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An Order-16 Integer Cosine Transform

W. K. Cham and Y. T. Chan

Abstract—It is possible to replace the real-numbered elements of a
discrete cosine transform (DCT) matrix by integers and still maintain
the structure, i.e., relative magnitudes and orthogonality, among the
matrix elements. The result is an integer cosine tr m (ICT). Thir-
teen ICT’s have been found and some of them have performance com-
parable to the DCT.

I. INTRODUCTION

In digital image processing, data compression is necessary to
improve efficiency in storage and transmission. Transformation is
one popular technique for data compression. By first transforming
correlated pixels into weakly correlated ones, and after a ranking
in their energy contents, for example, and retaining only the most
significant components, high compression ratio is possible [1].
Since inverse transformation is needed to reproduce the original
image from the compressed data, it is important that the transform
process be simple and fast. The family of orthogonal transforms
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[2] is well suited for this application because the inverse of an or-
thogonal matrix is its transpose.

The discrete cosine transform (DCT) [2] is widely accepted as
having a high efficiency (see Section III for a definition) for image
data compression while the Walsh transform (WHT) and C-matrix
transform (CMT) [3] are simpler to implement but possess lower
efficiencies.

The DCT matrix elements are real numbers and [4] has shown
that for a 16-order DCT 8 b are needed to represent these numbers
in order to ensure perfectly negligible image reconstruction errors
due to finite-length number representation. If the transform matrix
elements are integers, then it may be possible to have a smaller
number of bit representation and at the same time zero truncation
errors.

Using the principle of dyadic symmetry, [5] has introduced the
order-8 integer cosine transform (ICT) which has zero truncation
errors, requires a small number of bit representation (as little as 2
b in one case) and comparable efficiency to the DCT. Briefly, an
ICT matrix is in the form I = KJ where [ is the orthogonal ICT
matrix, and K is a diagonal matrix whose elements take on values
that serve to scale the rows of the matrix J so that the relative
magnitudes of the ICT matrix [ are similar to those in the DCT
matrix. The matrix J is orthogonal with elements that are all inte-
gers. Many order-8 ICT’s are given in {5] and, in particular, there
is one ICT that performs nearly as well as the DCT and requires
only 4 b for perfect representation of its elements.

In real-time applications, a transform is most likely implemented
using a dedicated chip. Thus the shorter bit length ICT will lead to
a simpler IC structure and shorter computation time. Furthermore,
in applying the ICT to source coding, it is easy to eliminate the
multiplication of K by absorbing it in the quantization process in
the coder, and in the decoding process of converting bit streams
into numbers in the decoder.

In [5], the order-8 ICT was derived using the principle of dyadic
symmetry. This correspondence gives a different development that
leads to the order-16 ICT. Equations relating the elements of the
ICT matrix so as to satisfy the orthogonality conditions among the
columns of the ICT matrix are first written. Then a search method
is proposed to find integer solutions for these elements. Thirteen
order-16 ICT’s are given and two of them are perfectly represent-
able by 6-b numbers, resulting in a reduction in computation time
and a simpler IC structure. The development of the order-16 ICT
is in Section I, and Section III compares its performance with other
transforms. The conclusions are in Section IV.

II. THE ORDER-16 ICT

The development of the order 16-ICT begins with the 16 X 16
DCT matrix:

1
Dy ="

LJ) =
V2 {(z’f DG~ 09w
4

s 1 =j=16.
16 J J

Decomposing it into
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where K = diagonal (k;), and k;, 1 < i < 16 are the scaling factors, results in

