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Model-Based Edge Reconstruction for Low Bit-Rate
Wavelet-Compressed Images
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Abstract—At low bit rates, wavelet-based image coding is supe-  Recently, wavelet transforms have attracted considerable
rior to most traditional block-based methods in terms of visibility — gttention with their application to image coding [11]-[14] due
and severity of coding artifacts in coded images. However, the com- to their unique space-frequency characteristics. Moreover,

pressed images still suffer from obvious distortions around sharp the hi hical let i tati | I
edges, which are perceptually objectionable. In order to improve € fierarchical wavelet Image represeniation aiso aliows

image qua“ty for low bit-rate wavelet-based image Coding, we pro- eff|C|ent quant|zat|0n Strateg|es, SUCh as zero-tree quantlzatlon
posed a model-based edge-reconstruction algorithm for recovering [11]-[13], for exploiting the spatial and frequency characteris-
the lossy edges in coded images. Our approach applies a generatics of wavelet coefficients. In particular, at low bit-rates (e.g.,
model to represent varieties of edges existing in an image. Based ONhelow 0.25 bits per pixel (bpp) for highly detailed gray-scale
this model, the edge degradation process due to quantization errors . . .
of wavelet coefficients is analyzed with the characterization of two images), Wavelet-base_d_ image coding demonstrate_s some ad-
kinds of artifacts at edges. We develop two operations, model-based Vantages over the traditional block-based methods in terms of
edge approximation and Gaussian smoothing, to reconstruct dis- visibility and severity of coding artifacts in compressed images.
torted edges by reducing both artifacts respectively. The proposed However, the coded images still bear obvious artifacts among
method is able to improve image quality in terms of both visual continuous regions and around sharp edges as a result of the
perception and image fidelity (peak signal-to-noise ratio) for most . L -
images coded by wavelet-based methods at low bit-rates. consu_jera_\ble quant_lzat_lon errors of wavelet coefficients. The
guantization errors in high-frequency subbands generally result
in ringing effects, as well as blurring effects near sharp edges
[15], and those in both low-frequency and high-frequency
subbands cause ripples or blotchiness in smooth regions [16].
I. INTRODUCTION In order to attain sufficient image quality for low bit-rate

MAGE compression is aimed to minimize the numberofbit@'avel_epbased_ 'mage coding, pos_t-processmg IS an_efﬂment

I E‘chmque for improving compression results at low bit-rates.

needed to represent an image while maintaining sufficie h forts h b de to i i
image quality. Images coded at low bit-rates suffer from the lo ough some eflorts have been made o Improve continuous-

of details and sharpness, as well as various coding artifacts. 5pS of smooth regions in the coded |ma'ges'[16], little work has
the other hand, with the increasing needs of image trans &en .devoted to the edge recovery, W,h'Ch IS more needful for
sion and storage, the demand for higher compression is also bit-rate wavelet-based image coding. Since edges define

creasing. This problem can be alleviated by effective post-p '_et mtpst recognéza(kj)le featu(rfst fot:. objec(tjs n an |mtagr(]—:t » the
cessing techniques, which are able to improve the coding e fStortions around edges are disturbing and annoying to human

ciency and, at the same time, maintain the compatibility with ﬂPeerceptl_on. For DCT-pased 'mage coding, the ringing effect
existing encoder and decoder. Since different methods have Jﬁf_con&dered the major artifact a}round e'dges. Thu_s, some
ferent artifacts, the design of post-processing should be tailo thods b_ase_d on edge-preserving max_lmar_rpos_tenorl
for a coding method. For block-based discrete cosine transfo AP) estimation [4], [7], [10], or adaptive filtering [6],

; ; ; ; , [17] were proposed to cope with this problem. However,
DCT) coding, the quality of low bit-rate compressed ima .[ -
i(s deéraded gr]nainlyqby thye “plocking effects” :Ecross the blg sides the ringing effect, edges have also been blurred by the

boundaries and the “ringing effects” around sharp edges. Du QY pass filtering effect inltrpduced by the.allocation'of Z€ro
the widespread use of DCT-based image coding, many post- .o high-frequency coefficients. The previous techniques for
cessing schemes have been developed, among which most tkefucing the ringing effect cannot eliminate the blurring effects

nigues attempt to remove the blocking effect [1]-[5], and son?é‘_l_hare g_na?le tofreprtoduce th? ed-g(i sharpnes_s. lit
methods focus on the suppression of the ringing effect [6] or . € Objective of post-processing Is to Improve image quaitty,
: which can be achieved by image enhancement or image
both artifacts [7]-[10]. . . I oo
restoration. The former is concerned with improving image
visual quality by accentuating some image features without
considering image fidelity [peak signal-to-noise ratio (PSNR)],
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may be difficult for the unknown of degradation model of image
coding, and even with the known degradation process, the
ill-posed or non-unique inversion process may make restoration

1

{

impossible or computational intensive [18]. Previous post-pro- a L

cessing techniques [1], [4], [5], [16] with image restoration B /( D

formulation share some characteristics. ) Lyl
1) There are no explicit or deterministic characterization of ' B S —

the degradation process.
2) Edge deblurring is seldom taken into consideration.  Fig. 1. 1-D edge model with edge centerat 0.
3) The solution of problem involves iteration operations

which require intensive computation. eling edges in the real signal with an idealized function which
On the other hand, at low bit-rates, image enhancementcish be parameterized efficiently in order to represent the edges
somewhat necessary and helpful for human perception [18}various conformations. Though an edge model may not pre-
[20]. Some post-processing techniques contain elementsc@fely reflect the real variations, it will provide us a control-
bOth reStOI’ation and enhancement, but Very feW prOVide t%'e approximation by which the prob'em of edge_re'ated pro_
flexibility to allow a tradeoff between them for the reconzessing can be formulated and analyzed. We will introduce an
structed image. edge model image based on which the edge degradation due to

