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Model-Based Edge Reconstruction for Low Bit-Rate
Wavelet-Compressed Images
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Abstract—At low bit rates, wavelet-based image coding is supe-
rior to most traditional block-based methods in terms of visibility
and severity of coding artifacts in coded images. However, the com-
pressed images still suffer from obvious distortions around sharp
edges, which are perceptually objectionable. In order to improve
image quality for low bit-rate wavelet-based image coding, we pro-
posed a model-based edge-reconstruction algorithm for recovering
the lossy edges in coded images. Our approach applies a general
model to represent varieties of edges existing in an image. Based on
this model, the edge degradation process due to quantization errors
of wavelet coefficients is analyzed with the characterization of two
kinds of artifacts at edges. We develop two operations, model-based
edge approximation and Gaussian smoothing, to reconstruct dis-
torted edges by reducing both artifacts respectively. The proposed
method is able to improve image quality in terms of both visual
perception and image fidelity (peak signal-to-noise ratio) for most
images coded by wavelet-based methods at low bit-rates.

Index Terms—Edge model, edge reconstruction, image coding,
image processing, post-processing, wavelet transform.

I. INTRODUCTION

I MAGE compression is aimed to minimize the number of bits
needed to represent an image while maintaining sufficient

image quality. Images coded at low bit-rates suffer from the loss
of details and sharpness, as well as various coding artifacts. On
the other hand, with the increasing needs of image transmis-
sion and storage, the demand for higher compression is also in-
creasing. This problem can be alleviated by effective post-pro-
cessing techniques, which are able to improve the coding effi-
ciency and, at the same time, maintain the compatibility with the
existing encoder and decoder. Since different methods have dif-
ferent artifacts, the design of post-processing should be tailored
for a coding method. For block-based discrete cosine transform
(DCT) coding, the quality of low bit-rate compressed images
is degraded mainly by the “blocking effects” across the block
boundaries and the “ringing effects” around sharp edges. Due to
the widespread use of DCT-based image coding, many post-pro-
cessing schemes have been developed, among which most tech-
niques attempt to remove the blocking effect [1]–[5], and some
methods focus on the suppression of the ringing effect [6] or
both artifacts [7]–[10].
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Recently, wavelet transforms have attracted considerable
attention with their application to image coding [11]–[14] due
to their unique space–frequency characteristics. Moreover,
the hierarchical wavelet image representation also allows
efficient quantization strategies, such as zero-tree quantization
[11]–[13], for exploiting the spatial and frequency characteris-
tics of wavelet coefficients. In particular, at low bit-rates (e.g.,
below 0.25 bits per pixel (bpp) for highly detailed gray-scale
images), wavelet-based image coding demonstrates some ad-
vantages over the traditional block-based methods in terms of
visibility and severity of coding artifacts in compressed images.
However, the coded images still bear obvious artifacts among
continuous regions and around sharp edges as a result of the
considerable quantization errors of wavelet coefficients. The
quantization errors in high-frequency subbands generally result
in ringing effects, as well as blurring effects near sharp edges
[15], and those in both low-frequency and high-frequency
subbands cause ripples or blotchiness in smooth regions [16].

In order to attain sufficient image quality for low bit-rate
wavelet-based image coding, post-processing is an efficient
technique for improving compression results at low bit-rates.
Though some efforts have been made to improve continuous-
ness of smooth regions in the coded images [16], little work has
been devoted to the edge recovery, which is more needful for
low bit-rate wavelet-based image coding. Since edges define
the most recognizable features for objects in an image, the
distortions around edges are disturbing and annoying to human
perception. For DCT-based image coding, the ringing effect
is considered the major artifact around edges. Thus, some
methods based on edge-preserving maximuma posteriori
(MAP) estimation [4], [7], [10], or adaptive filtering [6],
[9], [17] were proposed to cope with this problem. However,
besides the ringing effect, edges have also been blurred by the
low pass filtering effect introduced by the allocation of zero
bit to high-frequency coefficients. The previous techniques for
reducing the ringing effect cannot eliminate the blurring effects
and are unable to reproduce the edge sharpness.

The objective of post-processing is to improve image quality,
which can be achieved by image enhancement or image
restoration. The former is concerned with improving image
visual quality by accentuating some image features without
considering image fidelity [peak signal-to-noise ratio (PSNR)],
and the latter tries to recover the original signal from the
degraded one by means of a model for signal or a model for the
degradation process. Comparatively speaking, image restora-
tion is more useful in the case of image compression where
the fidelity of the compressed image is still of main concern.
However, the effective image restoration of compressed image
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may be difficult for the unknown of degradation model of image
coding, and even with the known degradation process, the
ill-posed or non-unique inversion process may make restoration
impossible or computational intensive [18]. Previous post-pro-
cessing techniques [1], [4], [5], [16] with image restoration
formulation share some characteristics.

