion) by finding the
extreme points of an observation-constructed polyhe@talethods for fulfilling the CAMNS criterion
are also derived, using either linear programming or sisngkometry. Simulation results on several data
sets are presented to demonstrate the efficacy of the prbposthod over several other reported BSS
methods.
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. INTRODUCTION

Recently there has been much interest in blind separationoafnegative source signals [1], [2],
referred herein to as non-negative blind source separ@&B8S). There are many applications where
the sources to be separated are non-negative by naturexdonpde, in analytical chemistry [3], [4],
hyperspectral imaging [5], and biomedical imaging [6]. Hawcleverly exploit the non-negative signal
characteristic in NnBSS has been an intriguing subject,ihgatb numerous nBSS alternatives being
proposed [7]-[11].

One major class of nBSS methods utilizes the statisticapgnty that the sources are mutually
uncorrelated or independent, supposing that the sourcestisly that property. Methods falling in this
class include second-order blind identification (SOBI)][1fast fixed-point algorithm for independent
component analysis (ICA) [13], non-negative ICA (nICA) [8lochastic non-negative ICA (SNICA) [8],
and Bayesian positive source separation (BPSS) [9], to reafieev. SOBI and fast ICA were originally
developed for more general blind source separation (BS&)lggms where signals can be negative. The
two methods can be directly applied to nBSS, but it has beparted that their separated signals may
have negative values especially in the presence of finiteokaaffects [4], [14]. nICA takes source non-
negativity into account, and is shown to provide perfectsation when the sources have non-vanishing
density around zero (which is also called the well-grounckaatlition). SNICA uses a simulated annealing
algorithm for extracting non-negative sources under theifmim mutual information criterion. BPSS
also uses source non-negativity. It applies Bayesian atitm with both the sources and mixing matrix
being assigned Gamma distribution priors.

Another class of nBSS methods is deterministic requiringassumption on source independence
or zero correlations. Roughly speaking, these methodsoitplexploit source non-negativity or even
mixing matrix non-negativity, with an attempt to achieversokind of least square criterion. Alternating
least squares (ALS) [10], [15] deals with a sequence of legsfres problems where non-negativity
constraints on either the sources or mixing matrix are iradoBlon-negative matrix factorization (NMF)
[11] decomposes the observation matrix as a product of twenegative matrices, one serving as the
estimate of the sources while another the mixing matrix. NMRot a unique decomposition, which may
result in indeterminacy of the sources and mixing matrix.oVercome this problem, a sparse constraint
on the sources has been proposed [16].

In this paper we propose a new nBSS framework, known as camnalysis of mixtures of non-negative

sources (CAMNS). Convex analysis and optimization tealesghave drawn considerable attention in
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signal processing, serving as powerful tools for varioysd® such as communications [17]-[22], array
signal processing [23], and sensor networks [24]. Aparhftsing source non-negativity, CAMNS adopts
a special deterministic assumption calledal dominance This assumption was initially proposed to
capture the sparse characteristics of biomedical imaggls [26], but we found it a good assumption
or approximation for high contrast images such as humanagisit as well. Under the local dominant
assumption and some standard nBSS assumptions, we shogvassivex analysis that the true source
signals serve as the extreme points of some observaticstraoted polyhedral set. This geometrical
discovery is not only surprising but important, since it\pdes a novel nBSS criterion that guarantees
perfect blind separation. To practically realize CAMNS, aive extreme-point finding algorithms using
either linear programming or simplex geometry. As we wiledey simulations, the blind separation
performance of the CAMNS algorithms is promising even inphesence of strongly correlated sources.

We should stress that the proposed CAMNS framework is détéstic, but it is conceptually different
from the other existing deterministic frameworks such asMM particular, the idea of using convex
analysis to establish nBSS criterion cannot be found in therdrameworks. Moreover, CAMNS does
not require mixing matrix non-negativity while NMF requsteThe closest match to CAMNS would be
non-negative least correlated component analysis (nL@B), [[26], a concurrent development that also
exploits the local dominance assumption. Neverthelessjecoanalysis is not involved in nLCA.

CAMNS exploits the signal geometry arising from local doarige, using convex analysis and op-
timization. Such an exploration is reminiscent of that inB8f magnitude bounded sources (BSS-
MBS) [27]-[29], the latter of which utilizes signal geometiue to signal boundedness. In [27], Prieto
al. use a neural learning algorithm to determine the verticemnobbservation space generated by MBS.
Erdogan [28] proposes an infinity norm optimization problenhis endeavor of BSS-MBS, and shows
that the optimal solution of that problem can result in perfeignal separation. In [29], Vrinst al.
develop a BSS-MBS method by maximizing a range-based inifae range-based contrast is shown
to bediscriminant i.e., every local maxima leads to perfect separation of smece.

The paper is organized as follows. In Section Il, the problgatement is given. In Section Ill,
we review some key concepts of convex analysis, which wo@dubeful for understanding of the
mathematical derivations that follow. The new BSS criteriior separating non-negative sources is
developed in Section IV. We show how to use linear progranf8sjLto practically achieve the new
criterion in Section V. Section VI studies a geometric alttive to the LP method. Finally, in Section
VII, we use simulations to evaluate the performance of theppsed methods as well as some other

existing nBSS methods.
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II. PROBLEM STATEMENT AND ASSUMPTIONS
For ease of later use, let us define the following notations:

R, RN, RMxN  get of real numbersV-vectors,M x N matrices

R, Rﬂf, Rﬂ‘fXN Set of non-negative real numbers;vectors,M x N matrices

1 All one vector

In N x N identity matrix

€; Unit vector with theith entry being equal to 1
= Componentwise inequality

-l Euclidean norm

N(p,X) Gaussian distribution with megm and covariances

The scenario under consideration is that of linear insteedas mixtures. The signal model is

x[n] = As[n], n=1,...,L 1)
wheres[n] = [ s1[n],...,sny[n] |7 is the input or source vector sequence withdenoting the input
dimensionx[n] = [ z1[n],...,za[n] |T is the output or observation vector sequence withdenoting

the output dimensionA € RM*N is the mixing matrix describing the input-output relatiand L is

the sequence (or data) length and we assiime max{)M, N}. Note that (1) can be rewritten as

N
:BZ':ZCLZ']'S]',’L':L...,M, (2)
J=1
wherea;; is the (i, j)th element ofA, s; = [ s;[1],...,s;[L] |7 is a vector representing thith source
signal ande; = [ 2;[1],...,2;[L] |7 is a vector representing thiéh observed signal.

