Foundametrial Course on Probability, Random Variable and Random Processes

Teacher: W.K. Cham

- Probability Theory
- Random Variables
- □ Random Processes
 - Stationary RP & Ergodic RP
 - Gaussian RP
 - Filtering of RP

Random Variables (2)

The outcomes of the experiments below are random variables whose values are defined at each sample points s_1, s_2, \ldots in a sample space S

Sample space is the set corresponds to all possible outcomes of an experiment.

A sample point is a point at which an outcome of an experiment is sampled.

experiment

outcome

sample space

sample point

luminance $x(i,j) \in [0, 255]$

discrete (i,j)

voltage $x(t) \in (-\infty, \infty)$

continuous t

$$X(i) \in [1,6]$$

discrete i

k(t) lines busy $\in [0,M]$

continuous t

Definition of Probability Density Function p.d.f. (3)

Def: Let x represent a continuous random variable in a sample space S. For each x we have a p.d.f. p(x) which is a function that satisfies the following:

$$1) p(x) \ge 0 \forall x \in S$$

$$2 \int_{s}^{s} p(x) dx = 1$$

$$3) \forall x_{1} < x_{2} \text{ in } S$$

$$3) \forall x_1 < x_2 \quad \text{in } S$$

The probability of
$$x \in [x_1, x_2] = P(x_1 \le x \le x_2) = \int_{x_1}^{x_2} p(x) dx$$

If x is continuous at a, then the $=P(x=a)=\int_{-\infty}^{a} p(x)da=0$ probability of x=a

The 3 axioms of Probability

1.
$$P(A) \ge 0$$

$$2. P(S) = 1$$

3.
$$AB = 0$$

$$\rightarrow P(A+B)=P(A)+P(B)$$

How to determine the p.d.f. of a random variable (4)

- (1) choose a value for Δx (resolution improves as $\Delta x \downarrow$)
- (2) choose a value for T (accuracy improves as $T \uparrow$)

$$\int_{x_1}^{x_2} p(x) dx = P(x_1 \le x \le x_2)$$

For $X_1 \cong X_2$, p(x) will be approximately constant over that interval

$$p(x)(x_2 - x_1) \cong P(x_1 \le x \le x_2), x \in [x_1, x_2]$$

$$p(x) \cong \frac{P(x_1 \le x \le x_2)}{x_2 - x_1}, x \in [x_1, x_2] \longrightarrow p(x) \cong \frac{1}{\Delta x} \cdot \frac{\sum_{i=1}^{s} \Delta t_i}{T}$$

Uniform Distribution (6)

Def: The uniform distribution with parameters *a* & *b* is defined by the

$$p.d.f. \quad p(x) = \begin{cases} 1/b & \text{for } x \in [a, a+b] \\ 0 & \text{otherwise} \end{cases}$$

Properties:

$$\mathbf{E}[\mathbf{x}] = \mathbf{x} = \int_{-\infty}^{\infty} x \cdot p(x) dx = \frac{1}{b} \int_{a}^{a+b} x dx = \frac{1}{b} \left[\frac{x^2}{2} \right]_{a}^{a+b} = a + \frac{b}{2}$$

$$\mathbf{E}[\mathbf{x}^2] = \int_a^{a+b} x^2 \cdot p(x) dx = \frac{1}{b} \left[\frac{x^3}{3} \right]_a^{a+b} = a^2 + ab + \frac{b^2}{3}$$

$$\sigma^{2} = \overline{x^{2}} - \overline{x}^{2} = a^{2} + ab + \frac{b^{2}}{3} - a^{2} - \frac{b^{2}}{4} - ab = \frac{b^{2}}{12}$$

Gaussian Distribution (7)

Def: The Gaussian (normal) distribution with parameters $\sigma \& \overline{x}$ is defined by the p.d.f.

$$p(x) = \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{(x-x)^2}{2\sigma^2}}$$

Properties:

$$E[x] = \int_{-\infty}^{\infty} x \cdot p(x) dx = \overline{x}$$

$$E[\mathbf{x}^2] = \int_{-\infty}^{\infty} x^2 \cdot p(x) dx = x^2 + \sigma^2$$

$$\therefore \sigma^2 = E[\mathbf{x}^2] - E[\mathbf{x}]^2$$

p.d.f. of Linearly Combined Random Variables (8)

 $y = a_1x_1 + a_2x_2 + \dots + a_nx_n$ where a_1 , a_2 ,, a_n are constants, x_1, x_2, \dots, x_n are n independent variable &

 $p_{x_1}(x_1), p_{x_2}(x_2), \dots, p_{x_n}(x_n)$ are their p.d.f respectively.