In this paper, we propose a novel post-processing method figfage compression is discussed
low bit-rate wavelet-based image coding for edge reconstruc-

tion. Edge reconstruction can be accomplished in spatial d@- Edge Model in Original Images

main or transform domain. In [21], the edge reconstruction for . .
image interpolation is performed in the wavelet transform dQ/- The edge model adopted here has been described in depth by

main by extrapolating the wavelet coefficients according to th&" Beekin [22]. Some basic formulation and operation related

decaying model of a step edge. The proposed approach oﬁ%rl-he edge model are briefly presented as follows.

ates in spatial domain and reconstructs distorted edges by thgdges in two-dimensional (2-D) images have local one-di-

use of a deterministic edge model [22]. Based on this modgl}ensrl]or;]al (1'5) s;rucétil;retfieitltjres,t;]n :hviitt:]hﬁtrt(le arcre iharﬁ |rr11ten—
the degradation process of edges due to wavelet-based im%%lz aerg eesndic(l)JIa(\ar dirZS:ti(())n a%icee most degccr)i tigncs sf t%ee
coding using zero-tree quantization was analyzed. We devd). "€ PETP ) ' P

oped a new edge model for coded images by the introductiggge model in this paper are based on the 1-D form. With some

of two new terms to the original edge model, which is able t%ssumptmns, an edgér) atz = 0 is modeled as thGaussian

characterize two artifacts, ringing effects and blurring effectgfnoomed step edgisfined by
around lossy edges. The problem of edge reconstruction is for-
mulated as that of image restoration and can be solved by recov-
ering original edge structure and reducing quantization noi
The former involves estimating original model parameters from
the coded signal. The latter is implemented by local Gaussian h(z;b,¢) = b+ cU(z) )
filtering of edges in the coded signal. Furthermore, we intro- Y
duce a parametric reconstruction model which is able to prgs
vide a flexible tradeoff between visual enhancement and fidelity
improvement for the reconstructed image. Compared with pre-
vious post-processing techniques, the proposed approach has
the advantage of low computation complexity because it can be
implemented straightforwardly, without any iteration operatiof.fom (1)—(3), an edge can be represented as

This paper is organized as follows. Based on an edge model,
we analyze the degradation process of edges due to wavelet- s(z; b c,w) = b4 < <1 +erf <L>> (4)
based coding in Section II. Section Ill discusses the proposed 2 wy/2
edge reconstruction algorithm. The experimental results are pr ere erf-) € [1,1] is a scaled error functiony the param-

sented in Section IV. Finally, we draw conclusions in Section ter controlling the width of the edge the contrast across the
edge, and the intensity at the base of the edge. These parame-
[l. EDGE ANALYSIS ters are depicted in Fig. 1. In order to model edges in one signal,
e need to conduct edge detection and model-parameter estima-

s(z) = s(z;b, c,w) = Mz b, ¢) * g(x; w) (2)

2

1 T .
glz;w) = e exp <_F) , Wwithe=w. (3)

In an image, edges carry important information which us
ally reflects abrupt luminance changes and irregular structurign s follows.
There are two primitives for characterizing edges which are the
edge curves, i.e., the loci of edge points, and the variation of e
image surface within the narrow strips along edge curves. TheCanny edge detection [23] is used by convolving the signal
former can be obtained by edge detection followed by an asz) with the derivative of a Gaussian functigjyz; o), where
sociated linking scheme. The latter can be established by meg-controls the correctness of edge detection and the accuracy

Edge Detection and Parameter Estimation
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of edge localization. Without considering the noise, the model
output of edge detection is

=c-g(w;01) (®)

with o1 = \/w? + o3. An edge point is identified by checking
out local maximum in the magnitude of the response.

In [22], the response of edge detection is also applied for es-
timating the model parameters of a detected edge. Given the re-
sponse of edge detection expressed in (5) whose local maximum
is recognized as an edge, the detected edge may not be at the trus
position because of the discretization of the signal. “Edge point” 0.1
will denote the edge on the sampled grid of the discrete signal
and ‘.‘edge center” will denote j[he true pos!tion thhe edge in t%_ 2. Amplitude response of the 1-D edge model.
continuous version. Edge points can be identified during edge
detection as shown in (5). For a sigsa(«) with unit sampling
interval, if the edge point is at = 0 and the true edge center is
atx = zo (Jzo] < 0.5),i.e., b= so(w0) — g (14)

so(w) = s(z —xo; b, ¢, w) ®) Inadiscrete signak(zo) can be obtained by linear interpolation
between the two nearest sampled points.
Itis shown in [22] for most well-acquisitioned natural images,
) the majority of edges has widthranging from 0.5 to 1.5. With
the consideration of various errors, the setting = 1.0 is a
By sampling (7) atr = —a, 0, anda, three measurements carreasonable value in the case of original images. The 2-D edge
be obtained as follows: model and relevant analysis can be shaped into the 1-D model
framework discussed above. Essentially, the 2-D edge model is
operated in the 1-D way, thus the model-based characterization
\ can be adapted to edges with various loci in the image.
. exp <_ o ) ®) This edge model was applied to image coding [22]. An
2(w? +o73) image was represented by edges and their interpolation. An
edge was characterized by three parameters of the edge model.

w=1.0, ¢=200 ——
w=2.0, ¢c=200 -
w=1.0, ¢=100 -
w=2.0, =100

Amplitude Response

0.5 0.6
Frequency

then (5) becomes

d(w; w, ¢,01) = so(x) * ga(w;0a) = ¢+ g(w — w03 01).

c

di =d(0;c,w,0) = ——————
L= ) 2m(w? 4 o3)

C

dy =d(a;c,w,0) = B AR Since many details in an image may not be precisely repre-
2m(w® +0g) sented by the edge model, and the edge parameters were not

. exp <_ (a — x0)? ) 9) coded effectively, the coding performance is not satisfactory.

