
1

Abstract— This paper proposes a fast algorithm for Walsh Hadamard Transform on sliding windows which can be used to

implement pattern matching most efficiently. The computational requirement of the proposed algorithm is about 4/3 additions per

projection vector per sample which is the lowest among existing fast algorithms for Walsh Hadamard Transform on sliding

windows.

Index Terms— Fast algorithm, Computation of transforms, Walsh Hadamard Transform, Pattern Matching

I. INTRODUCTION

Pattern matching, also named as template matching, is widely used in signal processing, computer

vision, image and video processing. Pattern matching has found application in manufacturing for

quality control [1], image based rendering [2], image compression [3], object detection [4] and video

compression. The block matching algorithm used for video compression can be considered as a pattern

matching problem [5]-[8]. To relieve the burden of high complexity and high requirement of

computational time for pattern matching, a lot of fast algorithms have been proposed [9]-[13].

It has been found that pattern matching can be performed efficiently in Walsh Hadamard Transform

(WHT) domain [9]. In pattern matching, signal vectors obtained by a sliding window need to be

compared to a sought pattern. Hel-Or and Hel-Or’s algorithm [9] requires 2N-2 additions for obtaining

all WHT projection values in each window of size N. Note that one subtraction is considered to be one

addition regarding the computational complexity in this paper. Their algorithm achieves efficiency by

utilizing previously computed values in the internal vertices of the tree structure in Fig. 1. Recently, the

Gray Code Kernel (GCK) algorithm [10] which utilizes previously computed values in the leaves of the

tree structure in Fig. 1 was proposed. The GCK algorithm requires similar computation as [9] when all

projection values are computed and requires less computation when only a small number of projection

vectors are computed.

The authors are with the Department of Electronic Engineering, The Chinese University of Hong Kong, (e-mail: wlouyang@ee.cuhk.edu.hk;
wkcham@ee.cuhk.edu.hk)

Fast Algorithm for Walsh Hadamard Transform
on Sliding Windows

Wanli Ouyang, W.K. Cham

2

+
[1 1] [1 -1]

[1 1 1 1 -1 -1 -1 -1]

[1 1 1 1]

+

[1 1 -1 -1]

+

[1 -1 1 -1][1 -1 -1 1]

[1 1 -1 -1 1 1 -1 -1]
[1 1 1 1 1 1 1 1] [1 1 -1 -1 -1 -1 1 1]

+ + +

N=2

N=4

N=8

−

− −

− − −... +−
...

Fig. 1 Tree structure for Walsh-Hadamard Transform in sequency order

This paper proposes a fast algorithm for WHT on sliding windows. Instead of performing order-N

WHT by means of order-N/2 WHT and N additions in the tree structure, which is the technique adopted

in [9], the proposed algorithm computes order-N WHT by means of order-N/4 WHT and N+1 additions.

In this way, the proposed algorithm can obtain all WHT projection values using about 3N/2 additions

per window. In the computation of partial projection values for sliding windows, the proposed

algorithm requires only 1.5 additions per projection vector for each window. As shown by experimental

results in Section VII, the computational time required by the proposed algorithm for computing ten or

more projection values is about 75% of that of the GCK algorithm.

The rest of the paper is organized as follows. Section II defines terms and symbols used in this paper.

Then the WHT algorithm in [9] is briefly introduced. In Section III, we introduce two examples of the

proposed algorithm. Section IV illustrates the proposed algorithm for 1-D order-N WHT. The algorithm

computes order-N WHT using order-4 and order-N/4 WHT. In Section V, the number of additions

required by the proposed algorithm is derived. Section VI gives the experimental result of motion

estimation in video coding application, which utilizes the proposed algorithm for computing 2-D WHT

on sliding windows. Finally, Section VII presents conclusions.