If
$$y = x_1 + x_2$$
 then $p_y(y) = \int_{-\infty}^{\infty} p_{x_1}(\alpha) \cdot p_{x_2}(y - \alpha) d\alpha$

$$= \int_{-\infty}^{\infty} p_{x_2}(\alpha) \cdot p_{x_1}(y - \alpha) d\alpha$$

$$= \text{convolution of } p_{x_1}(x_1) \& p_{x_2}(x_2)$$

$$= p_{x_1} \otimes p_{x_2}$$

$$= p_{x_2} \otimes p_{x_1}$$

If
$$y = x_1 + x_2 + \dots + x_n$$

then $p_y(y) = p_{x_1} \otimes p_{x_2} \otimes \dots \otimes p_{x_n}$

Probability Distribution Function (9)

Def: The Probability Distribution Function $W(x_I)$ of a random variable x is the probability that x is less than or equal to x_I ,

i.e.
$$W(x_1) = \int_{-\infty}^{x_1} p(x) dx = P(x \le x_1).$$

Random Variables and Distribution Function (10)

Consider a random variable x of p.d.f. p(x) and distribution function W(x).

Note that:

- The x in p(x) and W(x) is not a random variable but a value of the random variable x.
- The p.d.f. p(x) is not a probability but a rate of change of the probability W(x) w.r.t. x, i.e. $\frac{dW(x)}{dx}$.
- The distribution function W(x) of random variable x is the probability that x has a value less than or equal to the value x.

Probability Distribution Function W(x) (11)

$$p(x) = \frac{dW(x)}{dx}$$
 or $p(x_1) = \lim_{\Delta x \to 0} \frac{W(x_1 + \Delta x) - W(x_1)}{\Delta x}$

$$p(x) = \frac{dW(x)}{dx} = \begin{cases} \frac{1}{A} & x \in (0, A] \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{x}{A} = \begin{cases} \frac{1}{A} \\ 0 \end{cases}$$

$$x \in (0,A]$$

Example 2

$$p(x) = \sum_{i=1}^{4} P(x_i) \cdot \delta(x - x_i)$$
where $P(x_i) = W(x_i) - W(x_i - \varepsilon)$

Statistical Average (12)

Def. The average value \bar{x} of a random variable x with a p.d.f. p(x) is

$$\overline{x} = \int_{-\infty}^{\infty} x \cdot p(x) \, dx.$$

Note:

- 1. $x \equiv E[x] \equiv Expected value \equiv Mean value \equiv Ensemble average$
- 2. If g(x) is an arbitrary function of x, the expected value of g(x) is $E[g(x)] = \int_{-\infty}^{\infty} g(x) \cdot p(x) dx$.

Moments (13)

Def. The *n* th moment of p(x) (about the origin)

$$\equiv E\left[\mathbf{x}^n\right] = \int_{-\infty}^{\infty} x^n \cdot p(x) dx \qquad n = 1, 2, ...$$

Def. The *n* th moment of p(x) about the x_0

$$\equiv \operatorname{E}\left[(\boldsymbol{x}-x_0)^n\right] = \int_{-\infty}^{\infty} (x-x_0)^n \cdot p(x) dx \qquad n=1,2,\dots$$

Note: 1. The first moment (n = 1) (about the origin)

$$= E[x] = \int_{-\infty}^{\infty} x \cdot p(x) dx = x$$
 = mean value of x

2. The second moment (n = 2)

$$= E[x^2] = \int_{-\infty}^{\infty} x^2 \cdot p(x) dx = \overline{x^2} = \text{mean square value of } x$$

Examples (14)

Given: a r.v. x & its mean is x

i) Find:
$$E\left[\left(x-\frac{x}{x}\right)\right]$$

Sin:
$$E\left[\left(x-\frac{x}{x}\right)\right] = \int_{-\infty}^{\infty} \left(x-\frac{x}{x}\right) p(x) dx$$

$$= \int_{-\infty}^{\infty} x \cdot p(x) dx - x \int_{-\infty}^{\infty} p(x) dx$$

Sln:
$$E\left[\left(x-\overline{x}\right)^{2}\right]$$

$$= E\left[x^{2} + \overline{x}^{2} - 2x\overline{x}\right]$$

$$= \int_{-\infty}^{\infty} x^2 \cdot p(x) dx + x^2 \int_{-\infty}^{\infty} p(x) dx - 2x \int_{-\infty}^{\infty} x \cdot p(x) dx$$

$$= \overline{x^2} + \overline{x}^2 - 2\overline{x}^2$$

$$\therefore (x - \overline{x})^2 = \overline{x^2} - \overline{x}^2 \equiv \sigma^2 = \text{variance of the r.v. } x$$

Power of the r.v. (A.C. +D.C.)

Power of the D.C. component

Power of the A.C. component

Central Limit Theorem (15)

 $x_1, x_2, ..., x_n$ are independent random variables with p.d.f. $p_{x1}, p_{x2}, ..., p_{xn}$. For $y = x_1 + x_2 + ... + x_n$, the p.d.f. of y is $p_y(y) = p_{x1} \otimes p_{x2} \otimes ... \otimes p_{xn}$ where \otimes is convolution.