2(w? +03) However, the coded images sustain good edge features. This

c implies that the edge model is effective for the representation

ds =d(—a;c,w,0) = ————m of edge structures and edge reconstruction in distorted images.

2rr(w? 4 03)
exp <_ —a—x9)? ) (10) C. Edge Degradation Due to Image Compression
2(w? +a3) We now analyze the edge-degradation process due to the

guantization error of wavelet coefficients based on the consid-
erations of the frequency properties of the edge sigtia)
ggfined in (1) and the characteristics of zero-tree quantization.
For simplicity, the problem is discussed in the 1-D continuous
form and the results can be adapted to the 2-D discrete case.

From (4), (8)—(10), where = 1 is a practical choice in the
sampled 1-D signal, parameterw, b and the subpixel position
of the edge center can be estimated using three outputs nea
peak of (7) as follows:

2 Denote the Fourier transform efx) b
Wt = e, a1 (=) by
In L) = i) ¢
<d2d3 S(wy) o e + 27 (b + 2) S(wy)
o = aln(dy/ds) (12) Wherew, is the spatial frequency artd-) the Dirac delta func-
oln did; tion. We show the amplitude respongséw,. )| for edges with
dods different model parameters in Fig. 2. From Fig. 2, itis observed

5 1/4a that the amplitude response of the edge model decays with a

2ra <@) (13) rate related tov andc of the edge. Similar results can be ob-

n <d1d1> ds tained for discrete wavelet transform (DWT). In wavelet-based
dads

C%dl

image coding, DWT decomposes an image over several scales
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(d) (e) (1)
F|g 3. Edge analysis with quantization error. (a) The original edge sigital) = s(L — xg;w,b,¢) with xg = 0, w = 1.0, b = 50, ande = 200. (b)
w);(u)(j = 1,2,3,4), DWT of so(x) over four scales. (¢, (u), quantized version o3, () with quantization threshol@, = 64. (d) s1(x), the coded

vérsion ofso(x) (e)a2 x) = s(x — wo; Aw, b, c) with A = 1. 85 zero-phase low-pass fllterlng partén(zx). (f) ¢.(x), the quantization noise isy (x). (The
signalssq(z) in (a), s1(x) in (d), s2(2) in (e) andqn(l) in (f) are depicted partially with: € [—30, 30].)

where most energy is compacted to the low-pass band with.@w-pass filterf(x) widensw by a factorA\(A > 1) which is
small number of coefficients of large magnitude, and high-freelated to the amount of high-frequency components truncated
guency components are dispersed among the high-frequeand the decaying rate ¢f(w.)|. From Fig. 2, we see that the
subbands with a large number of coefficients of small magame quantization threshold may result in different low-pass
nitude. Furthermore, zero-tree quantization of wavelet coeffitering effects on edges with different model parameters due
cients results in keeping the higher bits of larger coefficients atwl their different spectrum decaying rates. For simplicity, we
discarding smaller ones. Therefore, such a quantization schemnéy consider the effects on the parameterintuitively, the
causes a considerable truncation of high-frequency energy, avidth of the distorted edge should be proportional to the width
introduces relatively little effect on low-frequency componentsf the original one. Hence, we use a multiplicative factor to
Thus, the wavelet coefficients in high-frequency subbands casfraracterize different edge widening influences of the low-pass
tributed to edges are normally of small magnitude and discardidtering by f(x). Experiments have been conducted, which
during quantization. This is similar to the idealized low-pass fishowed that the multiplicative factor can produce images of
tering in the Fourier transform domain. It will result in blurringslightly higher PSNR than an additive one.

effect and ringing effect, which are also observed in wavelet- If we assume thaf(x) is an FIR filter which has a symmet-
based image compression. Since the support of wavelet baigal (about origin) impulse response of unity integral, it can be
functions is compact, the ringing effects in a compressed imag®ved that the filtering okq(z) by f(x) leaves the position
are locally distributed around edges. Based on these obsewnfthe edge center, unmoved, as well as the value of the edge
tions and analysis, we give the following formulation of edgeenters(xo) unchanged, and causes no effectamdb, so (15)
degradation, in which edges in a compressed image is repcan be rewritten in the form of

sented in the 1-D form.

Ideally speaking, we assume that during wavelet-based s1(x) = s(x — wo; w1, b, ¢) + qn ()
coding using zero-tree quantization, which is modulus thre
olding after uniform quantization of wavelet coefficients, the
original edge signalsg(x) of (6) is locally filtered with a wy = A-w. a7
low-pass zero-phase filtef(«) of unity integral, accompanied ) .
with quantization noise,(z) in the output. In our formulation, !N Fig. 3, we demonstrate above analysis through an example
f(z) is applied to characterizing blurring effect agg{z) can ©Of & 1-D discrete edge signab(z) = s(z — zo;w,b,c)

correspond to the ringing effect in the compressed signal. VW“Ch has 128 samplmg points and edge model parameters

therefore, propose to model the coded signé:) by zo = 0, w = 1.0, b = 50 andc = 200, as shown in

Fig. 3(a). The wavelet transform of(z) over four scales,
si(z) = sz — zo;w, b, ¢) x f(x) + qn (). (15) w9 (z)(j = 1,2,3,4), is given in Fig. 3(b), and a quantized

(16)

here
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version with quantization thresholf}, = 64, wy,(z), is shown edge centes,(0) can be approximated by (0). Therefore, we
in Fig. 3(c). Fig. 3(d) gives; (z), the coded version ofp(x). regard the detected edge paint= 0 in (18) (when the appro-
According to (16),s; (x) can be decomposed into two compopriate conditions, as described in Section II-D, are met) as the
nents which are depicted in Fig. 3(e) and (f) , respectively. edge center of the original sign&/(z), thenb can be estimated
by
D. Edge Detection in the Compressed Signal
The response of edge detection using Canny detector for the b= 52(0) — 5. (21)

coded signak; () is expressed as 2
3) Estimation of Edge WidthOn account of low-pass fil-

di(x) = s1(x)xgy(x) = c-g(x—xo;w2)+qn(x)*gy(x) (18) tering by f(z), as shown in (16), some blurring distortion may

be caused to the model parameter~rom (17), we can restore
wherews = y/w? + od Thus, if the influence of quantlzat|onw by

noiseg,,(x) is able to be suppressed by a suitahjeluring edge
detection, then the position of the local maximum in (18) will be
the same as that in (7), which means that the lossy compression

does notintroduce shift to the original position of the edge pOi%here)\ is the widening coefficient and can be determined by

our later experimental analysis.