1) There are no explicit or deterministic characterization of
the degradation process.

2) Edge deblurring is seldom taken into consideration.
3) The solution of problem involves iteration operations

which require intensive computation.

On the other hand, at low bit-rates, image enhancement is
somewhat necessary and helpful for human perception [19],
[20]. Some post-processing techniques contain elements of
both restoration and enhancement, but very few provide the
flexibility to allow a tradeoff between them for the recon-
structed image.

In this paper, we propose a novel post-processing method for
low bit-rate wavelet-based image coding for edge reconstruc-
tion. Edge reconstruction can be accomplished in spatial do-
main or transform domain. In [21], the edge reconstruction for
image interpolation is performed in the wavelet transform do-
main by extrapolating the wavelet coefficients according to the
decaying model of a step edge. The proposed approach oper-
ates in spatial domain and reconstructs distorted edges by the
use of a deterministic edge model [22]. Based on this model,
the degradation process of edges due to wavelet-based image
coding using zero-tree quantization was analyzed. We devel-
oped a new edge model for coded images by the introduction
of two new terms to the original edge model, which is able to
characterize two artifacts, ringing effects and blurring effects,
around lossy edges. The problem of edge reconstruction is for-
mulated as that of image restoration and can be solved by recov-
ering original edge structure and reducing quantization noise.
The former involves estimating original model parameters from
the coded signal. The latter is implemented by local Gaussian
filtering of edges in the coded signal. Furthermore, we intro-
duce a parametric reconstruction model which is able to pro-
vide a flexible tradeoff between visual enhancement and fidelity
improvement for the reconstructed image. Compared with pre-
vious post-processing techniques, the proposed approach has
the advantage of low computation complexity because it can be
implemented straightforwardly, without any iteration operation.

This paper is organized as follows. Based on an edge model,
we analyze the degradation process of edges due to wavelet-
based coding in Section II. Section III discusses the proposed
edge reconstruction algorithm. The experimental results are pre-
sented in Section IV. Finally, we draw conclusions in Section V.

II. EDGE ANALYSIS

In an image, edges carry important information which usu-
ally reflects abrupt luminance changes and irregular structures.
There are two primitives for characterizing edges which are the
edge curves, i.e., the loci of edge points, and the variation of the
image surface within the narrow strips along edge curves. The
former can be obtained by edge detection followed by an as-
sociated linking scheme. The latter can be established by mod-

Fig. 1. 1-D edge model with edge center atx = 0:

eling edges in the real signal with an idealized function which
can be parameterized efficiently in order to represent the edges
of various conformations. Though an edge model may not pre-
cisely reflect the real variations, it will provide us a control-
lable approximation by which the problem of edge-related pro-
cessing can be formulated and analyzed. We will introduce an
edge model image based on which the edge degradation due to
image compression is discussed

A. Edge Model in Original Images

The edge model adopted here has been described in depth by
Van Beek in [22]. Some basic formulation and operation related
to the edge model are briefly presented as follows.

Edges in two-dimensional (2-D) images have local one-di-
mensional (1-D) structure features, in that there are sharp inten-
sity changes in one direction together with little or no change
in the perpendicular direction. Hence, most descriptions of the
edge model in this paper are based on the 1-D form. With some
assumptions, an edge at is modeled as theGaussian
smoothed step edgedefined by

(1)

where

(2)

and

with (3)

From (1)–(3), an edge can be represented as

erf (4)

where erf is a scaled error function, the param-
eter controlling the width of the edge,the contrast across the
edge, and the intensity at the base of the edge. These parame-
ters are depicted in Fig. 1. In order to model edges in one signal,
we need to conduct edge detection and model-parameter estima-
tion as follows.

B. Edge Detection and Parameter Estimation

Canny edge detection [23] is used by convolving the signal
with the derivative of a Gaussian function where

controls the correctness of edge detection and the accuracy
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of edge localization. Without considering the noise, the model
output of edge detection is

(5)

with An edge point is identified by checking
out local maximum in the magnitude of the response.