Th^{<u>m</u>}: If *n* is very large, then for all p_{xi} the *p.d.f.* of y equals

$$\lim_{n\to\infty} p_y(y) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(y-y)^2}{2\sigma^2}}$$

where
$$\mathbf{y} = \mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_n$$

$$\sigma^2 = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2$$

Central Limit Theorem (16)

Given:
$$y = \sum_{i=1}^{100} x_i$$

$$p_{i}(x_{i}) = \begin{cases} 1 & x \in [-0.5, 0.5] \\ 0 & otherwise \end{cases}$$
 for $i \in [1, 100]$

for
$$i \in [1, 100]$$

Find: $p_{y}(y)$ the p.d.f. of y

Sln:

$$\overline{x_i} = 0$$

$$\sigma_i^2 = \frac{b}{12} = \frac{1}{12}$$

$$\overline{y} = \sum_{i=1}^{100} \overline{x_i} = 0$$

$$\sigma^2 = \sum_{i=1}^{100} \sigma_i^2 = \frac{100}{12} \text{ or } \frac{25}{3}$$

$$p_y(y) = \frac{1}{\sqrt{2\pi \cdot \sigma}} \cdot e^{\frac{-(y-\overline{y})^2}{2\sigma^2}}$$

$$= \frac{1}{\sqrt{\frac{50\pi}{2}}} \cdot e^{\frac{-3y^2}{50}}$$

Two-Dimensional Distributions (17)

Def. The joint probability density function of two random variables x and y is a function p(x,y) that possesses the properties

$$i) p(x,y) \ge 0$$

$$ii) \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \, dx \, dy = 1$$

iii)
$$P(x_1 \le x \le x_2, y_1 \le y \le y_2) = \int_{y_1}^{y_2} \int_{x_1}^{x_2} p(x, y) dx dy$$

Def. The joint probability distribution function is

$$W(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} p(x,y) \, dx \, dy$$

so
$$p(x,y) = \frac{\partial^2 W(x,y)}{\partial x \partial y}$$
.

Def. The random variables x and y with p.d.f. $p_x(x)$ and $p_y(y)$ are independent if $p(x, y) = p_x(x) p_y(y)$.

Two-Dimensinal Distributions (18)

 $\it Def.$ The maginal probabiliy density functions of the variables $\it x$ and $\it y$

are
$$p_1(x) = \int_{-\infty}^{\infty} p(x, y) dy$$
 & $p_2(y) = \int_{-\infty}^{\infty} p(x, y) dx$.

Def. The maginal probability distribution functions are

$$W_I(x) = \int_{-\infty}^x p_I(x) dx = \int_{-\infty}^x \int_{-\infty}^\infty p(x, y) dy dx$$

$$W_2(y) = \int_{-\infty}^{y} p_2(y) \ dy = \int_{-\infty}^{y} \int_{-\infty}^{\infty} p(x, y) \ dx \ dy$$

Find: k for the 2D p.d.f.

$$p(x,y) = \begin{cases} k e^{-2x-3y} & x \ge 0, y \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Moments of 2-D p.d.f. (19)

Def. The moments of a joint p.d.f. p(x,y) are called joint moments

$$\mu'_{i,j} = \mathrm{E}[\mathbf{x}^i \ \mathbf{y}^j] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^i y^j \ p(x,y) \, dx \, dy$$

where $i, j = 0, 1, 2, 3, \dots$ and the order of μ'_{ij} is i + j.

Note:
$$E[x] = \overline{x} = \mu'_{1,0} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{i} p(x, y) dx dy$$
$$E[y] = \overline{y} = \mu'_{0,1} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y^{j} p(x, y) dx dy$$

Def. The central moments (i.e. moments about the mean) are

$$\mu_{ij} = \mathrm{E}[(\mathbf{x} - \overline{\mathbf{x}})^i (\mathbf{y} - \overline{\mathbf{y}})^j] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\mathbf{x} - \overline{\mathbf{x}})^i (\mathbf{y} - \overline{\mathbf{y}})^j p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$$

where i, j = 0, 1, 2, 3, ... and the order of μ'_{ij} is i + j.