In BSS, the problem is to extrasfn| without information ofA. The BSS framework to be proposed
is based on the following assumptions:
(A1) All s; are componentwise non-negative; i.e., for egch; € Ri.
(A2) Each source signal vector lliscal dominantin the following sense: For eache {1,..., N}, there
exists an (unknown) indeg; such thats;[¢;] > 0 ands;[{;] = 0, Vj # 4. (This means that for each

source there is at least omeat which the source dominates.)

(A3) The mixing matrix has unit row sum; i.e., for al=1,..., M,
N
Z Qi = 1. (3)
j=1

(A4) M > N andA is of full column rank.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 10, PRR, PP. 5120-5134, OCT. 2008 5

Let us discuss the practicality ¢Al) — (A4). Assumption(Al) is true in image analysis [5], [6]
where image intensities are often represented by non-megatimbers. AssumptiofA2) is special
and instrumental to the development that ensues. It may bepletely satisfied or serve as a good
approximation when the source signals are sparse (or comtany zeros). In brain magnetic resonance
imaging (MRI), for instance, the non-overlapping regiornha spatial distribution of a fast perfusion and a
slow perfusion source images [6] can be higher ®&h. It may also be appropriate to assu(@) when
the source signals exhibit high contrast. Assumpfidad) is a standard assumption in BSS. Assumption
(A3) is automatically satisfied in MRI due to the partial voluméeef [26], and in hyperspectral images
due to the full additivity condition [5]. Whe(A3) is not satisfied, the following idea [26] can be used.

Suppose that!'1 # 0 and szl # 0, V i,7 and consider the following normalized observation vectors

O S TEE @
e :cl.Tl N ot iL'iTl s;‘rl '

By letting a;; = a;;sT1/&]1 ands; = s;/s71, we obtain a BSS problem formulatiat = >, a;;s;
which is in the same form as the original signal model in (R)sleasy to show that the new mixing
matrix, denoted byA, has unit row sum. In addition, the rank &f is the same as that of. To show
this, we notice that

A =D;'AD, (5)

whereD; = diag(z?'1,...,27,1) andD, = diag(s? 1, ..., s%1). SinceD; andD, are of full rank, we
have rankA) =rank(A).

I1l. SOME BASIC CONCEPTS OFCONVEX ANALYSIS

We review some convex analysis concepts that will play aroitamt role in the ensuing development.
For detailed explanations of these concepts, readers e to [30], [31], [32] which are excellent
literatures in convex analysis.

Given a set of vector§sy, ..., sy} C RE, the affine hullis defined as

N
GERN,Zeizl}- 6)
1=1

An affine hull can always be represented by an affine set:

N
aff{s1,...,sn} = { T = ZGZ-SZ-
i=1

aff{sl,...,sN}:{w:Ca—i—d|a€RP} (7)

for some (non-uniqued € RY andC € REYXP, Here,C is assumed to be of full column rank aitlis

the affine dimension which must be less than For example, if{s1,...,sy} is linearly independent,
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then P = N — 1. In that case, a legitimat@C, d) is given byC = [ s; — sy, 82 — SN,-..,SN—1 — SN ]
andd = sy. To give some insights, Fig. 1 pictorially illustrates ariredg hull for N = 3. We can see

that it is a plane passing through, s2, andss.

Given a set of vector§sy, ..., sy} C RE, the convex hullis defined as
N N
conv{sl,...,sN}:{w:ZHisi GeRf,Zeizl}. (8)
=1 =1
For N = 3, a convex hull is a triangle with vertices, s2, ands3 Geometricallys, ..., sy would be the
‘corner points’ of its convex hull, defined formally as teetreme pointsA pointx € conv{si,..., sy}
is an extreme point ofonv{sy,...,sy} if it cannot be a nontrivial convex combination &f, ..., sy;
i.e.,
N
x # Z 0;si 9)
i=1
forall 8 ¢ Rf, vazl 0; = 1, and@ # e; for anyi. The set of extreme points @bnv{si,..., sy} must
be either the full set or a subset pd1,...,sy}. In addition, if{sq,..., sy} is an affinely independent
set (or{s; — sn,...,Sn—1 — sy} is a linearly independent set), then the set of extreme paift
conv{siy,...,sy} is exactly {sy,...,sy}. Moreover, the boundary ofonv{si,...,sy} iS entirely

constituted by all itfaces defined byconv{s;,,...,s;,} where{iy,....ix} C {1,..., N}, iy # i; for
k#1,andK < N. A facetis a face withK' = N — 1. For example, in Fig. 1, we can see that the facets

are the line segmentsnv{si, sa}, conv{ss, s3} andconv{sy, s3}.

aff{sy, sy, 83} = {x = Ca + d|a € R?}

-~

- S9 \\\\

~

Fig. 1. Example of 3-dimensional signal space geometryNo+ 3.

A simplest simplexf affine dimensionV — 1, or (N — 1)-simplex is defined as the convex hull df

affinely independent vectofs, ..., sy} € RV~ An (IV — 1)-simplex is formed byV extreme points,
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N facets, and a number of faces. The family of these simplesplekes has the vertex-descriptions

including a point, line segment, triangle fof = 1,2, and 3, respectively.