In [22], the response of edge detection is also applied for es-
timating the model parameters of a detected edge. Given the re-
sponse of edge detection expressed in (5) whose local maximum
is recognized as an edge, the detected edge may not be at the true
position because of the discretization of the signal. “Edge point”
will denote the edge on the sampled grid of the discrete signal
and “edge center” will denote the true position of the edge in the
continuous version. Edge points can be identified during edge
detection as shown in (5). For a signal with unit sampling
interval, if the edge point is at and the true edge center is
at i.e.,

(6)

then (5) becomes

(7)

By sampling (7) at and three measurements can
be obtained as follows:

(8)

(9)

(10)

From (4), (8)–(10), where is a practical choice in the
sampled 1-D signal, parameter and the subpixel position
of the edge center can be estimated using three outputs near the
peak of (7) as follows:

(11)

(12)

(13)

Fig. 2. Amplitude response of the 1-D edge model.

(14)

In a discrete signal, can be obtained by linear interpolation
between the two nearest sampled points.

It is shown in [22] for most well-acquisitioned natural images,
the majority of edges has width ranging from 0.5 to 1.5. With
the consideration of various errors, the setting of is a
reasonable value in the case of original images. The 2-D edge
model and relevant analysis can be shaped into the 1-D model
framework discussed above. Essentially, the 2-D edge model is
operated in the 1-D way, thus the model-based characterization
can be adapted to edges with various loci in the image.

This edge model was applied to image coding [22]. An
image was represented by edges and their interpolation. An
edge was characterized by three parameters of the edge model.
Since many details in an image may not be precisely repre-
sented by the edge model, and the edge parameters were not
coded effectively, the coding performance is not satisfactory.
However, the coded images sustain good edge features. This
implies that the edge model is effective for the representation
of edge structures and edge reconstruction in distorted images.

C. Edge Degradation Due to Image Compression

We now analyze the edge-degradation process due to the
quantization error of wavelet coefficients based on the consid-
erations of the frequency properties of the edge signal
defined in (1) and the characteristics of zero-tree quantization.
For simplicity, the problem is discussed in the 1-D continuous
form and the results can be adapted to the 2-D discrete case.
Denote the Fourier transform of by

where is the spatial frequency and the Dirac delta func-
tion. We show the amplitude responses for edges with
different model parameters in Fig. 2. From Fig. 2, it is observed
that the amplitude response of the edge model decays with a
rate related to and of the edge. Similar results can be ob-
tained for discrete wavelet transform (DWT). In wavelet-based
image coding, DWT decomposes an image over several scales
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Fig. 3. Edge analysis with quantization error. (a) The original edge signals (x) = s(x � x ;w; b; c) with x = 0; w = 1:0; b = 50; andc = 200: (b)
w (u)(j = 1; 2; 3; 4); DWT of s (x) over four scales. (c)w (u); quantized version ofw (u) with quantization thresholdT = 64: (d) s (x); the coded
version ofs (x): (e) s (x) = s(x � x ;�w; b; c) with � = 1:85; zero-phase low-pass filtering part ins (x): (f) q (x); the quantization noise ins (x): (The
signalss (x) in (a),s (x) in (d), s (x) in (e), andq (x) in (f) are depicted partially withx 2 [�30;30]:)

where most energy is compacted to the low-pass band with a
small number of coefficients of large magnitude, and high-fre-
quency components are dispersed among the high-frequency
subbands with a large number of coefficients of small mag-
nitude. Furthermore, zero-tree quantization of wavelet coeffi-
cients results in keeping the higher bits of larger coefficients and
discarding smaller ones. Therefore, such a quantization scheme
causes a considerable truncation of high-frequency energy, and
introduces relatively little effect on low-frequency components.
Thus, the wavelet coefficients in high-frequency subbands con-
tributed to edges are normally of small magnitude and discarded
during quantization. This is similar to the idealized low-pass fil-
tering in the Fourier transform domain. It will result in blurring
effect and ringing effect, which are also observed in wavelet-
based image compression. Since the support of wavelet basis
functions is compact, the ringing effects in a compressed image
are locally distributed around edges. Based on these observa-
tions and analysis, we give the following formulation of edge
degradation, in which edges in a compressed image is repre-
sented in the 1-D form.

Ideally speaking, we assume that during wavelet-based
coding using zero-tree quantization, which is modulus thresh-
olding after uniform quantization of wavelet coefficients, the
original edge signal of (6) is locally filtered with a
low-pass zero-phase filter of unity integral, accompanied
with quantization noise in the output. In our formulation,

is applied to characterizing blurring effect and can
correspond to the ringing effect in the compressed signal. We,
therefore, propose to model the coded signal by

(15)

Low-pass filter widens by a factor which is
related to the amount of high-frequency components truncated
and the decaying rate of From Fig. 2, we see that the
same quantization threshold may result in different low-pass
filtering effects on edges with different model parameters due
to their different spectrum decaying rates. For simplicity, we
only consider the effects on the parameter. Intuitively, the
width of the distorted edge should be proportional to the width
of the original one. Hence, we use a multiplicative factor to
characterize different edge widening influences of the low-pass
filtering by . Experiments have been conducted, which
showed that the multiplicative factor can produce images of
slightly higher PSNR than an additive one.