[ 1 1 1 1 1 1 1 Lo 1 1]
A A, A Ay As As 4 Ay 1 —Ay —4; —A,
Ay Ao A A —Ap Ay —Ay Ay 1 -4 —Ay Ay
4 A; Ay —4s —4 -4 ~ 4 4 L4 Ay —4
A Ay —Ay —Ap; —Ap —Ay Aig Az ; Az Ay Az
A Ag -4, —A, ~4, As A Ay | A —4, —A,
Ay —Ap —Ay —Ap Ay Ay A, =Ayg i —Ayp Az Ay

yo | A —Ag —4, Ag A, A, A, —As 1 A As —A,
1 -1 -1 1 1 -1 -1 1 ! 1 -1 1
As —A; -4, A, —dg —A; Ap Ay L A —Aq —As
An —Ay Ay AIO —Ay —Ap Ay —An :: ~A Ay A,
A =4, As 4, -4, Ay Ay —Ay A; —Ag ~4
Ay —Ap Ais —Ay —A4y A —As A 1 Ay ~Ap A
Ay —A, A4, —A4; A Ag —As =4, 1 A As —A;
A —Ay Ay —Ay Ay —Ayp Ay -4 | —Ap Ay Ap
| As —A; Ag —As Ay =4 4, -4, ! A ) —Ay |

It is readily seen that ¥ has symmetry with respect to the dotted

line, with even and odd symmetry alternating. The basic idea of
the ICT is to replace the elements A4; by integers and at the same
time preserve the structure, i.e., the relative magnitudes of these
elements and orthogonality, of the DCT matrix. For ¥ ¥7 to be
diagonal, its elements must satisfy the conditions

AAy + AyAs + AyAg

= AgAg + AAs + A\ Ag + A A, + A A, I
AjAy + AyAg + AsAg + A A; + AgAy

= A3Ay + A A, + AsA, )

A Ay + A As + A Ay + AgAs

As = A)(A3 + Ag) + A5(A; — Ag) (12)

which are all functions of the set §, = {A4,, A;, Aq, A;}. It follows
from (1) to (3), after some manipulation, that

AA + A, = A, (13)
Ay + AsA, = AN, (14)
Ay + As) + Agdy — 45) = As. (15)

Clearly, (8) to (12) decouple S, from S, = {A,, A;, As, A3} and
(13) to (15) is the relationship between the elements of §, and S,
and they come from (1) to (3). Now a computer search can be
systematically carried out by first choosing integers from S, that

= AyAg + AsA; + A3A; + AsAy (3)  satisfy (5) and then finding solutions from (13) to (15) for S5, re-
' ‘ taining only integer solutions that satisfy the constraint (5). It turns
AgAig = AgAy + ApA;p + Ay A @)

Additionally, if this matrix were to possess a DCT-like structure,
its elements must also satisfy the constraints

out that there are 13 solutions and they are listed in Table I.

III. PERFORMANCE COMPARISON

A > Ay > Ay > Ay > As > Ag > Ay > A 5) The efficiency of a transform is generally defined as its ability
to decorrelate a vector or random elements. Let the n-vector f con-
Ay > Ay > A, > A, (6)  tain elements of samples from a one-dimensional, zero mean, unit
variance first-order Markov process with correlation coefficient p
Az > Ay @)

Note that the elements 4,3 and 4,4 do not enter into the orthogonal
conditions (1) to (4) and were assigned values of 3 and 1, respec-
tively, in [5]). They were found to be the best integer values for
giving high efficiency.

To find integers that satisfy (1) to (6), it is first noticed that (4)
and (6) are independent of the other conditions, i.c., the elements
Ay 10 Ay; can be found independently of the other elements to sat-
isfy (4) and (6). Indeed, [S] has determined several sets of values
that satisfy (4) and (6) and Ay = 55, A, = 48, A,, = 32, 4}, =
11 is one such set, for example.