IV. NEw NBSS QRITERION BY CONVEX ANALYSIS

Now, consider the BSS problem formulation in (2) and the aggions in(Al1)-(A4). Under(A3), we

see that every observatian is an affine combination of the true source sign@s, ..., sy }; that is

T; Eaff{sl,...,sN} (10)
foralli =1,..., M. This leads to an interesting question whether the obdenst, ..., x,; provide
sufficient information to construct the source signal affindl aff{s;,...,sx}. This is indeed possible,

as described in the following lemma:

Lemma 1. Under (A3) and (A4), we have
aff{s1,...,sny} =aff{xq,..., 2} (11)

The proof of Lemma 1 is given in Appendix A. Figure 2(a) dentoates geometrically the validity
of Lemma 1, for the special case &f = 2 where aff{s;,...,sy} is a line. Now let us focus on
the characterization offf{s;,...,sy}. It can easily be shown frorfA2) that {s1,...,sn} is linearly

independent. Henceff{si,...,sy} has dimensionV — 1 and admits a representation
aff{sl,...,sN}:{m:Ca—l—d|a€]RN*1} (12)

for some(C,d) € REX(V-1) x RL such thatank(C) = N — 1. Note that C, d) is non-unique. Without
loss of generality, we can restri€® to a semi-orthogonal matrix, i.eGTC = 1. If M = N, it is easy
to obtain(C, d) from the observationg, ..., x)s; see the review in Section Ill. For the more general
case ofM > N, (C,d) may be found by solving the following minimization problem
M
(C,d) = arg réug Z €(6.a) () (13)

eréor !

wheree 4(x) is the projection error of onto A, defined as

ea(z) = min || — &3, (14)
zeA

and
AC,d)={z=Ca+d|acR" 1} (15)
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is an affine set parameterized b§,d). The objective of (13) is to find an\{ — 1)-dimensional affine
set that has the minimum projection error with respect todbgervations. Problem (13) can be solved

analytically as stated in the following proposition:

Proposition 1. The affine set fitting problem in (13) has a closed-form swoiuti

1 M
d= - Z} x; (16)
C=[q(UU"),q(UU"),...,qv1(UU") | 17)
whereU =[x, —d,...,x) —d ] € REXM and the notationg;(R) denotes the eigenvector associated

with theith principal eigenvalue of the input matrik.

The proof of Proposition 1 is given in Appendix B. We shouleess that this affine set fitting provides
a best affine set in terms of minimizing the projection erkence, in the presence of noisy data, it has

an additional advantage of noise mitigation far > N.

€3 aff{s1, 82} = aff{x, o, x3}

\

S

S =A(C,d)nRE:
= conv{sy, s2}

I\

€9 €9

€]

(@) (b)

Fig. 2. Geometric illustrations of CAMNS, for the specialseaof N = 2, M = 3, and L = 3. (a) Affine set geometry
indicated by Lemma 1 and Proposition 1; (b) convex hull geoynguggested in Lemma 2.

Recall that the source signals are non-negative. Hence amedh € aff{sy,...,sy} mRi for any .

Let us define
S = aff{sy,..., sy} NRE :A(C,d)ﬂRi (18)

={zx|z=Ca+d, >0, acR¥ (19)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 10, PRR, PP. 5120-5134, OCT. 2008 9

which is a polyhedral set. We can show that
Lemma 2. Under (A1) and (A2), we have
S =conv{si,...,sn}. (20)

The proof of Lemma 2 is given in Appendix C. Following the slmplustrative example in Figure 2(a),
in Figure 2(b) we verify geometrically thaf is equivalent toconv{si,...,sy} for N = 2. From
Lemma 2, we notice an important consequence that the setirefne points ofS or conv{si,...,sy}
is {s1,...,sn}, since{sy,...,sn} is linearly independent [due tPA2)]. The extremal property of
{s1,...,sn} can be seen in the illustration in Figure 2(b).

From the derivations above, we conclude that
Theorem 1. (nBSS criterion by CAMNS) Under (A1) to (A4), the polyhedral set
S:{wERL‘w:Ca—i—dtO,aERN*l} (22)

where (C,d) is obtained from the observation sétq,...,x);} by the affine set fitting procedure in

Proposition 1, hasV extreme points given by the true source vectars.., sy.

Proof: Theorem 1 is a direct consequence of Lemma 1, Propositioerhnha 2, and the basic result
that the extreme points ebnv{s;,...,sy} aresy,...,sy. [ |
The theoretical implication of Theorem 1 is profound: It gagts that the true source vectors can
be perfectly identified by finding all the extreme points&fThis provides new opportunities in nBSS
that cannot be found in the other presently available liteeato our best knowledge. Exploring these

opportunities in practice are the subject of the followimgtsons.

V. LINEAR PROGRAMMING METHOD FORCAMNS

This section, as well as the next section are dedicated tprénetical implementation of CAMNS. In
this section, we propose an approach that uses linear pnsglaPs) to systematically fulfil the CAMNS
criterion. The next section will describe a geometric apptoas an alternative to the LP.

Our problem as indicated in Theorem 1 is to find all the extrpoiets of the polyhedral s&tin (19). In
the optimization literature this problem is known as veeximeration; see [33]-[35] and the references
therein. The available extreme-point finding methods aphisticated, requiring no assumption on the
extreme points. However, the complexity of those methodslavimcrease exponentially with the number

of inequalitiesL (note thatZ is also the data length in our problem, which is often largeriactice),
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except for a few special cases not applicable to this worle mbtable difference of the development
here is that we exploit the characteristic that the extrewmiatp s, ..., sy are linearly independent in
the CAMNS problem [recall that this property is a direct aemsence 0{A2)]. By doing so we will
establish an extreme-point finding method (for CAMNS) whosmplexity is polynomial inL.
We first concentrate on identifying one extreme point fr8mConsider the following linear minimiza-
tion problem:
p*= min r's

° (22)

subject to (s.t.) s€S
for some arbitrarily chosen directianc R”, wherep* denotes the optimal objective value of (22). Using

the polyhedral structures & in (19), problem (22) can be equivalently represented by Bn L

p*= min r’(Ca+d)
“ (23)
st. Ca+d>=0

which can be solved by readily available algorithms suchhaspolynomial-time interior-point meth-
ods [36], [37]. Problem (23) is the problem we solve in prastibut (22) leads to important implications
to extreme-point search.