If we assume that is an FIR filter which has a symmet-
rical (about origin) impulse response of unity integral, it can be
proved that the filtering of by leaves the position
of the edge center unmoved, as well as the value of the edge
center unchanged, and causes no effect onand so (15)
can be rewritten in the form of

(16)

where

(17)

In Fig. 3, we demonstrate above analysis through an example
of a 1-D discrete edge signal
which has 128 sampling points and edge model parameters

and as shown in
Fig. 3(a). The wavelet transform of over four scales,

is given in Fig. 3(b), and a quantized
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version with quantization threshold is shown
in Fig. 3(c). Fig. 3(d) gives the coded version of
According to (16), can be decomposed into two compo-
nents which are depicted in Fig. 3(e) and (f) , respectively.

D. Edge Detection in the Compressed Signal

The response of edge detection using Canny detector for the
coded signal is expressed as

(18)

where Thus, if the influence of quantization
noise is able to be suppressed by a suitableduring edge
detection, then the position of the local maximum in (18) will be
the same as that in (7), which means that the lossy compression
does not introduce shift to the original position of the edge point.

E. Model Parameter Estimation in the Compressed Signal

A two-step estimation is developed to estimate the original
model parameters from the coded signal. First, the initial param-
eter estimation of signal is obtained by (11) and (13) from
the response of (18), and the estimated values of parameterand

are denoted by and respectively. Then, the parameter es-
timation of the original signal where the computed values
of model parameters and are denoted by and re-
spectively, is conducted as follows. In the compressed signal,
the estimation of subpixel position in (15) is less meaningful
due to the fact that the precision of multi-point estimation has
been deteriorated by the lossy compression, especially at low
bit-rates. So is assumed to be 0, i.e.

1) Estimation of Edge Contrast:From (16), we know that
filtering of by does not influence contrast parameter

Moreover, it is shown in [22] that for multipoint estimation,
can be estimated with greater accuracy and precision than

and even in the presence of noise, here the quantization noise.
Thus, the initial estimated resultfrom can be used di-
rectly, as

(19)

2) Estimation of Edge Basis:Quantization noise in
(16) may degrade the precision of the estimation of parameter

since the computation of is based on the intensity value
of the edge point which may be corrupted by the quantization
noise Therefore, a Gaussian filter is applied for
smoothing in as

(20)

where and it is assumed that and other
noise have been averaged out by with a proper choice of
the spread parameter

Theoretically, the filtering of does not cause any shift
to the edge center of the edge model. Furthermore, without con-
sidering in also leaves the intensity value
of the edge center unchanged, i.e. Then, after
smoothing in (20), it is assumed that the value of the original

edge center can be approximated by Therefore, we
regard the detected edge point in (18) (when the appro-
priate conditions, as described in Section II-D, are met) as the
edge center of the original signal then can be estimated
by

(21)

3) Estimation of Edge Width:On account of low-pass fil-
tering by as shown in (16), some blurring distortion may
be caused to the model parameterFrom (17), we can restore

by

(22)

where is the widening coefficient and can be determined by
our later experimental analysis.

Thus, the original edge-model parameters are able to be es-
timated from the coded signal. According to the definition of
the edge model of (4), we can achieve model-based edge ap-
proximation for recovering original edge structure. Of course,
the formulation of (16) is an approximation to characterized the
degradation process of wavelet-based image coding, which has
some errors influencing the post-processing results.

F. Error Analysis in the Compressed Signal

From (16), we know that the edge model in the compressed
signal has suffered from two major errors: the modeling of zero
phase low-pass filtering of and the quantization noise

Both of them are discussed as follows, with respect
to their influences in edge detection and model parameter
estimation.

1) Influence of Modeling Error of :
a) Edge localization—:For a detected edge point in the

coded signal, the error of edge localization may be due to the
formulation of in (15) being no longer in force. In this
case, the edge reconstruction later around this edge point is im-
plemented not so much for fidelity improvement but more for
visual enhancement. This may happen often when the image is
compressed at low bit-rates.

b) Parameter estimaton—:If the modeling of (15) is valid
and is relatively small, the principal error now is that of
parameter estimation of namely that of the widening factor

in (17). In a 2-D image, due to the directional decomposition
of DWT and the different rates of decaying spectrum shown in
Fig. 2 of the edge model, the same high-frequency truncation
may result in a different low-pass filtering effect on the edges
with different directions or with different model parameters. It
is difficult to develop a precise formulation for determining an
exact widening coefficient for any given edge. Therefore, we
try to determine an empirical setting forthrough experiments.
We shall show that although one value ofin the formulation
of (16) may not be accurate for all edges in one coded image,
the post-processing algorithm using such simplified characteri-
zation can still perform effectively for most tested images.