Thus, the original edge-model parameters are able to be es-
A two-step estimation is developed to estimate the originghated from the coded signal. According to the definition of
model parameters from the coded signal. First, the initial paragz edge model of (4), we can achieve model-based edge ap-

eter estimation of signa} (=) is obtained by (11) and (13) from proximation for recovering original edge structure. Of course,
the response of (18), and the estimated values of parametelr he formulation of (16) is an approximation to characterized the
w are denoted by andw, respectively. Then, the parameter esjegradation process of wavelet-based image coding, which has

timation of the original signaly (), where the computed valuessgme errors influencing the post-processing results.
of model parameters b, andw are denoted by, b and, re-

spectively, is conducted as follows. In the compressed sign@l, Error Analysis in the Compressed Signal
the estimation of subpixel positiaty, in (15) is less meaningful

due to the fact that the precision of multi-point estimation h
been deteriorated by the lossy compression, especially at |

bltlraté:st SOI;:O Is a?sl,zudmedcto t:e OtFI 8 (2 )16 5(%)- K that gn(x). Both of them are discussed as follows, with respect
) Estimation o ge ContrastFrom (16), we know tha to their influences in edge detection and model parameter
filtering of so(x) by f(x) does not influence contrast paramete

) &stimation.
c. Moreover, it is shown in [22] that for multipoint estimation, 1) Influence of Modeling Error of (z'):
¢ can be estimated with greater accuracy and precisionithan a) Edge localization—:For a detected edge point in the
andb, even in the presence of noise, here the quantization n0|88d

ed signal, the error of edge localization may be due to the
;rehclili/ t;?se initial estimated resuitfrom s, (x) can be used di- formulation of f(x) in (15) being no longer in force. In this

case, the edge reconstruction later around this edge point is im-
t—% (19) plemented not so much for fidelity improvement but more for
visual enhancement. This may happen often when the image is
2) Estimation of Edge BasisQuantization noise,(z) in compressed at low bit-rates.
(16) may degrade the precision of the estimation of parameter b) Parameter estimaton—if the modeling of (15) is valid
b, since the computation df is based on the intensity valueandg, () is relatively small, the principal error now is that of
of the edge point which may be corrupted by the guantizatigarameter estimation af, namely that of the widening factor
noiseg,, (z). Therefore, a Gaussian filter(x; o, ) is applied for  Ain (17). In a 2-D image, due to the directional decomposition

(22)

W=

> &

E. Model Parameter Estimation in the Compressed Signal

From (16), we know that the edge model in the compressed
ﬁnal has suffered from two major errors: the modeling of zero
8 ase low-pass filtering of (x) and the quantization noise

smoothingg,(z) in s1(x) as of DWT and the different rates of decaying spectrum shown in
Fig. 2 of the edge model, the same high-frequency truncation
s2(x) =s1(x) x g5(x) may result in a different low-pass filtering effect on the edges
=s(z;wi, b, ¢) * gs(x) + ¢n () * gs(2) with different directions or with different model parameters. It
~ s(; w3, b, ¢) (20) s difficult to develop a precise formulation for determining an

exact widening coefficienk for any given edge. Therefore, we

wherews = \/w? + o2 and it is assumed that,(x) and other try to determine an empirical setting fathrough experiments.
noise have been averaged outdayz) with a proper choice of We shall show that although one valueoin the formulation
the spread paramete. of (16) may not be accurate for all edges in one coded image,

Theoretically, the filtering ofjs(«) does not cause any shiftthe post-processing algorithm using such simplified characteri-
to the edge center of the edge model. Furthermore, without caation can still perform effectively for most tested images.
sideringg,(z) in s1(z), gs(x) also leaves the intensity value 2) Influence of Quantization Noisg (x):
of the edge center unchanged, ise(0) = s2(0). Then, after a) Edge detection and localizationThe performance of a
smoothing in (20), it is assumed that the value of the originfilter in revealing an edge can be evaluated by Canny’s signal-to-
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noise criterion2 and localization criterior\ [23], from which edge region, along edge curves. For efficient image post-pro-
van Beek deduced those criteria for the Gaussian smoothed stegsing, the edge region needed to be reconstructed should be

edge detected with Canny detector as follows: determined firstly. From the analysis in Section II-C, we know
that two artifacts in the edge region can be characterized by the
Q c 203 23) degradation model given by (16). In order to recover lossy edges
1= 75 . 9N /—

with the reproduction of edge sharpness and the reduction of

on | (W2 +od)ym
ringing effects, we introduced two operations follows.

and
A. Two Operations
_ < 4oy Inthe proposed algorithm, we develop two operatiomsgel-
on \ 3(w? +03)3nr based edge approximati@andGaussian smoothingvhich are

) o . .. related to the two additional terms in the lossy-edge model and
with o, the standard deviation of the noise. Here we consider gimeq at the suppression of the two artifacts. An important ques-
as the standard deviation of quantization najser) introduced {5, js now, for a pixel in the edge region to be reconstructed,
by zero-tree quantization of wavelet coefficients, ands the 4 1 obtain a reasonable balance between the two operations.
filter scale of edge detection. A large value of seajen (23)is 14 this end, we need to understand the characteristics of the er-
necessary in order to smooth the quantization ngige) and 45 empbedded in the two operations. The error of model-based
reach higher SNR'8),, but the performance of localizatioh, 55 nroximation mainly results from that of model parameter es-
would suffer. Thus, an appropriately compromisedof edge  (imation, and Gaussian filtering may cause some intensity devi-

detector should be set. o ations to the filtered signal. We will discuss this problem under
b) Parameter estimationThe above two criteria are con-1_p case as follows.