II. WALSH HADAMARD TRANSFORM ON SLIDING WINDOWS

A. Definitions

Consider K input signal elements xn where n=0, 1, …, K-1, which will be divided into overlapping

windows of size N (K>N). Let the jth input window be:

NX
r (j)= [xj, xj+1, …, xj+N－1]T for j = 0, 1, …, K-N. (1)

A 1-D order-N WHT transforms N numbers into N projection values. Let MN be an order-N WHT

matrix and

 MN= [M
r

N(0), M
r

N(1), …, M
r

N(N-1)]T where)(iM N

r
 is the ith WHT basis vector. (2)

3

Let yN(i, j) be the ith WHT projection value for the jth window and

 yN(i,j)= M
r

N(i)T X
r

N(j) for i = 0, 1, …N-1; j = 0, 1, …, K-N. (3)

In [10],)(iM N

r
 and yN(i, j) are called the ith projection kernel and projection result respectively. Let

Y
r

N(j) be the projection vector containing all projection values of the jth window and

 Y
r

N(j)=[yN(0, j), yN(1, j), …, yN(N-1, j)]T= MN X
r

N(j). (4)

For example, when N=4, we have:

 (j)XM

x
x
x
x

jy
jy
jy
jy

jY

j

j

j

j

44

3

2

1

4

4

4

4

4

1111
1111
1111

1111

),3(
),2(
),1(
),0(

)(
rv

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

+

+

+ . (5)

The WHT in (5) is in sequency order. Its basis vectors are ordered according to the number of zero

crossings. The relationship between WHTs in sequency order, dyadic order and natural order can be

found in [15].

B. Previous WHT computation methods

In [9], Hel-Or and Hel-Or proposed a fast algorithm that computes Y
r

N(j) from Y
r

N/2(j) and

Y
r

N/2(j+N/2) using (6).

 ⎣ ⎦() ⎣ ⎦()
⎣ ⎦() ⎣ ⎦()⎩

⎨
⎧

=+−
=++

=
214%,2/,2/,2/
304%,2/,2/,2/

),(
2/2/

2/2/

oriNjiyjiy
oriNjiyjiy

jiy
NN

NN
N , (6)

where % is the module operation; and ⌊·⌋ is the floor function.

As shown in Fig. 1, their algorithm first computes WHT projection values for window size N being 2,

which are then used to compute WHT projection values for window size being 4 and so on. The

computation starts at the root and moves down the tree until the projection values represented by the

leaves are computed. The algorithm in [9] requires 1 addition per window along each node of the tree in

Fig. 1. The GCK algorithm [10] utilizes previously computed order-N projection values for computing

the current order-N projection value. When a small number of projection values are computed, the GCK

algorithm requires 2 additions per window for each projection value while the algorithm in [9] requires

O(logN) additions. When all projection values are computed, both the algorithms in [9] and [10]

requires about 2N additions.

A new fast algorithm which is more efficient than that reported in [9][10], is proposed in this paper. It

can efficiently compute order-N WHT on sliding windows, i.e. yN(i, j) for i = 0, …, P-1 (P≤N) and j = 0,

1, 2, …, K-N.

4

III. FAST ALGORITHM FOR WHT ON SLIDING WINDOWS FOR WINDOW SIZES 4 AND 8

This section gives examples of computing order-N WHT on sliding windows of sizes N=4 and 8 using

the proposed algorithm.

A. Fast Algorithm for Window Size 4

The proposed algorithm and the GCK algorithm [10] for window size being 4 are described in Table I.

The proposed algorithm computes Y
r

4(j+1) (the WHT projection values in window j+1) using Y
r

4(j)

(the computed projection values in window j) as shown in Table I. Except for the 0th projection value

y4(0, j+1), the GCK algorithm utilizes the previous order-4 projection values to compute the current

order-4 projection value.

TABLE I

FAST ALGORITHM WHEN WINDOW SIZE IS 4
 xj xj+1 xj+2 xj+3 xj+4 Proposed algorithm GCK algorithm[10]

y4(0, j) 1 1 1 1

y4(0, j+1) 1 1 1 1
y4(0, j+1)
= y4(0, j) - xj + x j+4

y4(0, j+1)
= y4(0, j) - xj + x j+4

y4(2, j) 1 -1 -1 1

y4(1, j+1) 1 1 -1 -1
y4(1, j+1)
=－y4(2, j)+xj－x j+4

y4(1, j+2)
= y4(0, j)－y4(0, j+2)－y4(1, j)

y4(1, j) 1 1 -1 -1

y4(2, j+1) 1 -1 -1 1
y4(2, j+1)
= y4(1, j)－xj+xj+4

y4(2, j+2)
= y4(1, j+1)－y4(1, j+2)－y4(2, j+1)

y4(3, j) 1 -1 1 -1

y4(3, j+1) 1 -1 1 -1
y4(3, j+1)
= －y4(3, j)+ xj－xj+4

y4(3, j+2)
= y4(3, j) －y4(2, j)－y4(2, j+2)