2) Influence of Quantization Noise :
a) Edge detection and localization:The performance of a

filter in revealing an edge can be evaluated by Canny’s signal-to-
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noise criterion and localization criterion [23], from which
van Beek deduced those criteria for the Gaussian smoothed step
edge detected with Canny detector as follows:

(23)

and

(24)

with the standard deviation of the noise. Here we consider
as the standard deviation of quantization noise introduced
by zero-tree quantization of wavelet coefficients, andis the
filter scale of edge detection. A large value of scalein (23) is
necessary in order to smooth the quantization noise and
reach higher SNR’s but the performance of localization
would suffer. Thus, an appropriately compromisedof edge
detector should be set.

b) Parameter estimation:The above two criteria are con-
cerned with the multipoint-model parameter estimation which
is conducted based on the outputs of edge detection. In order
to determine the accuracy of multipoint parameter estimation,
another SNR criterion is introduced in [22], which is discerned
from one another in the response of edge detection under noisy
circumstance and can show how well the difference values of
the same response used in the estimation. Thus, Van Beek de-
fined the “difference signal-to-noise” as

(25)

For a Gaussian smoothed-edge model, for all
Since lowers the performance of edge detection
multipoint estimation seems to be sensitive to the quantization
noise. Therefore, we need a suitable setting ofto keep the
precision of model parameter estimation in coded images. In
our experiments, it was found that is suitable
for most images coded by wavelet-based coding using zero-tree
quantization at low bit-rates.

In practice, the different errors above may introduce different
influences on the result of edge reconstruction. The error of
degradation formulation by is mainly related to the na-
ture of image post-processing, preferring image enhancement
or image restoration. That of quantization noise may affect the
quality of edge reconstruction in a certain meaning.

By now, we study the behavior of the lossy edges in the com-
pressed signal by developing the original edge model to the
case of the coded signal. The associated parameter estimation
scheme is carried out for estimating the original model param-
eters from the coded signal. Then according to the definition
of the edge model (4), the approximation of the original edge
structure can be obtained. All the results above can be extended
to the 2-D case directly.

III. EDGE-RECONSTRUCTIONALGORITHM

In an image coded by wavelet-based coding at low bit-rates,
edge distortions happen mainly within narrow strips, namely

edge region, along edge curves. For efficient image post-pro-
cessing, the edge region needed to be reconstructed should be
determined firstly. From the analysis in Section II-C, we know
that two artifacts in the edge region can be characterized by the
degradation model given by (16). In order to recover lossy edges
with the reproduction of edge sharpness and the reduction of
ringing effects, we introduced two operations follows.

A. Two Operations

In the proposed algorithm, we develop two operations,model-
based edge approximationandGaussian smoothing, which are
related to the two additional terms in the lossy-edge model and
aimed at the suppression of the two artifacts. An important ques-
tion is now, for a pixel in the edge region to be reconstructed,
how to obtain a reasonable balance between the two operations.
To this end, we need to understand the characteristics of the er-
rors embedded in the two operations. The error of model-based
approximation mainly results from that of model parameter es-
timation, and Gaussian filtering may cause some intensity devi-
ations to the filtered signal. We will discuss this problem under
1-D case as follows.

Given an edge signal defined by (4) and its
coded version with let the errors be-
tween the estimated parameters and and the original ones,

and be , and respectively, i.e.

Then the model-based approximation of is given
by

erf

The magnitude of the approximation error is

(26)

where

(27)

and

erf erf

(28)

Since the values of are mainly among (0.5, 1.5) and for most
cases can be approximated by

erf (29)

Therefore, we can see that the validity of model-based approx-
imation decreases as increases. In other words, the model-
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based approximation may not be credible for pixels far away
from edge points.

As stated before, the model-based approximation enables
us to recover edge structures, and Gaussian filter is applied
for smoothing the quantization noise around edges. However,
Gaussian filtering, at the same time, introduces intensity
deviation to the filtered signal, which happens mostly among
the transition region of the signal. That means the pixels far
away from edge points bear fewer deviation and are closer to
the original values compared with those among the transition
regions carrying sharp intensity changes. With these considera-
tions, we develop a model-based edge-reconstruction algorithm
as follows.

