Foundametnal Course on

Probability, Random Variable and Random Processes

Teacher: W.K. Cham

1 Probability Theory

1 Random Variables

1 Random Processes

« Stationary RP & Ergodic RP
« Gaussian RP

* Filtering of RP



Random Variables ¢

The outcomes of the
experiments below are random
variables whose values are
defined at each sample points

Sample space is
the set
corresponds to all
possible outcomes

A sample point is
a point at which
an outcome of an
experiment is

S;, S, ... in @ sample space S of an experiment. sampled.
— ¥ ~ V
experiment outcome sample space sample point
A .| luminance X(i,7j) e [0,255] discrete (i)
hurﬂwm‘ ? voltage X() € (-o0, o) continuous ¢
Q“ x(I) e [L6] discrete I
-
= M .
:_} k(?) lines busy € [0,M] continuous 7




Definition of Probability Density Function p.d.f. s

Def: Let x represent a continuous random variable in a sample
space S. For each x we have a p.d.f. p(x) which is a function

that satisfies the following:
px)
)p(x)>20Vxe S

2)jp(x)dx = 1

3)Vx, <x, inS

> x

The probability of x € [x;, x,] = P(x, < x < x,) = jp(x)dx

X1

If xis continuous a 1.P(4) =0
at a, then the =13(x=a)=jp(x)da:O 2.P(S)=1

! _ 3.4B=0
probability of x=a — P(A+B)= P(4)+ P(B)




How to determine the p.d.f of a random variable
2 X(0) trx)

L A i /

~ 1\ / Ax = x, — x,

It

>
At A1, At, At,| I
[— [~

«— T > _’Ax‘_

(1) choose a value for Ax (resolution improves as Ax )
(2) choose a value for T (accuracy improves as 7' T)

For X; = X, |, p(x) will be
approximately constant over

that interval
\ /

p(x)(x, —x)= P(x; Sx<x,),x€[x,x,]

Ip(x)dx = P(x, £ x < x,)

At.

1

M-

P(x, <x<x
c 2),xe[x1,x2] — p(x) = L&
X, — X Ax T

p(x) =



Examples of p.d.fs &

Quantizer

o/pA

L PX)
: 1 —| x|
Laplacian ~ —exp][ ]
20 p
Gaussian 1 —X 1
ex
P

> X



Uniform Distribution ¢

Def: The uniform distribution with parameters a & b is defined by the

1/b for xe[a,a+b]
d.f. =
pdf. p) {O otherwise
2 PX)
1/b |
Properties: . s
, 1 2 a+b b
a+ X
E — dx=—|—| =a+—
[xxjxp jxx b{Zl a2
E[xz]:_erxz'1’9(3€)Cl'x=l . a+b—a +azb+ﬁ
a b| 3] 3
. 2 2 2
& =x’-x =d’ +ab+b——a —b——ab—b—

3 4 12



Gaussian Distribution ¢

Def- The Gaussian (normal) distribution with parameters ¢ & X

is defined by the p.d.f. i (x=—x)
p(x)= e
O 2T
Properties:
p(x)

— A

E[x] = J:x - p(x)dx =X

l

E[x2]: foo x? - plx)dx = X+
5o = E[xz]—E[x]2




p.d.f. of Linearly Combined Random Variables )

y=ax, tax,+.... +ax, wherea,,a,, ...... , a, are constants,

X1y Xoy vernenne , X, are n independent variable &

Py, (xl), p., (xz),..., P (xn) are their p.d.f respectively.

If y=x,+x, then py j px1 px2 (y—a )da
= p.(@)p,(y-olda
= convolution of p_ (x,)& p, (x,)
=p. ®PD,,
= P, ® P,
If y=x, +x, +... +x,

then py(y)=pxl OP,, ® 1t @D,

n



Probability Distribution Function

Def: The Probability Distribution Function #(x,) of a random
variable x is the probability that x is less than or equal to x, ,

.e. W(x,) = Tp(x)dx = P(x < x,).

e.g. I p(X)a

»X

w(x),

>X




Random Variables and Distribution Function (1

Consider a random variable x of p.d.f p(x) and distribution
function W(x).