Define dN(j) as:

 dN(j) = xj - xj+N . (7)

We can see from Table I that the WHT projection values in window j+1 can be computed from those in

window j and dN(j). Therefore, we have

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+

)(
)(

)(
)(

) (3,
) (1,
) (2,

) (0,

)2 ,3(
)2 ,2(
)2 ,1(
)2 (0,

4

4

4

4

4

4

4

4

4

4

4

4

jd
jd

jd
jd

jy
jy
jy

jy

jy
jy
jy
jy

, (8)

and Fig. 2 shows the signal flow diagram.

Thus, after obtaining Y
r

4(j), the proposed algorithm obtain Y
r

4(j+1) by 5 additions as shown in (7)-(8)

whereas the algorithm in [9] requires 6 additions and the GCK algorithm requires 8 additions.

5

Fig. 2 Signal flow diagram of the Bottom up algorithm for window size equal 4

B. Fast Algorithm for Window Size 8

The proposed algorithm and the GCK algorithm [10] for window size being 8 are described in Table

II. The proposed algorithm computes Y
r

8(j+2)=[y8(0,j+2), y8(1,j+2), …, y8(7,j+2)]T, which is the WHT

projection vector in window j+2 for j=0, 1, …K-8, using Y
r

8(j), which is the computed projection vector

in window j.

TABLE II

FAST ALGORITHM WHEN WINDOW SIZE IS 8
 xj xj+1 xj+2 xj+3 xj+4 xj+5 xj+6 xj+7 xj+8 xj+9 Proposed algorithm GCK

y8(0, j) 1 1 1 1 1 1 1 1

y8(0, j+2) 1 1 1 1 1 1 1 1

y8(0,j+2)
=y8(0,j)-xj-xj+1+xj+8+xj+9

y8(0,j+2)
=y8(0,j+1)－xj+1+xj+9

y8(2, j) 1 1 -1 -1 -1 -1 1 1

y8(1, j+2) 1 1 1 1 -1 -1 -1 -1

y8(1,j+2)

=-y8(2,j)+xj+xj+1-xj+8-xj+9

y8(1, j+2)
= y8(0, j-2)－y8(0, j+2)－y8(1, j-2)

y8(1, j) 1 1 1 1 -1 -1 -1 -1

y8(2, j+2) 1 1 -1 -1 -1 -1 1 1

y8(2,j+2)

=y8(1,j)-xj-xj+1+xj+8+xj+9
y8(2, j+2)
= y8(1, j)－y8(1, j+2)－y8(2, j)

y8(3, j) 1 1 -1 -1 1 1 -1 -1

y8(3, j+2) 1 1 -1 -1 1 1 -1 -1

y8(3,j+2)

=-y8(3,0)+xj+xj+1-xj+8-xj+9

y8(3, j+2)
=y8(3, j-2)－y8(2, j+2)－y8(2, j-2)

y8(4, j) 1 -1 -1 1 1 -1 -1 1

y8(4, j+2) 1 -1 -1 1 1 -1 -1 1

y8(4,j+2)

=-y8(4,j)+xj-xj+1-xj+8+xj+9

y8(4, j+2)
= y8(3, j+1)－y8(3, j+2)－y8(4, j+1)

y8(6, j) 1 -1 1 -1 -1 1 -1 1

y8(5, j+2) 1 -1 -1 1 -1 1 1 -1

y8(5,j+2)

=y8(6,j)-xj+xj+1+xj+8-xj+9
y8(5, j+2)
= y8(4, j-2)－y8(4, j+2)－y8(5, j-2)

y8(5, j) 1 -1 -1 1 -1 1 1 -1

y8(6, j+2) 1 -1 1 -1 -1 1 -1 1

y8(6,j+2)

=-y8(5,j)+xj-xj+1-xj+8+xj+9

y8(6, j+2)
= y8(6, j) －y8(5, j)－y8(5, j+2)

y8(7, j) 1 -1 1 -1 1 -1 1 -1

y8(7, j+2) 1 -1 1 -1 1 -1 1 -1

y8(7,j+2)

=y8(7,j)-xj+xj+1+xj+8-xj+9
y8(7, j+2)
= y8(7, j-2) －y8(6, j-2)－y8(6, j+2)

Define tN/4(i, j) as:

 tN/4(i, j) = yN/4(i, j) - yN/4(i, j+N) for i = 0, …, N/4-1; j = 0, 1, …, K-5N/4. (9)

For N=8, we have:

6

 ⎥
⎦

⎤
⎢
⎣

⎡
+
+

−⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
)8,1(
)8,0(

),1(
),0(

),1(
),0(

2

2

2

2

2

2

jy
jy

jy
jy

jt
jt

.