A fundamental result in LP theory is that s, the objective function of (22), attains the minimum at
a point of the boundary af. To provide more insights, some geometric illustratiores given in Fig. 3.
We can see that the solution of (22) may be uniquely given iy afrthe extreme points; [Fig. 3(a)],
or it may be any point on a face [Fig. 3(b)]. The latter caseepastrouble to our task of identifying,
but it is arguably not a usual situation. For instance, indamonstration in Fig. 3(b); must be normal
to so — s3 which may be unlikely to happen for a randomly pickedwith this intuition in mind, we

prove in Appendix D that

Lemma 3. Suppose that is randomly generated following a distributiok((0,1). Then, with proba-
bility 1, the solution of (22) is uniquely given By for somei € {1, ..., N}.

The idea behind Lemma 3 is that undesired cases, such as thaf. i3(b) happen with probability zero.

We may find another extreme point by solving the maximizatoonterpart of (22)
¢ = max r’(Ca+d)
“ (24)
st. Ca+d*>0.
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' r '
- P Sy r.

optimal point ! / \ 72

set of optimal point
\s

7

S1

S3
\ 83

(@ (b)

Fig. 3. Geometric interpretation of an LP.

Using the same derivations as above, we can show the folipwinder the premise of Lemma 3, the
solution of (24) is, with probability 1, uniquely given by a&axtreme points; different from that in (22).

Suppose that we have identifiédextreme points, say, without loss of generalifg;, ..., s;}. Our
interest is in refining the above LP extreme-point findinggeaure such that the search space is restricted

to {s;11,...,sn}. To do so, consider a thin QR decomposition [38] #f, ..., s;]
(81, -, 81] = Q1Ry, (25)

whereQ; € RY*! is semi-unitary and®; € R**! is upper triangular. Let

B=I,-QQl. (26)

We assume that takes the form
r = Bw (27)

for somew € R”, and consider solving (23) and (24) with suchmarSincer is orthogonal to the old
extreme pointssy, ..., s;, the intuitive expectation is that (23) and (24) should betd to new extreme
points. Interestingly, we found theoretically that expicin is not true, but close. Consider the following

lemma which is proven in Appendix E:

Lemma 4. Suppose that = Bw, whereB € RE*L s given by (26) andw is randomly generated
following a distribution\'(0,1). Then, with probability 1, at least one of the optimal sauo8 of (23)
and (24) is a new extreme point; i.e,, for somei € {{+1, ..., N}. The certificate of finding new extreme
points is indicated byp*| # 0 for the case of (23), anty*| # 0 for (24).
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By repeating the above described procedures, we can igaitithe extreme points, ...

resultant CAMNS-LP method is summarized in Table I.

TABLE |

A SUMMARY OF THE CAMNS-LP METHOD.

CAMNS-LP method

Given

Step 1.
Step 2.
Step 3.

Step 4.

Step 5.
Step 6.

Step 7.

an affine set characterization 2-tupl€,d).

Setl =0, andB =1 .

Randomly generate a vectar ~ A/(0,1.), and setr := Bw.
Solve the LPs

* . T
p= guin v (Catd)
* T
Tl (Cotd

and obtain their optimal solutions, denoted &y and «5, respectively.
Ifi=0

S=[Ca}i+d, Cal+d]
else

If |p*] #0thenS :=[S Caf +d].

If |¢*| #0thenS:=[S Casj +d].
Updatel to be the number of columns &.
Apply QR decomposition

S =QiRy,

whereQ; € R“*" andR, € R™*'. UpdateB :=I;, — Q: Q7.
RepeatStep 2 until [ = N.

12

,8n. The

The CAMNS-LP method in Table | is not only systematicalhagyhtforward to apply, it is also efficient

due to the maturity of convex optimization algorithms. Wsi primal-dual interior-point method, each

LP problem [or the problem in (22) or (24)] can be solved witha@st-case complexity o (L (L(N —
1)+ (N —1)3)) ~ O(L**(N — 1)) for L > N [37]. Since the algorithm solveX N — 1) LP problems

in the worst case, we infer that its worst-case complexit@id.'>(N — 1)?).

Based on Theorem 1, Lemma 3, Lemma 4, and the above comptégiyssion, we assert that

Proposition 2. Under (Al1)-(A4), the CAMNS-LP method in Table | finds all the true source vscto
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s1,..., 8y With probability 1. It does so with a worst-case complexityXL!-5(N — 1)2).

Some further discussions on the algorithm complexity ang imoorder.

1) In the complexity result in Proposition 1, the factof-® is the theoretical worst-case number of
iterations for an interior-point optimization algorithra solve an LP. In many LP applications the
number of iterations is usually found to grow much slowemtliae worst-case and seem like a
constant. Hence, in practice CAMNS-LP works more IRéL(N — 1)?) on average.

2) It is interesting to compare the complexity of CAMNS-LPdasome benchmarked BSS methods.
nICA [7], NMF [11], Erdogan’s BSS-MBS algorithm [28] can bernfied to have complexities
given by O(N2Ln), O(N3L?n), andO(N?Ln), respectively, whereg is the number of iterations
for each respective algorithm. To put the comparison intotext, we rewrite the CAMNS-LP
complexity asO((N — 1)2Ln) wheren is the number of iterations again. Clearly CAMNS-LP has
a competitive complexity order compared to those methods.

We have provided a practical implementation of CAMNS-LP http://www.ee.cuhk.edu.

hk/ ~wkma/CAMNS/CAMNS.htm The source codes were written in MATLAB, and are based on a
reliable convex optimization software SeDuMi [36]. Readare encouraged to test the codes and give

us some feedback.