Note: The moment μ_{II} is called the covariance of two variables.

c.f. variance of
$$y$$
 is $\sigma_y^2 = \int_{-\infty}^{\infty} (y - \overline{y})^2 p_y(y) dy$

Example

Find: the three 2^{nd} order moments of the r.v.s x and y . Sln:

The three 2^{nd} order moments are μ_{20} , μ_{02} and μ_{11} .

$$\mu_{20} = E[(x - \overline{x})^{2}] = E[x^{2} - 2x\overline{x} + \overline{x}^{2}] = \overline{x^{2}} - \overline{x}^{2}$$

$$\mu_{02} = E[(y - \overline{y})^{2}] = E[y^{2} - 2y\overline{y} + \overline{y}^{2}] = \overline{y^{2}} - \overline{y}^{2}$$

$$\therefore \mu_{20} = \sigma_{x}^{2}$$

$$\mu_{02} = \sigma_{y}^{2}$$

$$\mu_{11} = \text{covariance}$$

$$= E[(x-\overline{x})(y-\overline{y})]$$

$$= E[xy - x\overline{y} - \overline{x}y + \overline{x}\overline{y}]$$

$$= \overline{xy} - \overline{x}\overline{y}$$

Correlation

Def. The numerical measure of the *similarity* between *x* and *y* is the normalised correlation coefficients and is defined as

$$\rho = \frac{\mu_{11}}{\sqrt{\mu_{20}\mu_{02}}} = \frac{E[(x-\overline{x})(y-\overline{y})]}{\sqrt{E[(x-\overline{x})^2 E[(y-\overline{y})^2]}}.$$

Note: (i) $\rho \in [-1, 1]$

(ii) $\rho = \theta$ if x and y are uncorrelated (i.e. $\mu_{11} = 0$).

e.g. $\rho \approx 0 \begin{cases} x \\ y \end{cases}$ $\rho \rightarrow 1 \begin{cases} x \\ y \end{cases}$ $\rho \rightarrow -1 \begin{cases} x \\ y \end{cases}$

Def: Random variables x and y are uncorrelated if $\rho = \theta$ or $\mu_{11} = 0$.

Independent and uncorrelated

Def: Random variables x and y are uncorrelated if $\rho = 0$ or $\mu_{11} = 0$.

 $Th^{\underline{m}}$: If x and y are statistically independent then they are uncorrelated.

Proof: x and y are statistically independent so $p(x,y) = p_1(x) p_2(y)$ where $p_1(x)$ and $p_2(y)$ are p.d.f. of x and y respectively.

note:

$$\mu_{11} = E[(x-x)(y-y)]$$

$$= xy - xy$$

$$\rightarrow$$
 E [(x-x)(y-y)]=E [xy-xy-xy+xy]=xy-xy=0

$$\rightarrow$$
 μ_{11} =0 and so x and y are uncorrelated.

Examples

Find:
$$\mu_{22}$$
 if $p(x,y) = p_1(x)$ $p_2(y)$
Sln:
$$\mu_{22} = E[(x-\overline{x})^2(y-\overline{y})^2]$$

$$= E[(x-\overline{x})^2] E[(y-\overline{y})^2]$$

$$= (\overline{x^2} - \overline{x}^2) (\overline{y^2} - \overline{y}^2)$$

$$= \overline{x^2} \overline{y^2} - \overline{x}^2 \overline{y}^2 - \overline{x}^2 \overline{y}^2 + \overline{x}^2 \overline{y}^2$$

Given: A r.v. x is uniformly distribution between -1 and +1.

Find: the normalised correlation coefficient for x and y if $y = x^2$.

Sln:

$$\mu_{11} = \overline{x} \, \overline{y} - \overline{x} \, \overline{y}$$

$$= \overline{x^3} - \overline{x} \, \overline{x^2}$$

$$\overline{x} = \int_{-\infty}^{\infty} x \, p(x) \, dx = 0$$

$$\overline{x^3} = \int_{-\infty}^{\infty} x^3 \, p(x) \, dx = 0 \quad \therefore \quad \mu_{11} = 0 \quad \rightarrow \quad \rho = 0$$

Example

Given: x and y are 2 independent r.v.s and u = x + y and v = x - y

Find: the condition under which *u* and *v* are uncorrelated.

$$\sigma_{x}^{2} = \overline{x^{2}} - \overline{x}^{2} \qquad \sigma_{y}^{2} = \overline{y^{2}} - \overline{y}^{2}$$

$$\mu_{11} = E[(u - u)(v - v)]$$

$$= E[\{(x + y) - \overline{(x + y)}\}\{(x - y) - \overline{(x - y)}\}]$$

$$= E[x^{2} - y^{2} + \overline{x}^{2} - \overline{y}^{2} - (x - y)(\overline{x + y}) - (x + y)(\overline{x - y})]$$

$$= \overline{x^{2}} - \overline{y^{2}} + \overline{x}^{2} - \overline{y}^{2} - (\overline{x} - y)(\overline{x + y}) - (\overline{x + y})(\overline{x - y})$$

$$= (\overline{x^{2}} - \overline{y^{2}}) - (\overline{x}^{2} - \overline{y}^{2})$$

$$= \sigma_{x}^{2} - \sigma_{y}^{2} \therefore \mu_{11} = 0 \quad \text{if} \quad \sigma_{x} = \sigma_{y}$$