Note that:
 The xin p(x) and W(x) is not a random variable but a
value of the random variable x.

« Thep.df p(x) is not a probability but a rate of change

of the probability W(x) w.rt. x, i.e. W)
dx

The distribution function W(x) of random variable x is the
probability that x has a value less than or equal to the
value x.



Probability Distribution Function W(x) 1

dW (x) W (x, + Ax)—W(x,)
— p— l. 1 1
p)= " o ()= pim P EOTAE
Example 1 p(x)
" 1 ‘
177 plx)= dVZ(x) o ey, ‘
x 0 otherwise I . .
> A
A
Example 2 p(Ax)
W(x) 4
4 o — p(X)=;P(xl-)'5(x—xi)

|_’_ where P(x, )= (x,)-(x, —¢) I I

Xy X9 X3 X4




Statistical Average ()

Def. The average value x ()
of a random variable x A

with a p.d.f p(x) is

X = I: X p(x) dx.

> X

=< |

Note :

1. x = E|x] = Expected value = Mean value = Ensemble average

2. If g(x) is an arbitrary function of x, the expected value of

e is Efg(c]=[ els) plr)as.



Moments (13)

Def. The n th moment of p(x) (about the origin)

= E[x"] — f;x"-p(x)dx n=1,2, ...

Def. The n th moment of p(x) about the x,

= E[(x—xo)”]:fw(x—xo)”-p(x)a’x n=1,2,..

Note: 1. The first moment (» = 1) (about the origin)
= E[x]: fx-p(x)dx:; = mean value of x
2. The second moment (n = 2)

—Elx?]= j: x* - p(x)dx = x*> = mean square value of x



Eximples (14)
Given : ar.v. x & its mean is x

) Find:  E|(x—x) X
sin: - Elle—x)|= [ (=)o (s :

x-plx dx x| p (x )dx

(- x
3 y
i) Find: | (x-xf | _

e Bl ‘

—E[ +x —Zx;_ I S ’ VvV \7 4

:J‘:XZ,p(x)dx—rgz:w p(x)dx 2xJ. X- p( )d

—0o0

5 =)
=x"+x —2x

x x)2 o> = variance of ther.v. x

wer of the r.v.
QA\ C. +D.C.) ‘ Power of the D.C. component ] Power of the A.C. component




Central Limit Theorem (s

X, X,, ..., x, areindependent random variables with p.d.f.

Dipp Prr» oo Doy - FOr y=x,+x,+ ... +x, ,the p.df of y is

p,0V) =P, ®Po® - ®Py, Where & is convolution.

Thz: If nis very large, then for all p_. the p.d.f of y equals

—(y-y)’
20_ 2

1
li = e
nl_l)”l;lo py(y) 0_@

where y=x+Xx,t..+Xx

2 2 2 2
6 =0, +0,+..+0,




100 Central Limit Theorem (s

{ 1 xe[-0.5,0.5] , pi(x,)
p,(x)= _ forie[1,100] A
0 otherwise
1

Find: p(y) the p.d.f. of y
Sin: x, =0 0.5

) b 1

(¢} = —= — <
l 12 12 b




Two-Dimensional Distributions (7

Def. The joint probability density function of two random variables x
and y is a function p(x,y) that possesses the properties

i) plx,y)20
I j y)dxdy =1
iii) P(x, <x<x,,y,<y<y,)= J%J‘ y) dxdy

Def. The joint probability distribution function is
w(x,p)= [ [ plx,y) dedy

0" W(x,y)
Ox 0y

SO p(x,y)=

Def. The random variables x and y with p.d.f- p,(x) and p (y) are
independent if p(x, y) = p,(x) p, ).




Two-Dimensinal Distributions (s

Def. The maginal probabiliy density functions of the variables x and y
e p(¥)=| poy)dy & p(»)=[ plxy)dx

Def. The maginal probability distribution functions are
W)= [ pyxydx=[" [ p(x.y) dydx

W, = P dy=|" | p(x.y) drdy

Find: kforthe 2D p.d f.