VI. GEOMETRIC METHOD FORCAMNS

The CAMNS-LP method developed in the last section effebtiuees numerical optimization to achieve
the CAMNS criterion. In this section we develop analyticalsemi-analytical alternatives to achieving
CAMNS, that are simple and more efficient than CAMNS-LP. Thetinods to be proposed are for the
cases of two and three sources only, where the relativelplsimeometrical structures in the two cases
are utilized.

To facilitate the development, in Section VI-A we provide a@ternate form of the CAMNS criterion.

Then, Sections VI-B and VI-C describe the geometric algani for two and three sources, respectively.

A. An Alternate nBSS Criterion
Let us consider the pre-image &funder the mapping = Ca + d, denoted by
f:{aERN’l | Ca+d>0}

={aeR"" | cJa+d, >0, n=1,...,L } (28)
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wherec! is thenth row of C. There is a direct correspondence between the extremespaiid and

F, as described in the following lemma:

Lemma 5. The polyhedral sef in (28) is equivalent to an (N-1)-simplex
F =conv{ay,...,ayn} (29)

where eachn; € RV~ satisfies

The proof of Lemma 5 is given in Appendix F. Hence, as an adtira to our previously proposed
approach where we findsy, ..., sy} by identifying the extreme points aof, we can achieve perfect
blind separation by identifying the extreme points ®f In this alternative, we are aided by a useful

convex analysis result presented as follows:

Lemma 6. (Extreme point validation for polyhedra [31]) For a polyhedral set in form of (28), a point

a € F is an extreme point af if and only if the following collection of vectors
Ca={ch e R |Tau=—d,, n=1,...,L} (31)
containsN — 1 linearly independent vectors.
In summary, an alternate version of the BSS criterion in Téeol is given as follows

Theorem 2. (Alternate nBSS criterion by CAMNS) Under (Al) to (A4), the set

F={aeR"!'|Ca+d=0} (32)
where(C, d) are obtained from the observations, ...,z via the affine set fitting solution in Propo-
sition 1, hasN extreme pointsxy, ..., ay. Each extreme point corresponds to a source signal through

the relationshipCa; +d = s;. The extreme points of may be validated by the procedure in Lemma 6.

Proof: Theorem 2 directly follows from Theorem 1, Lemma 5, and Len@na |
Based on Theorem 2, we propose geometric based methodsfoages of two and three sources in

the following two subsections.
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B. Two Sources: A Simple Closed-Form Solution
For the case ofV = 2, the setF is simply
F={aeR|cpa+d, >0, n=1,...,L}. (33)
By Lemma 6,« is extremal if and only if
a=—dy/cn, ¢ #0, a€F (34)
for somen € {1, ..., L}. From (33) we see that € F implies the following two conditions:

a > —d,/cy, for all n such that ¢, > 0, (35)
a < —dy /ey, for all n such that ¢, < 0. (36)
We therefore conclude from (34), (35), and (36) that theesw& points are given by
oy = min{—d, /¢, | ¢, <0, n=1,2,..., L}, (37)
ay = max{—d,/c, | ¢, >0, n=1,2,...,L} (38)

which are simple closed-form expressions.

The complexity of the2-source geometric method in (37)-(38)3Y L).

C. Three Sources: A Semi-Analytic Solution

(&%}

(8]
Hi, a1

He,

Fig. 4. Geometric illustration of for N = 3.

For N = 3, the setF is a triangle onR?2. By exploiting the relatively simple geometry &, we can

locate the extreme points very effectively. Figure 4 shdvesgeometry ofF in this case. We see that the
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boundary ofF is entirely constituted by three facetsnv{a;, as}, conv{a, a3}, andconv{as, as}.

They may be represented by the following polyhedral exjpoess

conv{ay, az} = F NHy,, (39a)
conv{a,az} = F NHy,, (39Db)
conv{aw, as} = F N H,, (39¢)

for someky, ko, ks € {1, ..., L}, where
Hy = {a € R? | cla = —dy}. (40)

Suppose thati(, ko, k3) is known. Then, by Lemma 6, the three extreme points arengdyethe closed

form ) -
cl Ca ]
a=—| " ol (41a)
ch | i, |
- - _1 _ _
cl d
ap=—| ol (41b)
ch | i, |
- - _1 _ _
cl d
ag=—| Bl (41c)
ch | i, |

A geometric interpretation of (41) is as follows: an extrepmént is the intersection of any two of the
facet-forming linesHy,, Hy,, and’Hy,. This can also be seen in Figure 4.

Inspired by the fact that finding all the facets is equivaterfinding all the extreme points, we propose
an extreme-point finding heuristic in Table Il. The idea Ioehis illustrated in Figure 5. In the first stage
[Figure 5(a)], we move from some interior point over a directionr until we reach the boundary. This
process helps identify one facet line, sHy,. Similarly, by travelling over the direction opposite 0
we may locate another facet line, shy,,. The intersection of{;,, andHy, results in finding an extreme
point ;. In the second stage [Figure 5(b)], we use the same idea &teldbe last facet lin@{y,, by
travelling over directiom’ — a;.

The proposed algorithm requires an interior pawitas the starting point for facet search. Sometimes,

the problem nature allows us to determine such a point edsily instance, if the mixing matrix is
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TABLE I

A SUMMARY OF GEOMETRIC EXTREMEPOINT FINDING ALGORITHM.

Geometric Extreme-Point Finding Algorithm for N =3

Given an affine set characterization 2-tupl€,d), and a vectoin’ interior to F.
Step 1.  Randomly generate a directian~ A/ (0, I»).
Step 2. Locate a boundary point

P = o’ + tir

where
t1 = sup{t | a’ +tr € F}
= min{—(cfa’ + dn)/ch | cr<0, n=1,.., L}.
Step 3. Find the index set
Ki={n| Iy = —d,, n=1, .y L}

If {ck | kK € K1} contains2 linearly independent vectors (i.ep; is an extreme point
and there is an indeterminacy th#l, # H; for somek, ! € K1), then go toStep 1.
Step 4. Locate a boundary point
¢2 = a’ + tor

where
ty = inf{t | &' +tr € F}
=max{—(cta’ +d,)/cir | clr >0, n=1,.., L}
Step 5. Find the index set
Ko ={n| cTpy = —d,, n=1, .y L}

If {ck | k € K2} contains2 linearly independent vectors, then go$tep 1.