cerned with the multipoint-model parameter estimation which gien an edge signalo(z; w, b, c) defined by (4) and its
is conducted based on the outputs of edge detection. In or@gHeq versions, (z; w;, b, c) with u711 — \uw. let the errors be-

to determine the accuracy of multipoint parameter estimatioyeen the estimated parametérs) andé and the original ones,
another SNR criterion is introduced in [22], which is discernegd 1 ande be Aw. Ab. andAc respectively, i.e.

from one another in the response of edge detection under noisy
circumstance and can show how well the difference values of W=w+ Aw
the same response used in the estimation. Thus, Van Beek de- i

fined the “difference signal-to-noise” as

_ _ —(0,2/2('1112—1—02))
=l —c - (25) Thenso(z), the model-based approximation gf(x), is given

For a Gaussian smoothed-edge modEl, < Q; for all oy. by

Since ¢, (x) lowers the performance of edge detectitn, c+ Ac
multipoint estimation seems to be sensitive to the quantizatiéﬁh(”f? byc,w) = (b+Ab) +
noise. Therefore, we need a suitable setting pto keep the ; x
i imation i i |1+erf[ ——
precision of model parameter estimation in coded images. In < <(w i Aw)ﬂ))

our experiments, it was found thay € (1.3,1.6) is suitable
for most images coded by wavelet-based coding using zero-tiidee magnitude of the approximation error is
quantization at low bit-rates.

In practice, the different errors above may introduce different e(z) = |30(x) — so(x)| < eo + e1(x) (26)
influences on the result of edge reconstruction. The error OL
degradation formulation by'(z) is mainly related to the na- where
ture of image post-processing, preferring image enhancement
or image restoration. That of quantization noise may affect the
quality of edge reconstruction in a certain meaning.

By now, we study the behavior of the lossy edges in the corfind
pressed signal by developing the original edge model to the c+ Ac z c z
case of t_he coc_jed signal. The as_sociated parameter estimation®/ = 2 erf <(w + Aw)\/i> 2 e <W§>‘ '
scheme is carried out for estimating the original model param- (28)
eters from the coded signal. Then according to the definition

of the edge model (4), the approximation of the original edg8ince the values af are mainly among (0.5, 1.5) and for most
structure can be obtained. All the results above can be extendgdesAw < w, e1(x) can be approximated by

to the 2-D case directly.
Ac T
~|—erfl — ). 29
o) = |5 et ()] 29)

In an image coded by wavelet-based coding at low bit-rateherefore, we can see that the validity of model-based approx-
edge distortions happen mainly within narrow strips, nameisnation decreases asincreases. In other words, the model-

A
GOI‘Ab‘i‘?c

(27)

Ill. EDGE-RECONSTRUCTIONALGORITHM
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based approximation may not be credible for pixels far aw: Compressed image & with
. quantized wavelet coefficients W
from edge points.
As stated before, the model-based approximation enab
us to recover edge structures, and Gaussian filter is appl
for smoothing the quantization noise around edges. Howev

| Spatial-Spectrum Classification ]

Gaussian filtering, at the same time, introduces intensi [ Local Eage Detection | P ESfamation
deviation to the filtered signal, which happens mostly amor KG=h2mm) -5
the transition region of the signal. That means the pixels f | Length Filtering " .
away from edge points bear fewer deviation and are closer T P o Ortemnal Image”
the original values compared with those among the transiti [ Distance Transform | l ihb
regions carrying sharp intensity changes. With these conside
. . . - Iz - Ix Model-Based Edge
tions, we develop a model-based edge-reconstruction algor|t| Gaussian filtering |<—{ Modulus Thresholdmg}-—' Approxiamtion
as follows. _ Iz

o) Model-Based Edge Reconstruction oty

B. Algorithm for all pixel (x,y)in Iz
1é

| Projection Operation

The proposed edge-reconstruction algorithm consists of thi
steps which arselection of the edge regipmodel-based edge
reconstructiorandprojection operation in the wavelet domain
LetDWT andZDWT be the DWT pair, andl- | 7;, denotes the
zero-tree quantization operator with quantization threstipld Fig. 4. The schematic diagram of model-based edge reconstruction.

1) Selection of the Edge RegioEdges of 2-D images are
often notisolated but belong to some curves which generally dhee edge model to the real edges and the degraded precision of
the boundaries of the image structure. Usually, long edge curvesltipoint model parameter estimation shown in Section IlI-A.
are more important for human perception compared with shétowever,©(z, ) provides an eye-pleasing intensity tendency
ones. Therefore, edges are reconstructed along the edge cuiwesachp(z,y) € Ig. This is attributed to the regularized edge
of significant length. structure defined by the edge model. In order to measure the re-

Let® be an original image andl its coded version. The quan-liability of the approximation for edge reconstruction, according
tized wavelet coefficient array df is denoted by’ where most  to the analysis above, we construct a confident fundfi@s
coefficients are zero. A pixel &, /) in @ is denoted ag(z, ),
and the distance betwee(r, 1) andp(xz, y2) is defined by () = e, witha > 0 (31)

Reconstructed Result @

— _ 2 _ 2
D(p(as, ), pl@z,y2) = V(o = 22 + (1 —10)”. wherel is the distance between the pixel to be performed edge

Let I7 be the set which contains edge points of jite edge reconstructed and its neatest edge point, @riglan empirical
curve detected i, and L(I7) be the length of curvé/. Sup- factor.