Next, let

Ay = (Ay — Ag)(As — A7) — (A3 + A7) (42 — Ay) ®)
A, = (4q — A7)(A3 — Ay - (Az — A4, + Ag) 9
Ay = A — A3 — A3 + A3 (10)

8= (A + AY)(Ay — A)) — (A + A)(4e + A7) (1D

and covariance matrix C whose (i, j)th element is p“‘”. Let the
transformation matrix be ® and the transformed vector F. Then

F=2%f 16)
and
E{FF"} = ®E{f"}®" = #C®" = B = {b(i, )}. UT)
The efficiency is
i |bG, i)
B = (18)
2

Fig. 1 is a plot of the transform efficiency of DCT, WHT, CMT,
and ICT against the correlation coefficient p. The ICT used is the
one in the second row of Table I, whose elements require only 6-b
representations. The ICT efficiency is slightly below that of the
DCT but is considerably higher than that of the WHT and CMT.
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TABLE 1
13 INTEGER COSINE TRANSFORMS
Al A2 A3 Ad AS A6 A7 A8
120 114 103 94 68 57 34 14
42 38 37 32 22 19 10 4
62 61 49 47 37 31 21 5
120 108 104 85 69 52 32 2
128 124 119 100 88 67 22 12
121 119 107 97 79 68 19 15
87 80 70 65 43 40 25 7
81 76 64 61 41 38 25 7
94 93 73 70 58 51 26 6
117 106 90 82 59 50 42 1
121 111 105 89 69 63 15 8
108 107 81 76 70 61 29 1
134 119 118 98 70 69 13} 10
Ag =55, Ay=48, A, =32, A, =11, A =3. A, =1
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Fig. 1. Transform efliciency.

Two other transform performance measures are the maximum
reducible bits (MRB) [6] defined by

1 &
MRB = —— 2 log, b(i, i) (19)
2ni=1
and, for a 2-D Markov model, the basis restriction error [7]
20 2 o, v)
ey =1 — < 1 <k =< 15. (20)

" "n

ZI Z. ol u, v)
Wl =
They both serve to quantify the compression ability of a transform.
In (20), o (u. ) denotes the variance of the 2-D transformed ele-
ments. Let w be the set containing & index pairs (u, v) correspond-
ing to the largest k o*(u, v), where I < k < 15 is the number of
coefficients retained. Then the basis restriction mean-square error
is as given in (20). Figs. 2 and 3 contain the plots of MRB and
e(k), where it is seen that the ICT and DCT have equal compression
ability and they are both superior to the WHT and CMT.

IV. CoNcLUSIONS

In this correspondence, we have developed a new order-16 ICT.
It retains the important properties of the DCT such as orthogonality
and proper ordering of the values of the matrix elements. Its main
advantage lies in having only integer values which in two cases can
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Fig. 2. Maximum reducible bit.

BASIS RESTRICTION ERROR
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Fig. 3. Basis restriction error.

be represented perfectly by 6-b numbers, thus providing a potential
reduction in the computation complexity. Additionally, it has com-
parable performance to that of the DCT.
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Improved Spatial Smoothing Techniques for DOA
Estimation of Coherent Signals

Weixiu Du and R. L. Kirlin

Abstract—In the context of coherent signal classification, spatial
smoothing is necessary for the application of the eigen-based direction-
of-arrival (DOA) estimation methods. However, the currently known
spatial smoothing algorithms not only reduce the effective aperture of
the array, but also do net consider the cross correlations of the subar-
ray outputs. In this correspondence, an improved spatial smoothing
algorithm is presented, which can fully utilize the correlations of the
array outputs and produce a more stable estimate of the covariance
matrix. Simulation results are provided to verify the theoretical pre-
diction.

I. INTRODUCTION

The eigen-based method has proven to be an effective means of
obtaining direction-of-arrival (DOA) estimates of multiple signals
from the outputs of a sensor array. However, the performance of
algorithms based on this method will severely degrade when some
of the signals are coherent or highly correlated. The spatial
smoothing method for the coherent signals was first proposed by
Evans et al. [1] and later developed by Shan et al. [2], Williams
et al. [3], and Pillai and Kwon [4]. The solution is based on a
preprocessing scheme that partitions the total array of sensors into
subarrays and then generates the average of the subarray output
covariance matrices.