From (3) and then (7), we have:

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡

+

+

+ 9

8

12

2

11
11

11
11

),1(
),0(

j

j

j

j

x
x

x
x

jt
jt

 .
)1(

)(
11

11

8

8
2

91

8
⎥
⎦

⎤
⎢
⎣

⎡
+

=⎥
⎦

⎤
⎢
⎣

⎡
−

−
⎥
⎦

⎤
⎢
⎣

⎡
−

=
++

+

jd
jd

M
xx

xx

jj

jj (10)

As given by (10), t2(i, j) is the ith order-2 WHT projection value of [d8(j), d8(j+1)]T. According to Table

II and (10), WHT projection vector in window j+2 can be computed from those in window j as well as

tN/4(i, j) as follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+
+
+
+
+

) (1,
) (1,
) (1,

) (1,
) (0,
) (0,

) (0,
) (0,

) (7,
) (5,

) (6,
) (4,
) (3,

) (1,
) (2,

) (0,

)2 ,7(
)2 ,6(
)2 ,5(
)2 (4,
)2 ,3(
)2 ,2(
)2 ,1(
)2 (0,

2

2

2

2

2

2

2

2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

jt
jt
jt

jt
jt
jt

jt
jt

jy
jy

jy
jy
jy

jy
jy

jy

jy
jy
jy
jy
jy
jy
jy
jy

. (11)

In summary, (11) can be represented by:

⎩
⎨
⎧

=−−−−
=−−

=+
+

+

6,5,2,1)},,(],)1([{)1(
7,4,3,0)},,(),({)1(

)2,(
28

28
8 ijvtjiy

ijvtjiy
jiy iiv

iv

, where v =⌊i/4⌋. (12)

TABLE III

COMPUTATION OF ALL ORDER-8 WHT PROJECTION VALUES IN WINDOW J+2

Step a d8(j+1) = xj+1-xj+9.

- One addition is required.

Step b t2(0,j) = [1, 1] [d8(j), d8(j+1)]T and t2(1,j)= [1, -1] [d8(j), d8(j+1)]T.

- Two additions are required. Note that d8(j) was obtained during computation of Y
r

8(j+1) in

Step a.

Step c
⎩
⎨
⎧

=−−−−
=−−

=+
+

+

6,5,2,1)},,(],)1([{)1(
7,4,3,0)},,(),({)1(

)2,(
28

28
8 ijvtjiy

ijvtjiy
jiy iiv

iv

, where v =⌊i/4⌋.

- Eight additions are required in this step for i = 0, 1, …, 7.

7

Table III gives the three steps for computing Y
r

8(j+2) from Y
r

8(j) as well as Y
r

8(j+1) and the

corresponding number of operations required.

Therefore, the proposed algorithm requires 11 additions whereas the algorithm in [9] requires 14

additions for obtaining the 8 projection values in Y
r

8(j+2). The GCK algorithm requires 16 additions.

IV. FAST ALGORITHM FOR WHT ON SLIDING WINDOWS FOR WINDOW SIZE N

A. The algorithm

Let DN be the order-N reverse-identity matrix, i.e., elements at the reverse-diagonal positions are 1

and 0 at others. For example, D4 is:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0001
0010
0100
1000

4D .

The equation below is proved in the appendix:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++
++
++

+
+
+
+

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+
+
+
+
+

)4/3,12(
)4/2,12(
)4/,12(

),12(
)4/3,2(
)4/2,2(
)4/,2(

),2(

) ,7(8
) ,6(8
) ,5(8
) 4,(8
) ,3(8
) ,2(8
) ,1(8
) 0,(8

4/

4/

4/

4/

4/

4/

4/

4/

44

4

Njiy
Njiy
Njiy
jiy

Njiy
Njiy
Njiy
jiy

MD
M

jiy
jiy
jiy
jiy
jiy
jiy
jiy
jiy

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

 for i=0, 1, …, N/8－1. (13)