pose there are curves in®. We define two setd andIR’ as On the other hand, in the coded |ma‘§ethe intensities of
follows: the pixels in/r contain quantization noise which is exhibited

' ' as the ringing effect around edge curves. A 2-D Gaussian filter
Ip ={p(z,y)|p(z,y) € I],L(I}) > Lo, with1 <j<n}  gs(x,y;05) is adopted withr; = 1.0 for reducing this noise,
Ir ={p(z, )| D(p(z,y), p(xe,ye)) < Do, p(xe, ye) € Ig s?nce a small spread parame@radapts.to a rapi_dly—varying.
andp(z., y.) = ar min D(p(, 1), p(ze, o))} signal _better_ th_an a I:_:lrge one [24]. Th|s_ Ga_u35|an smoothing
er e B(weye) reaEAmergel/ T operation coincides with that used for estimating model param-

whereLo and Dy = v/ are two thresholds for length filtering €t€r? in (21). The filtered result of each pixg(x,y) € Ir is
and modulus thresholding, respectively.contains edge points d€noted by
of the edge curves of significant lengthy, is the edge region to () = D * gu (2, 9). (32)
be recovered.

2) Model-Based Edge ReconstructioRor a certain pixel Since the deviation ob(z,) introduced by Gaussian filtering
plx,y) € Ig, its intensity value is denoted bj(z, ») and its may decrease with the increasel oés shown in Section lI-A,

model-based approximatidd(z, y) is given by we weight®(z,y) by 1 — I'(1).
. Both ©(x,y) of (30) and®(z,y) of (32), which target two
O(z,y) = be + Ce <1 +erf <L>) (30) different artifacts existing at edges are incorporated into the
2 We edge reconstruction qf(x,y). We introduce a reconstruction

wherel = D(p(x,y), p(ze,v.)) andp(ze,y.) € Ip is the model withI'(!) adjusting the balance between them as follows:

nearest edge point @z, y); é., b, and, are the estimated ) .

model parameters of the original image associated with pixel O(z,y) =I()O(z,y) + (1 - I'(1)2(z,y).  (33)
p(ze, v ). O(z,y) is mainly used for deblurring the lossy edges.

In practice, the value d®(x, ¥) may not be close to the original By tuning « in (31), the influences of two operations on each
intensity ofp(x,¥). This is due to the lossy approximation ofreconstructed pixel(«x, ) can be adjusted according to its dis-
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la) (4] [}
) (g {h}

k)
Fig. 5. Edge reconstruction results for a synthetic image. (a) Original inbagle) Coded imageb (40.22 dB, 0.10 bpp). (c) Result of edge detectign (d)

[ ]
Edge region/ z to be reconstructed. (e) Gaussian smoothed vesBiaff) Model-based edge approximatiéh (g) Initial revised versionb. (h) Reconstructed

image®’ (PSNR gain = 1.12 dB).

TABLE |
MODEL PARAMETER ESTIMATION OF EDGE CONTRAST ¢

wy = 0.5 wy = 0.8 wg = 1.1 wy =14 ws = 1.7 wg = 2.0
m(c) | sd(e) | m(e) | sd(c) | m(c) | sd(c) | m(e) | sd{c) | m(c) | sd(c) | m(c) | sd(c)
®, | 973 | 11.9 | 975 9.3 98.0 7.0 97.9 5.6 98.1 4.5 98.5 3.1
@, | 99.8 8.3 97.5 7.6 96.6 8.9 99.4 7.5 | 102.1 ; 10.4 | 106.1 | 13.0

TABLE I
MODEL PARAMETER ESTIMATION OF EDGE BASIS b

wy = 0.5 wo = 0.8 wy = 1.1 wy = 1.4 wy = 1.7 wg = 2.0
m(b) | sd(b) | m(b) | sd(b) | m(b) | sd(b) | m(b) | sd(b) | m(b) | sd(b) | m(b) | sd(b)
P, | 96.6 | 154 | 99.9 | 13.8 | 99.8 | 129 | 99.8 | 10.1 | 1003 | 9.5 | 1000 | 7.8
o, | 101.2| 177 | 99.1 | 14.6 | 101.1 | 13.9 | 101.1 | 11.9 | 97.4 | 10.7 | 110.0 | 11.8
D, | 98.3 85 | 974 | 75 97.0 8.6 99.3 7.4 | 1017 | 10.2 | 105.8 | 11.1

tance to the nearest edge point. For an image, we may adf@stimplementation

o to attain the highest PSNR gain. However, if we consider the g schematic diagram of the proposed algorithm is shown
image fidelity as a less important factor, then a smallewhich i, £ig 4. In order to speed up edge detection, we can narrow

will strength the effect of model-based reconstruction, can B, getected region through spatial-spectrum classification of
chosen to obtain a sharper edge structure. TAysiovides a jmage blocks by using the spatial characteristic of wavelet co-
trade-off between visual enhancement and PSNR improvemggfcients [25]. Thus, edge detection is conducted locally where
for the reconstructed image. there may be some existing edges, and the combination of

3) Projection Operation in the Wavelet Domairfter the  |4c4) edge detection results produces a complete result, namely
edge reconstruction of (33), we require a projection pperathm(j — 1,2,---,n) for n edge curves. Then, after length
defined as follows to ensure that the reconstructed indage- filtering, the set of edge points in edge curves of significant

ists in the same quantization space with that of the coded ima}@ﬁgth I can be determined, from which the edge regign

¢ to perform edge reconstruction can be selected by the distance
Wi j), if W(i,j)#£0 trgnsf_orm [2_6] of/ g followed by modL_JIus thresholding. Ever_y
Wi j) = { £T if W(i,7) = 0 and|W(i > T pixel in I is reconstr'U(_:t'ed accgrdlng to thg reconstruction
J D ’ ’ 7 model in (33) and the initially revised image is denotedbas