D (x,9)= ke x>0,y >0
’ 0 otherwise

foo ji p(x,y)dxdy =1

— kjm e " “dx jow e dy =1

Skt Lo
2 3
k=6




Moments of 2-D p.d.f «9)

Def. The moments of a joint p.d.f. p(x,y) are called joint moments
w, =Blx'y’1 = [ [ 'y p(x,y)dxdy

where i,j =0, 1,2, 3, ... and the order of W' isi+}.

= Wi, = fz I_Z x' p(x,y)dx dy

|

Note: E[x] =

I
=

E[y] =wo, = [y p(x,y)dx dy

Def. The central moments (i.e. moments about the mean) are

w, = El(x—x) (y-»)1 = [ [ (x=x) (y=») plx,»)dx dy

where i,j =0, I, 2, 3, ... and the order of W' isi+.

Note: The moment u,, is called the covariance of two variables.

c.f. variance of y is Gi = I_OO (y—})2 p,(y)dy



Example

Find: the three 2 order moments of ther.v.s xand y .
Sin:

The three 2" order moments are u,,, u,, and u,,.

1, =E[(x—x)]=E[x’~2xx+x ]=x’—x

= — =9, = =
iy, =E[(y—-y)1=Ely’-2yy+yl=y"'-y

. _ 2 _ 2
ey = 0 Hop =0
y

covariance

= E[(x—x)(y—y)]
=E[xy —xy-xy+xy]
~xy -y

Ky



Correlation

Def. The numerical measure of the similarity between x and y is the
normalised correlation coefficients and is defined as

Hy E[(x—x)(y—y)]

p = = .
v Hao B2 \/E[(x_ f)2 E[(y- y)z]

Note: (1) pe [-1,1]

(il)p =0 if x and y are uncorrelated (i.e. u,;, =0).
e.g. : —!
S p~0 { i | | | |
y
|
|

X
p—)]{
Yy

X
p—)—]{
Y

Def: Random variables x and y are uncorrelated if p =0 or u, =0.




Independent and uncorrelated

Def: Random variables x and y are uncorrelated if p =0 or u, =0.

Thz: If x and y are statistically independent then they are uncorrelated.

Proof:  x and y are statistically independent so p(x,y) = p,(x) p,(v) where
p;(x) and p,(y) are p.d.f of x and y respectively.

—xy  =E[xp]

Je¢)

| %y plx,y) dxdy

- ap(x)dx [ yp (v)dy

xy pu, =0

note :

= E[(x—x)(y-»)]

Xy —X)Y

- E[(x-x)(y-»)=E[xy-xy-xy+xy]=xp-xy=0

— u,; =0 andso xandy are uncorrelated.




Examples
Find: Wy, if p(xy) =p,(x) p,(»)
S = El—xY (y— )]
= E[(x—x)’] E[(y—»)]

— ., —

—(-x) (" -y )

___2 2_ —2—2

=Xy -x'y —x y'+x y

Given: A r.v. x is uniformly distribution between -1 and +1.
Find: the normalised correlation coefficient for x and y if y = x°.
Sin:

Hn:;/_)_ﬂ_’ ind: adl

remind: P=\/7
Moo Ko

3 9
=X —XX

)_czfoxp(x) dx =0

x3:J.OOx3p(x)dx:O S, =0 - p=0



Example

Given: x and y are 2 independentr.vsandu=x+y and v=x-y

Find: the condition under which # and v are uncorrelated.
Sin: » 5 2 )y o 2
o =X —X o,=y =y
1, =E[(u—u)(v—v)]
=E[{(x+y)-(x+»)Hx—y)—(x—y)}]

—2 -2

=E[¥ =7 +x —y —(x—3)(x+1)—(x+1)(x—)]

=X =) +x —y (=) (x+y)—(x+1)(x—)
—(Z—3%)~(x —»)
=0§—0§ S, =0 if o,=0,
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