Step 6. Determine
T —1
2] L
ng dkz ’
for an arbitraryk; € K1 and ks € Ka.

Step 7. Setr = o’ — a1, and locate a boundary point

a; = —

Ps3 = o +tsr
where
ts = sup{t | o' +tr € F}
=min{—(cpa’ +d,)/cir | chr <0, n=1,..,L}.
Step 8.  Find the index set
Ks={n|cips =—dn, n=1,..,L}.

Step 9. Determine

—1 —1
| { d, } o | < { d, }
2 == ) 3= = )
ng ds C%; ds

for an arbitraryk, € K1, k2 € K2, andks € Ks.

17
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He,

/lpl 1!’3

Hy, €1 (891
P},
Hr,

(a) (b)
Fig. 5. lllustration of the operations of the geometric erie-point finding algorithm forvV = 3.

componentwise non-negative ay; > 0 for all 4, j, then it can be verified thak’ = 0 is interior to F.

When an interior point is not known, we can find one numenjchil solving the LP

max [
a, B (42)
s.t. cga—i—dn >0, n=1,...,L

(This is known as the phase | method in optimization [30].)

The complexity of the 3-source geometric heuristic in Tdblis O(L).

VIl. SIMULATIONS

To demonstrate the efficacy of the CAMNS-based algorithos, $imulation results are presented here.
Section VII-A is an X-ray image example where our task is stidguish bone structures from soft tissue.
Section VII-B considers a benchmarked problem [2] in whibh sources are faces of three different
persons. Section VII-C focuses on a challenging scenaniiniecent of ghosting effects in photography.
Section VII-D uses Monte Carlo simulation to evaluate thefggenance of CAMNS-based algorithms
under noisy condition. For performance comparison, we t@sbthree existing nBSS algorithms, namely
non-negative least-correlated component analysis (nL[28), non-negative matrix factorization (NMF)
[11], non-negative independent component analysis (nl[@R)and Ergodan’s BSS-MBS algorithm [28].

The performance measure used in this paper is describedlewdolet S = [sy,...,sy]| be the
true multi-source signal matrix, arsl = [81,...,8n] be the multi-source output of a BSS algorithm.

It is well known that a BSS algorithm is inherently subjectpiermutation and scaling ambiguities. We



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 10, PRR, PP. 5120-5134, OCT. 2008 19

propose a sum square error (SSE) measuré&fand S [39], [40], given as follows:

N 2

il
A~ T4
17|

(43)

S; —

wherew = (my,...,7y), andIly = {w € RY | m; € {1,2,...,N}, m # m; for i # j} is the set
of all permutations of{1,2,..., N}. The optimization of (43) is to adjust the permutatiensuch that

the best match between true and estimated signals is yjeldate the factor||s;||/||$x, || is to fix the

scaling ambiguity. Problem (43) is the optimal assignmeanblem which can be efficiently solved by

Hungarian algorithnt [41].

A. Example ofN = M = 2: Dual-energy Chest X-ray Imaging

Dual-energy chest x-ray imaging is clinically used for dtiteg calcified granuloma, a symptom of
lung nodules [42]. The diagnostic images are acquired fromstacked detectors separated by a copper
filter along which x-rays at two different energies are pds$®r visualizing the symptom of calcified
granuloma, it is necessary to separate bone structuresofintissue from the diagnostic images.

In this simulation we have twt64 x 164 source images, one representing bone structure and another
soft tissue. The two images can be found in [43] and they asplalfed in Figure 6(a). Each image
is represented by a source vectgre R, by scanning the image vertically from top left to bottom
right (therebyL = 1642 = 26896). We found that the two source signals satisfy the local cami
assumption [0(A2)] perfectly, by numerical inspection. The observation vegtor the diagnostic images

are synthetically generated using a mixing matrix

0.55 0.45
A= : (44)

0.63 0.37
The mixed images are shown in Figure 6(b). The separatedeisnafjthe various nBSS methods are
illustrated in Figure 6(c)-(h). By visual inspection, thAKINS-based methods and nLCA appear to yield
the best separation among the various methods. We also ateel@A and Erdogan’s algorithm provide
reasonably good performance. In Table Ill the various nethare quantitatively compared, using the
SSE in (43). The table suggests that the CAMNS-based methtmiy) side with nLCA achieve perfect

separation.

1A Matlab implementation is available ahttp:/si.utia.cas.cz/Tichavsky.html
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(e) ® (2 (h)

Fig. 6. Dual-energy chest x-ray imaging: (a) the source},tifp observations, and the extracted sources obtained )by (c
CAMNS-LP method, (d) CAMNS-geometric method, (e) nLCA, KMF, (g) nICA and (h) Erdogan’s algorithm.

B. Example ofV = M = 3: Human Face Separation

Three 128 x 128 human face images, taken from the benchmarks in [2], are tcsgénerate three

observations. The mixing matrix is

0.20 0.62 0.18
A=1035 037 028 |. (45)
0.40 0.40 0.20
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In this example, the local dominant assumption is not péyfexatisfied. To shed some light into this,
we propose a measure called fbeal dominance proximity factofLDPF) of theith source, defined as
follows:

si[n]

Ki = max ——————. (46)
n=l...L Y iy, 8[n]

Whenk; = oo, we have theth source satisfying the local dominant assumption pdytethe values of
k;'s In this example are shown in Table IV, where we see that IDEFEs of the three sources are strong
but not infinite.