B. Algorithm

The proposed edge-reconstruction algorithm consists of three
steps which areselection of the edge region, model-based edge
reconstructionandprojection operation in the wavelet domain.
Let and be the DWT pair, and denotes the
zero-tree quantization operator with quantization threshold

1) Selection of the Edge Region:Edges of 2-D images are
often not isolated but belong to some curves which generally are
the boundaries of the image structure. Usually, long edge curves
are more important for human perception compared with short
ones. Therefore, edges are reconstructed along the edge curves
of significant length.

Let be an original image and its coded version. The quan-
tized wavelet coefficient array of is denoted by where most
coefficients are zero. A pixel at in is denoted as
and the distance between and is defined by

Let be the set which contains edge points of theth edge
curve detected in and be the length of curve Sup-
pose there are curves in We define two sets, and as
follows:

with

and arg

where and are two thresholds for length filtering
and modulus thresholding, respectively.contains edge points
of the edge curves of significant length. is the edge region to
be recovered.

2) Model-Based Edge Reconstruction:For a certain pixel
its intensity value is denoted by and its

model-based approximation is given by

erf (30)

where and is the
nearest edge point to and are the estimated
model parameters of the original image associated with pixel

is mainly used for deblurring the lossy edges.
In practice, the value of may not be close to the original
intensity of This is due to the lossy approximation of

Fig. 4. The schematic diagram of model-based edge reconstruction.

the edge model to the real edges and the degraded precision of
multipoint model parameter estimation shown in Section III-A.
However, provides an eye-pleasing intensity tendency
for each This is attributed to the regularized edge
structure defined by the edge model. In order to measure the re-
liability of the approximation for edge reconstruction, according
to the analysis above, we construct a confident functionas

with (31)

where is the distance between the pixel to be performed edge
reconstructed and its neatest edge point, andis an empirical
factor.

On the other hand, in the coded imagethe intensities of
the pixels in contain quantization noise which is exhibited
as the ringing effect around edge curves. A 2-D Gaussian filter

is adopted with for reducing this noise,
since a small spread parameteradapts to a rapidly-varying
signal better than a large one [24]. This Gaussian smoothing
operation coincides with that used for estimating model param-
eter in (21). The filtered result of each pixel is
denoted by

(32)

Since the deviation of introduced by Gaussian filtering
may decrease with the increase ofas shown in Section III-A,
we weight by

Both of (30) and of (32), which target two
different artifacts existing at edges are incorporated into the
edge reconstruction of We introduce a reconstruction
model with adjusting the balance between them as follows:

(33)

By tuning in (31), the influences of two operations on each
reconstructed pixel can be adjusted according to its dis-
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Fig. 5. Edge reconstruction results for a synthetic image. (a) Original image�: (b) Coded image~� (40.22 dB, 0.10 bpp). (c) Result of edge detectionI : (d)
Edge regionI to be reconstructed. (e) Gaussian smoothed version�: (f) Model-based edge approximation�: (g) Initial revised version̂�: (h) Reconstructed
image� (PSNR gain = 1.12 dB).

TABLE I
MODEL PARAMETER ESTIMATION OF EDGE CONTRAST c

TABLE II
MODEL PARAMETER ESTIMATION OF EDGE BASIS b

tance to the nearest edge point. For an image, we may adjust
α to attain the highest PSNR gain. However, if we consider the
image fidelity as a less important factor, then a smallerwhich
will strength the effect of model-based reconstruction, can be
chosen to obtain a sharper edge structure. Thus,α provides a
trade-off between visual enhancement and PSNR improvement
for the reconstructed image

3) Projection Operation in the Wavelet Domain:After the
edge reconstruction of (33), we require a projection operation
defined as follows to ensure that the reconstructed imageex-
ists in the same quantization space with that of the coded image

if
if and
otherwise

where and is obtained from (33); is
the coordinate of wavelet coefficients; is the zero-tree thresh-
olded wavelet coefficient array of the coded image is the
quantization threshold of which can be deduced from the
smallest magnitude of non-zero wavelet coefficients in
is the reconstructed wavelet coefficient array. The operation of

gives the final reconstructed image

C. Implementation

The schematic diagram of the proposed algorithm is shown
in Fig. 4. In order to speed up edge detection, we can narrow
the detected region through spatial-spectrum classification of
image blocks by using the spatial characteristic of wavelet co-
efficients [25]. Thus, edge detection is conducted locally where
there may be some existing edges, and the combination of
local edge detection results produces a complete result, namely

for edge curves. Then, after length
filtering, the set of edge points in edge curves of significant
length can be determined, from which the edge region
to perform edge reconstruction can be selected by the distance
transform [26] of followed by modulus thresholding. Every
pixel in is reconstructed according to the reconstruction
model in (33) and the initially revised image is denoted as
from which the last reconstruction result is obtained by the
projection operation in the wavelet domain.