W(i,j), otherwise from which the last reconstruction resdit is obtained by the

. R R projection operation in the wavelet domain.
whereW = DWT(¢) and ¢ is obtained from (33)(i,j) is  Here, we present the implementation procedure of our
the coordinate of wavelet coefficientd] is the zero-tree thresh- gigorithm in Fig. 5 by processing a synthetic image coded
olded wavelet coefficient array of the coded imalgel; isthe py a wavelet-based codec, SPIHT [12] at 0.1 bpp, PSNR
quantization threshold df, which can be deduced from the= 40.22 dB shown in Fig. 5(a), which has invariant model
smallest magnitude of non-zero wavelet coefficient8inW’  parameters around the circle edge, ie.,= 1.0, ¢ = 100

is the reconstructed wavelet coefficient array. The operationghds = 100. The step-by-step results can be obtained from
®' = IDWT (W’) gives the final reconstructed image. Fig. 5(b)—(h). The last edge-reconstructed result is shown in
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Fig. 6. Determination oh for restoring edge width. Fig. 7. Determination ofv for edge reconstruction.

Fig. 5(h), whose PSNR and subjective quality have been im- Condition 2: The value of edge contrast = 100 is
proved. From Fig. 5(d), we know that only a very small part gidopted for the edges in all tested synthetic images, since itis a
the lossy image is post-processed due to the existence of ed§@sesentative value for most images.

there. However, the improvements on visual perception and Condition 3: We applyZ; = 32 to the quantization of the
image fidelity are notable. Hence, the necessity and desirabil@velet coefficients of the original synthetic images to obtain

of edge reconstruction for low bit-rate compressed images &fgir coded versions at low bit rates, since for mostimages coded
manifested. by SPIHT at low bit rates, the values®f are 16, 32, or 64.

Though the above simplified conditions may not have pro-
vided us the optimal setting of, we can still obtain an empir-
. ) ) ~_ical value ofA which enables effective post-processing for most
T_he experiments of this qurk have been applied primarily fthages. Consider synthetics images(n = 1,2,---) similar
the images coded by the efficient wavelet—ba_sed codec'—SPI{-(l)TFig_ 5(a) withc = b = 100 and different values of edge
[12].*We expect that the proposed a_pprpach is also applicableyrith (w, = 0.5 ~ 2.0) along the circle edge. For each image
other codecs using zero-tree quantization, such as SFQ [13]¢n(n = 1,2,---), we calculatelV,, = [DWT(®,)]|r, with
_ _ T, = 32, and let its coded version bg,, = ZDWT(W,,).
A. Setting Algorithm Parameters Then, we compute the estimated values of model parameters
The values of two important factors in the proposed algder each®, (n = 1,2,---) usingoy = 1.5 in (5) for edge de-
rithm, X and« need to be determined for the edge model artéction. For comparison, the parameter estimation is also devel-
the reconstruction model discussed above. The two factors h@ped on the original image,,. Moreover, the parametéris
different influences on the result of post-processihghows estimated from the image,,, which is the Gaussian smoothed
the sensitiveness of post-processing anaffects the strength version of®,, filtered by g(, y; o) with o, = 1.0. The means
of model-based edge reconstruction. Sinds closely related and standard deviations of the estimated parametansib are
to the edge model, we shall determine its setting by the expetémputed and listed in Tables | and Il, respectively. It is shown
mental analysis based on synthetic images which contains edd@¢ wavelet-based image coding introduces little bias on edge
in all directions and of different edge width. On the other model parameterg, andb. However, we need to restote ac-
hand, the value of: reflects the precision of the model-basegording to (22). Fig. 6 plots the edge width estimated using (11)
approximation with respect to low bit-rate image coding; ther@gainst the original edge width for the original and coded im-
fore, we shall determine its value based on a number of standag#s.®.. and®,, (n = 1,2,---).Tables | and Il show that for
images coded at low bit-rates. images coded witll; = 32, the mean values of the estimated
1) Model Parameter Estimation and Setting X is the ¢ andb are about the same for the original and coded images.
widening factor to model the low-pass filtering effect duén addition, Gaussian smoothing by, y; o) improves the es-
to zero-tree quantization and is related to the bit-rate atighation precision of parametér Moreover, for the estimated
the original edge model parameters. In order to simply our, we should restore it by according to (22). Fig. 6 suggests
investigation, we have introduced some preconditions for theat\ = 1.3. For a coded image, the optimal (maximum PSNR)
experimental synthetic images. value of A, is normally between 1.2 and 1.6, depending on the
Condition 1: The values of edge width should be in théit-rate and the image content.
range of (0.5,2.0), since the majority of edges in most images is2) Edge Reconstruction and Setting The factora in (31)
within such range [22]. can be determined through extensive experiments on many stan-
dard images coded at low bit-rates and using PSNR as a crite-

1 The software and documentation which are copyrighted may be accengf" Here we have used twelve images. Ten %1212 images
online. Available: http://www.cipr.rpi.edu/research/SPIHT/ coded at 0.1 bpp and two 256 256 images coded at 0.2 bpp

IV. EXPERIMENTAL RESULTS
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TABLE 1lI
EDGE RECONSTRUCTEDRESULTS FORIMAGES (512 x 512, 8 bpp)
bit-rates Lena Peppers Flower Monarch
(bpp) | PSNR(dB) | Gain | PSNR(dB) | Gain | PSNR(dB) | Gain | PSNR(dB) | Gain
0.20 33.26 +0.11 32.83 +0.10 36.25 +0.06 30.26 +0.35
0.15 32.02 +0.13 31.68 +0.13 34.78 +0.32 29.00 +0.50
0.10 30.45 +0.23 30.10 +0.26 32.34 +0.32 27.11 +0.47
0.08 29.60 +0.25 29.12 +0.23 31.16 +0.34 26.13 +0.44
TABLE IV
EDGE RECONSTRUCTEDRESULTS FORIMAGES (256 x 256, 8 bpp)
bit-rates Lena256 House Camera Tree
(bpp) | PSNR(dB) | Gain | PSNR(dB) | Gain | PSNR(dB) | Gain | PSNR(dB) | Gain
0.25 30.00 +0.04 33.08 +0.14 28.00 +0.03 26.03 +0.25
0.20 28.18 +0.18 32.12 +0.20 27.17 +0.10 25.17 +0.25
0.15 27.12 +0.25 30.82 +0.25 25.96 +0.12 23.92 +0.23
0.10 25.56 +0.23 29.11 +0.33 24.54 +0.18 22.49 +0.24

ny {h]

Fig. 8. Result for Lena (51% 512, 8 bpp). (a) Coded image (30.22 bpp, 0.10 bpp). (b) Reconstructed image (30-:46.@B,dB).