Figure 7 shows the separated images of the various nBSS dsetiide see that the CAMNS-based
methods and nLCA provide good separation, despite the Hiattthe local dominance assumption is not
perfectly satisfied. This result indicates that the CAMNS4d methods have some robustness against
violation of local dominance. Moreover, nICA and Erdogaaigorithm work poorly due to the violation
of the assumption of uncorrelated sources. The SSE perfarenaf the various methods is given in
Table Ill, where we have two observations. First, the CAMNSmethod yields the best performance
among all the methods under test. Second, the performantte dfP method is better than that of the
CAMNS-geometric method. The latter suggests that the LFhatets more robust than the geometric
method, when local dominance is not exactly satisfied. Tdssilt will be further confirmed in the Monte

Carlo simulation in Section VII-D.

C. Example ofM = N = 4: Ghosting Effect

We take a285 x 285 Lena image from [2] as one source and then shift it diagortallgreate three
more sources; see Figure 8(a). Apparently, these soureestrangly correlated. Even worse, their LDPFs,
shown in Table IV are not too satisfactory compared to theipus two examples. The mixing matrix
is ) ;

0.02 0.37 0.31 0.30
0.31 0.21 0.26 0.22
A= . 47
0.05 0.38 0.28 0.29

0.33 0.23 0.21 0.23

Figure 8(b) displays the observations, where the mixingatfis reminiscent of the ghosting effect
in analog televisions. The image separation results anstilited in Figure 8(c)-(g). Clearly, only the
CAMNS-LP method and nLCA provide sufficiently good mitigati of the “ghosts”. This result once
again suggests that the CAMNS-based methods (as well as nhisCAot too sensitive to the effect of

local dominance violation. Regarding the comparison of @#MNS-LP method and nLCA, one may
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.

()

Fig. 7. Human face separation: (a) the sources, (b) the wisams, and the extracted sources obtained by (c) CAMNS-LP
method, (d) CAMNS-geometric method, (e) nLCA, (f) NMF, (dC and (h) Erdogan’s algorithm.
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TABLE Il

LOCAL DOMINANCE PROXIMITY FACTORS IN THE THREE SCENARIOS

Riq

source 1‘ source 2‘ source 3‘ source 4

Dual-energy X-ray 00 00 - -

Human face separatiofy 15.625 6.172 10.000 -

Ghosting reduction 2.133 2.385 2.384 2.080

TABLE IV

THE SSES OF THE VARIOUS NBSSMETHODS IN THE THREE SCENARIOS

SSEe(S,S) (in dB)
CAMNS-LP CAMNS-Geometric‘ nLCA ‘ NMF ‘ niCA ‘ Erdogan’s algorithm
Dual-energy X-ray -252.2154 -247.2876 -259.0132| 30.8372| 24.4208 23.8371
Human face separatior 9.4991 18.2349 19.6589 | 24.6158 | 38.5425 32.5437
Ghosting reduction 20.7535 - 31.3767 | 38.6202| 41.8963 39.1264

find that the nLCA separated images have some ghosting edsjdipon very careful visual inspection.
As for the proposed method, we argue that the residuals adeht notice. Moreover, our numerical
inspection found a problem that the nLCA signal outputs heegmative values sometimes. For this reason,

we see in Table Il that the SSE of nLCA is about 10dB largenttieat of the CAMNS-LP method.

D. Example ofM = 6, N = 3: Noisy Environment

We use Monte Carlo simulation to test the performance of #r@us methods when noise is present.
The three face images in Figure 7(a) were used to generateogsy observations. The noise is in-
dependently and identically distributed (i.i.d.), follmyg a Gaussian distribution with zero mean and
varianceos?. To maintain non-negativity of the observations in the datian, we force the negative
noisy observations to zero. We performed 100 independe@st At each run the mixing matrix was i.i.d.
uniformly generated on [0,1] and then each row is normalizetl to maintain A3). The average errors
e(S, S) for different SNRs (defined here as SHI@?LI |si||?/LNo?) are shown in Figure 9. One can
see that the CAMNS-LP method performs better than the otlethwoals.
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Fig. 8. Ghosting reduction: (a) the sources, (b) the obsensand the extracted sources obtained by (¢) CAMNS-Lhatgt
(d) nLCA, (e) NMF, (f) nICA and (g) Erdogan’s algorithm.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 10, PRR, PP. 5120-5134, OCT. 2008 25

50

45 4

—o— nICA

— Erdogan's algorithm
40 —%— NMF 4
—=&— nLCA

—6— CAMNS-geometric

Average €S, S)(dB)

—8— CAMNS-LP
e —

25 >

20 | 1

25 30 35 40
SNR (dB)

Fig. 9. Performance evaluation of the CAMNS-based method€A, NMF, nICA and Erdogan’s method for the human face

images experiment under noisy condition.

VIIl. CONCLUSION

We have developed a convex analysis based framework fornagative blind source separation.
The core of the framework is a new nBSS criterion, which gu@as perfect separation under some
assumptions [seeAQ)-(A4)] that are realistic in many applications such as multicterbiomedical
imaging. To practically realize this result, we have praaba systematic LP-based method for fulfilling
the criterion. We should mention a side benefit that the LFhoweteals with linear optimization that can
be solved efficiently and does not suffer from local minimarbver, we have used simplex geometry to
establish a computationally very cheap alternative to tRerniethod. Our current development has led to
two simple geometric algorithms, for two and three sourespectively. Future direction should consider
extension of the geometric approach to four sources andnoeye anticipate that the extension would
be increasingly complex in a combinatorial manner. By amsttrthe comparatively more expensive LP
method does not have such a troupkr se and is applicable to any number of sources.