Here, we present the implementation procedure of our
algorithm in Fig. 5 by processing a synthetic image coded
by a wavelet-based codec, SPIHT [12] at 0.1 bpp, PSNR

40.22 dB shown in Fig. 5(a), which has invariant model
parameters around the circle edge, i.e.,
and The step-by-step results can be obtained from
Fig. 5(b)–(h). The last edge-reconstructed result is shown in
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Fig. 6. Determination of� for restoring edge widthw:

Fig. 5(h), whose PSNR and subjective quality have been im-
proved. From Fig. 5(d), we know that only a very small part of
the lossy image is post-processed due to the existence of edges
there. However, the improvements on visual perception and
image fidelity are notable. Hence, the necessity and desirability
of edge reconstruction for low bit-rate compressed images are
manifested.

IV. EXPERIMENTAL RESULTS

The experiments of this work have been applied primarily to
the images coded by the efficient wavelet-based codec—SPIHT
[12].1We expect that the proposed approach is also applicable to
other codecs using zero-tree quantization, such as SFQ [13].

A. Setting Algorithm Parameters

The values of two important factors in the proposed algo-
rithm, and need to be determined for the edge model and
the reconstruction model discussed above. The two factors have
different influences on the result of post-processing.shows
the sensitiveness of post-processing andaffects the strength
of model-based edge reconstruction. Sinceis closely related
to the edge model, we shall determine its setting by the experi-
mental analysis based on synthetic images which contains edges
in all directions and of different edge width On the other
hand, the value of reflects the precision of the model-based
approximation with respect to low bit-rate image coding; there-
fore, we shall determine its value based on a number of standard
images coded at low bit-rates.

1) Model Parameter Estimation and Setting: is the
widening factor to model the low-pass filtering effect due
to zero-tree quantization and is related to the bit-rate and
the original edge model parameters. In order to simply our
investigation, we have introduced some preconditions for the
experimental synthetic images.

Condition 1: The values of edge width should be in the
range of (0.5,2.0), since the majority of edges in most images is
within such range [22].

1 The software and documentation which are copyrighted may be accessed
online. Available: http://www.cipr.rpi.edu/research/SPIHT/

Fig. 7. Determination of� for edge reconstruction.

Condition 2: The value of edge contrast 100 is
adopted for the edges in all tested synthetic images, since it is a
representative value for most images.

Condition 3: We apply to the quantization of the
wavelet coefficients of the original synthetic images to obtain
their coded versions at low bit rates, since for most images coded
by SPIHT at low bit rates, the values of are 16, 32, or 64.

Though the above simplified conditions may not have pro-
vided us the optimal setting of we can still obtain an empir-
ical value of which enables effective post-processing for most
images. Consider synthetics images similar
to Fig. 5(a) with and different values of edge
width along the circle edge. For each image

we calculate with
and let its coded version be

Then, we compute the estimated values of model parameters
for each using in (5) for edge de-
tection. For comparison, the parameter estimation is also devel-
oped on the original image Moreover, the parameter is
estimated from the image which is the Gaussian smoothed
version of filtered by with The means
and standard deviations of the estimated parametersand are
computed and listed in Tables I and II, respectively. It is shown
that wavelet-based image coding introduces little bias on edge
model parameters,and However, we need to restoreac-
cording to (22). Fig. 6 plots the edge width estimated using (11)
against the original edge width for the original and coded im-
ages, and Tables I and II show that for
images coded with the mean values of the estimated

and are about the same for the original and coded images.
In addition, Gaussian smoothing by improves the es-
timation precision of parameter Moreover, for the estimated

we should restore it by according to (22). Fig. 6 suggests
that For a coded image, the optimal (maximum PSNR)
value of is normally between 1.2 and 1.6, depending on the
bit-rate and the image content.

2) Edge Reconstruction and Setting: The factor in (31)
can be determined through extensive experiments on many stan-
dard images coded at low bit-rates and using PSNR as a crite-
rion. Here we have used twelve images. Ten 512512 images
coded at 0.1 bpp and two 256 256 images coded at 0.2 bpp
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TABLE III
EDGE RECONSTRUCTEDRESULTS FORIMAGES (512� 512, 8 bpp)

TABLE IV
EDGE RECONSTRUCTEDRESULTS FORIMAGES (256� 256, 8 bpp)

Fig. 8. Result for Lena (512� 512, 8 bpp). (a) Coded image (30.22 bpp, 0.10 bpp). (b) Reconstructed image (30.45 dB,+0.23 dB).