In the resulting covariance matrix, the source covariance will
possess full rank, and the eigen-based method can be applied ef-
fectively. However, this result is obtained at the cost of losing ef-
fective spatial aperture. In order to achieve a larger effective ap-
erture, the method of modified spatial smoothing or forward-
backward spatial smoothing, has been proposed by Evans et al. [1}
and was extensively studied by Williams et al. [3] and Pillai and
Kwon [4]. Using the improved spatial smoothing method, a uni-
form linear array can resolve as many as 2M /3 coherent signals
(with M representing the number of sensor elements), which co-
incides with the bounds of the number of coherent signals resolv-
able by such an array [5].

While many efforts have been made to increase the effective spa-
tial aperture for the spatial smoothing scheme, any information in
the cross correlations of the outputs of the subarrays has been ig-
nored until a method was proposed [6], which improves the esti-
mate of subset of parameters based on their covariance with the
other parameters {7). In the conventional spatial smoothing scheme,
only the autocorrelations of the outputs of the individual subarrays
are utilized to obtain the final estimate of the covariance matrix. In
this correspondence, a new spatial smoothing method is presented
to overcome the disadvantage of losing cross correlation in the con-
ventional algorithms.
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II. SPATIAL SMOOTHING FOR EIGEN-BASED METHOD

Consider a uniform linear array composed of M omnidirectional
sensors receiving d (d < M) narrow-band plane-wave signals from
directions 6, 65, - - -, 0,, centered at frequency w. It is assumed
that the signals and noises are stationary, zero mean uncorrelated
random processes and further, the noises are temporarily and spa-
tially white with variance ¢2. Using complex signal representation,
the M X 1 vector of the array outputs can be expressed as

d
r = % a®)s() + n() M
where s5,(1) is the ith signal, a(6;) is the M X 1 steering or direction
vector in the direction of 6;:

a(ov_) = [l, 8_/u')7', cee e—j(M~Ibam7,] T

where 7; = (A/c) sin 8, with A representing the sensor spacing
and c the propagation speed. And
n(t) = [m@), ny0), -, ny@]”

represents the M X 1 noise vector. Rewriting (1) in the alternative
form, we have

r(n) = As(t) + n(@) 2)
where
A = [a6), aBy), - - -, ax)]
is the M X d steering matrix and
s =[50, 50, -+, 5,017

is the d X 1 signal vector. We can now form the M X M covariance
matrix of the array outputs

R = E[As()s"()A") + E[n(t)n" (1)

= ASAY + ¢%1 3)

where S = E[s(r)s¥ ()] is the d x d signal covariance matrix and
H denotes Hermitian transpose. The nonsingularity of the signal
covariance matrix is the key to a successful application of the ei-
gen-based method. Spatial smoothing is a preprocessing scheme
that can guarantee this property even when the signals are coherent
[1].

Assume that d coherent signals are received by a uniform linear
array of M sensors. Let us partition this linear array into L over-
lapping subarrays of size m = d + 1, with sensors {1, 2, * - -,
m} forming the first subarray, sensors {2, 3, - - -, m + 1} forming
the second subarray, etc. It is easy to verify that the m X m cross-
covariance matrix of the ith and the jth subarrays is given by

Rl = A, DS Y Al + oI5 @
where A, is the m X d steering matrix of the reference subarray
(usually the first subarray) and

D= di'dg [e ~iom | g iwor , e demi)

&)

isad X d diagonal matrix. Note that in the above we assume noises
from different subarrays are uncorrelated. However, when subar-
rays are overlapped, this assumption does not hold. In this case we
can either approximately remove the noise covariance using its es-
timate or simply ignore its impact on our algorithm. For M >> m
the latter choice is reasonable; effects in our simulations have shown
to be negligible. To facilitate expressions for the backward
smoothing, we form the m X m cross-covariance matrix

RY = J(Riy* J (6)
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