Fig. 9. Result for Peppers (522 512, 8 bpp). (a) Coded image (29.84 bpp, 0.10 bpp). (b) Reconstructed image (30-£0.8B,dB).

were employed to determine, as illustrated in Fig. 7. It is in different degree and the bit-rate of a coded image will influ-
shown thaty = 0.6 is near optimal for most images in this setence the precision of model parameter estimation. In general,
But the precise setting af is image and bit-rate dependent. ltv € (0.5,0.7) gives the best PSNR gain for most images coded
is because different images may coincide with the edge mod¢llow bit-rates.
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Fig. 10. Result for Flower (51% 512, 8 bpp). (a) Coded image (32.02 bpp, 0.10 bpp). (b) Reconstructed image (32-80.8B,dB).

Fig. 11. Result for Monarch (512 512, 8 bpp). (a) Coded image (26.64 bpp, 0.10 bpp). (b) Reconstructed image (27-40.4B,dB).

{a) (k] ic)

Fig. 12. Result for House (25% 256, 8 bpp). (a) Original image. (b) Coded image (30.57 bpp, 0.15 bpp). (c) Reconstructed image (36-828RIB).
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Fig. 13. Result for Tree (25& 256, 8 bpp). (a) Original image. (b) Coded image (25.78 bpp, 0.25 bpp). (c) Reconstructed image (26-028RIB).

Fig. 14. Result for Box (256 256, 8 bpp). (a) Coded image (0.06 bpp). (c) Reconstructedawitd.6 (PSNR gair=1.05 dB). (c) Reconstructed with =0.2
(PSNR gain=0.65 dB).

B. Results and the endeavor of the proposed edge reconstruction may be in

We apply the edge reconstruction scheme to twelve stand4fi- On the other hand, if the coded image carries less edge dis-
images coded by SPIHT at low bit-rates. In all experiments, Wrtion or there is not enough edge degradation, the profit to be
used\ = 1.3 ande = 0.6. Tables Il and IV show the improve- gained from the edge reconstruction is also negligible. There-
ments of image fidelity (PSNR) for the images coded at lof¢"€: the proposed method is more effective for images which
bit-rates. Figs. 813 illustrate that the visual quality of the coddlge obvious, but not deadly, edge distortion. Experiments also
images is also improved. Around edges, not only the ringing &f70W that the visual quality and PSNR of the reconstructed
fects are reduced, edges also appear to be sharper. Moreovéhdd€ will not deteriorate gnd remains at Fhe orlgmal level if
one emphasizes the edge enhancement of the reconstructelfePrOPOSed post-processing cannot provide an improvement.
sult by choosing: < 0.5, images of sharp edges with little or | NS iS probably due to the fact that, in this case, the proposed

no PSNR gain will result. Fig. 14 shows two versions of edg%ost-processing algorithm will perform little operation on the

reconstruction for a coded synthetic imagex with different 'Magde.

setting of the reconstruction factar The computation time of

the proposed algorithm depends on the amount of edges exist in V. CONCLUSIONS

an image. For normal images of 5&2512, likeLenaandPep-

pers the computation time is about 20 s on a 200-MHz Pentium A new technique for image post-processing has been pre-

computer. sented which is able to perform edge reconstruction for im-
In general, there are two factors affecting the efficiency &ges coded by wavelet-based coding at low bit-rates. The image

the proposed post-processing algorithm: the bit rate and imagjlity can be improved in terms of both PSNR and visual per-

content. For those images with fewer noticeable edge structur@@ption. The proposed approach has the following two features.

such adruits andZeldg or images with abundant random tex- 1) The edge model is deterministic and the edge-degrada-

tures, such a8aboonand Bridge, the proposed method may tion model is simple and direct. These allow a straight-

not be able to improve the PSNR or visual quality significantly. forward implementation of the proposed post-processing

Moreover, we have simplified our problems by assuming that  algorithm.

images coded at different bit rates bear the same edge degrad#) The parameterized reconstruction model allows a flexible

tion. In fact, forimages coded at very low bit-rates, serious edge  tradeoff between visual enhancement and PSNR gain for

distortions, such as shifting or vanishing of edges, will result  the reconstructed image.
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The key in the proposed method is the degradation modeling ¢f6] J. Luo, C. Chen, and K. J. Parker, “image enhancement for low bit rate

edges in an image, where the edge model also plays an impor- wavelet-based compression,”fmoc. ISCAS'971997, pp. 1081-1084.
le. It is sh h h d al ithm i . . él?] I. Linares, “Optimal PSNR estimated spectrum adaptive postfilter for
tant role. It is shown that the proposed algorithm is promisin DCT coded images,” iRroc. ICASSP'95vol. IV, 1995, pp. 2387-2380.

in stretching the performance of wavelet-based coding usinfs] A. K. KatsaggelosDigital Image Restoration New York: Springer-
zero-tree quantization at low bit-rates. Verlag, 1991. o
[19] A. Narayan and J. F. Doherty, “Convex projections based edge recovery
in low bit rate VQ,” IEEE Signal Processing Lettvol. 3, pp. 97-99,
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