Fig. 9. Result for Peppers (512� 512, 8 bpp). (a) Coded image (29.84 bpp, 0.10 bpp). (b) Reconstructed image (30.10 dB,+0.26 dB).

were employed to determine, as illustrated in Fig. 7. It is
shown that is near optimal for most images in this set.
But the precise setting of is image and bit-rate dependent. It
is because different images may coincide with the edge model

in different degree and the bit-rate of a coded image will influ-
ence the precision of model parameter estimation. In general,

gives the best PSNR gain for most images coded
at low bit-rates.
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Fig. 10. Result for Flower (512� 512, 8 bpp). (a) Coded image (32.02 bpp, 0.10 bpp). (b) Reconstructed image (32.34 dB,+0.32 dB).

Fig. 11. Result for Monarch (512� 512, 8 bpp). (a) Coded image (26.64 bpp, 0.10 bpp). (b) Reconstructed image (27.10 dB,+0.46 dB).

Fig. 12. Result for House (256� 256, 8 bpp). (a) Original image. (b) Coded image (30.57 bpp, 0.15 bpp). (c) Reconstructed image (30.82 dB,+0.25 dB).
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Fig. 13. Result for Tree (256� 256, 8 bpp). (a) Original image. (b) Coded image (25.78 bpp, 0.25 bpp). (c) Reconstructed image (26.03 dB,+0.25 dB).

Fig. 14. Result for Box (256� 256, 8 bpp). (a) Coded image (0.06 bpp). (c) Reconstructed with� =0.6 (PSNR gain=1.05 dB). (c) Reconstructed with� =0.2
(PSNR gain=0.65 dB).

B. Results

We apply the edge reconstruction scheme to twelve standard
images coded by SPIHT at low bit-rates. In all experiments, we
used and Tables III and IV show the improve-
ments of image fidelity (PSNR) for the images coded at low
bit-rates. Figs. 8–13 illustrate that the visual quality of the coded
images is also improved. Around edges, not only the ringing ef-
fects are reduced, edges also appear to be sharper. Moreover, if
one emphasizes the edge enhancement of the reconstructed re-
sult by choosing images of sharp edges with little or
no PSNR gain will result. Fig. 14 shows two versions of edge
reconstruction for a coded synthetic imageBox with different
setting of the reconstruction factor The computation time of
the proposed algorithm depends on the amount of edges exist in
an image. For normal images of 512512, likeLenaandPep-
pers, the computation time is about 20 s on a 200-MHz Pentium
computer.

In general, there are two factors affecting the efficiency of
the proposed post-processing algorithm: the bit rate and image
content. For those images with fewer noticeable edge structures,
such asFruits andZelda, or images with abundant random tex-
tures, such asBaboonandBridge, the proposed method may
not be able to improve the PSNR or visual quality significantly.
Moreover, we have simplified our problems by assuming that
images coded at different bit rates bear the same edge degrada-
tion. In fact, for images coded at very low bit-rates, serious edge
distortions, such as shifting or vanishing of edges, will result

and the endeavor of the proposed edge reconstruction may be in
vain. On the other hand, if the coded image carries less edge dis-
tortion or there is not enough edge degradation, the profit to be
gained from the edge reconstruction is also negligible. There-
fore, the proposed method is more effective for images which
have obvious, but not deadly, edge distortion. Experiments also
show that the visual quality and PSNR of the reconstructed
image will not deteriorate and remains at the original level if
the proposed post-processing cannot provide an improvement.
This is probably due to the fact that, in this case, the proposed
post-processing algorithm will perform little operation on the
image.

V. CONCLUSIONS

A new technique for image post-processing has been pre-
sented which is able to perform edge reconstruction for im-
ages coded by wavelet-based coding at low bit-rates. The image
quality can be improved in terms of both PSNR and visual per-
ception. The proposed approach has the following two features.

1) The edge model is deterministic and the edge-degrada-
tion model is simple and direct. These allow a straight-
forward implementation of the proposed post-processing
algorithm.

2) The parameterized reconstruction model allows a flexible
tradeoff between visual enhancement and PSNR gain for
the reconstructed image.
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The key in the proposed method is the degradation modeling of
edges in an image, where the edge model also plays an impor-
tant role. It is shown that the proposed algorithm is promising
in stretching the performance of wavelet-based coding using
zero-tree quantization at low bit-rates.
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