We have also performed extensive simulations to evaluatsdiparation performance of the CAMNS-
based methods, under several scenarios such as x-ray, lparteaits, and ghosting. The results indicate

that the LP method offers the best performance among theusrnethods under test.
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APPENDIX
A. Proof of Lemma 1

Any x € aff{x1, ...,z } can be represented by

M
i=1
where@ ¢ RM, 971 = 1. Substituting (2) into (48), we get
N
Xr = Z ﬁij, (49)
j=1
where; = S 6;a;; for j = 1,..., N, or equivalently
B=AT6. (50)
Since A has unit row sum(A3)], we have
BT1=67(A1)=6T1=1. (51)

This implies that3”1 = 1, and as a result it follows from (49) thatc aff {sy,..., sy }.

On the other hand, any € aff{sy,..., s’} can be represented by (49) 8¢ 1 = 1. SinceA has full
column rank (A4)], there always exist & such that (50) holds. Substituting (50) into (49) yields)(48
Since (51) implies tha®”'1 = 1, we conclude that € aff{xy, ...,z }.

B. Proof of Proposition 1

As a basic result in least squares, each projection errat3h (

e (Ti) = aé%i;lfl |Ca +d — i3 (52)
has a closed form
eqem(@) = (@ —d) Pg(z; - d) (53)

wherePé is the orthogonal complement projection©f Using (53), we can therefore rewrite the affine

set fitting problem [in (13)] as

_min {mjn J(c,&)} (54)
cTc=I d

where

J(C,d) = Z(w —d)"PE(x; —d) (55)
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The inner minimization problem in (54) is an unconstrainedvex quadratic program, and it can be easily
verified thatd = % Zf‘il x; IS an optimal solution to the inner minimization problem. Bybstituting

this optimald into (54) and by lettingU = [x; — d, ...,z — d], problem (54) can be reduced to

_min  Trace{U"PLU} (56)
CTC=Iy_;

WhenC”'C = Iy_4, the projection matri>Pé can be simplified td;, — CC”. Subsequently (56) can
be further reduced to

~max  Trace{UTCCTU}. (57)
CTC:IN7 1

An optimal solution of (57) is known to be th& — 1 principal eigenvector matrix [44].

C. Proof of Lemma 2

Assume that € aff{sy,...,sy} NRE:

N
z=) 0;5,=0, 170=1.
i=1
From (A2), it follows thatz[¢;] = 0;s;[¢;] > 0, Vi. Sinces;[¢;] > 0, we must haveé; > 0, Vi. Therefore,

z lies in conv{sy, ..., sy }. On the other hand, assume that conv{si,...,sn}, i.e.,

N
z:Z@isi, 1To=1, 6~0
i=1
implying thatz € aff{sy, ..., sy }. From(Al), we haves; = 0 Vi and subsequently = 0. This completes

the proof for (20).

D. Proof of Lemma 3

Any point in § = conv{sy,..., sy} can be equivalently represented by- vazl 0;s;, wheref > 0

and6”1 = 1. Applying this result to (22), problem (22) can be reformethas

Join, il bipi (58)
st. 671=1, 6>0.
wherep; = r’'s;. We assume without loss of generality that< ps < --- < pn. If p1 < po < - < pn,
then it is easy to verify that the optimal solution to (58) iEquely given by8* = e;. In its counterpart
in (22), this translates int8* = s;. But whenp; = py = -+ = pp andpp < ppy1 < --- < py for
someP, the solution of (58) is not unique. In essence, the lattseazan be shown to have a solution
set

0={0|6"1=1,0>0, 6p,; =.. =0y = 0}. (59)
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We now prove that the non-unique solution case happens wathapility zero. Suppose that = p;

for somei # j, which means that

(si —s;)r=0. (60)
Letv = (s;—s;)"r. Apparently,v follows a distribution\ (0, ||s; — s;||?). Sinces; # s;, the probability
Prlp; = p;] = Pr[v = 0] is of measure zero. This in turn implies that < p, < --- < py holds with

probability 1.

E. Proof of Lemma 4

The approach to proving Lemma 4 is similar to that in Lemmaét L
pi=1"s; = (Bw)"s; (61)
for which we havep, =0 for i = 1,...,1. It can be shown that

pie1 < pry2 <0 < PN (62)

holds with probability 1, as long a&s;,...,sy} is linearly independent. Problems (22) and (24) are

respectively equivalent to

Okt O%a (63)

st. >0, 071=1,

ORY T (64)
st. 6=0, 671 =1.
Assuming (62), we have three distinct cases to consi{dér) p;.1 < 0, py < 0, (C2) py1 <0, py > 0,
and(C3) pi41 >0, py > 0.

For (C2), we can see the following: Problem (63) has a unique optirmAltisn 6* = ¢;; [and
s§* = s;41 In its counterpart in (22)], attaining an optimal valpe = p;,; < 0. Problem (64) has a
unique optimal solutior®* = ey [and s* = sy in its counterpart in (24)], attaining an optimal value
q¢* = pn > 0. In other words, both (63) and (64) lead to finding of new exieepoints. For(C1), it is
still true that (63) finds a new extreme point with < 0. However, problem (64) is shown to have a
solution set

0={0]16"1=1,0>0, 6, =---=0x =0} (65)
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which contains convex combinations of the old extreme goiand the optimal value ig = 0. A similar

condition happens witfC3), where (64) finds a new extreme point wigfh > 0 while (63) does not

with p* = 0.

F. Proof of Lemma 5

Equation (28) can also be expressed as

F={a cRY' | Ca+d € conv{sy,...,sn} }.

Thus, everya € F satisfies

N
Ca+d=> bs (66)
=1

for somed = 0, 871 = 1. SinceC has full column rank, (66) can be re-expressed as

N
o = Z@Z‘az‘, (67)
=1

wherea; = (CTC)~!C%(s;—d) (or Ca; +d = s;). Equation (67) implies thaF = conv{ay, ...,ay}.

Now, assume thafa;,...,an} are affinely dependent, i.e., there must exist an extremet poi; =

SV yia; where YoV 1y, = 1. One then hasy = Cay +d = S0 yis; where Y 1y = 1

which implies{si, ..., sy} are affinely dependent (contradiction). Thus, the/Sés an(N — 1)-simplex.
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