Hence, order-N WHT is partitioned into N/4 groups of order-4 WHT. Utilizing the method in (8) for

each of the order-4 WHT in (13), WHT projection values in window j+N/4 can be computed using

projection values in window j as well as tN/4(2i, j) and tN/4(2i+1, j) as follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−
+
+−

+
+
+−

+
+−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+−

+
+−
+−

+
+−

+

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++
++
++
++
++
++
++
++

) ,1(2
) ,1(2
) ,1(2

) ,1(2
) 0,(2
) 0,(2

) 0,(2
) 0,(2

) 7,(8
) 5,(8

) 6,(8
) 4,(8
) 3,(8

) 1,(8
) 2,(8

) 0,(8

)4/ ,7(8
)4/ ,6(8
)4/ ,5(8
)4/ 4,(8
)4/ ,3(8
)4/ ,2(8
)4/ ,1(8
)4/ 0,(8

4/

4/

4/

4/

4/

4/

4/

4/

jit
jit
jit

jit
jit
jit

jit
jit

jiy
jiy

jiy
jiy
jiy

jiy
jiy

jiy

Njiy
Njiy
Njiy
Njiy
Njiy
Njiy
Njiy
Njiy

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

n

N

, (14)

where tN/4(i, j) is defined in (9). Equation (14), which is for order-N WHT, becomes (11) when N=8. Let

us first consider the computation of tN/4(i, j) in (14). Utilizing the dN(j) in (7), we define:

8

 D
v

N/4(j)=[dN(j), dN(j+1), …, dN(j+N/4-1)]T=[X
r

N/4(j)－ X
r

N/4(j+N)]. (15)

From (3), (9) and then (15), we have:

tN/4(i, j) = yN/4(i, j) - yN/4(i, j+N)

= M
r

N/4(i)T X
r

N/4(j) - M
r

N/4(i)T X
r

N/4(j+N) = M
r

N/4(i) T[X
r

N/4(j) - X
r

N/4(j+N)]

= M
r

N/4(i)T D
v

N/4(j). (16)

Equation (16) shows that tN/4(i, j) is the ith projection value of the order-N/4 WHT of D
v

N/4(j). When

N=8, (16) becomes (10).

The signal flow diagram in Fig. 3 depicts the computation of order-N WHT using (14)-(16). Table

IV describes the computation of Y
r

N(j+N/4) from Y
r

N(j) and the corresponding number of operations as

well as memory required. Since at most size 2K memory is required for the proposed algorithm at each

step, the memory required for the proposed algorithm is 2K which is the same as the GCK algorithm.

This paper focuses on 1-D WHT. However, it is easy to extend the proposed 1-D WHT algorithm

to higher dimensions. For example, when the 2-D WHT of size N×N is computed, our algorithm in

Table IV can use GCK for computing the WHT of size N×N/4 in Step b and using the Step c to obtain

the projection values of size N×N. In this way, we require 1 addition in Step a, N 2/2 additions in Step b

and N 2 additions in Step c, i.e. 1.5N 2 additions in all. In this way, the proposed algorithm requires 1.5

additions per window per projection value independent of dimension. In Section VI, we will show the

experimental result that uses the fast algorithm for 2-D WHT.

tN/4(0,j)
tN/4(1,j)

...

...
tN/4(N/4-2,j)
tN/4(N/4-1,j)

dN(j)

dN(j+2)

xj+0
xj+1
xj+2
xj+3
...

xj+N-1
xj+N

xj+N+1
xj+N+2
xj+N+3

...

dN(j+1) W
H
T

N/4...
dN(j+N/4-1)
dN(j+N/4)

... tN/4(0,j+1)
tN/4(1,j+1)

...

...
tN/4(N/4-2,j+1)
tN/4(N/4-1,j+1)

...

...
...
...

...

W
H
T

N/4

tN/4(2i,j)
yN(8i,j)
yN(8i+1,j)
yN(8i+2,j)
yN(8i+3,j)

tN/4(2i+1,j)
yN(8i+4,j)
yN(8i+5,j)
yN(8i+6,j)
yN(8i+7,j)

tN/4(2i,j+N/4)
yN(8i,j+N/4)
yN(8i+1,j+N/4)
yN(8i+2,j+N/4)
yN(8i+3,j+N/4)

tN/4(2i+1,j+N/4)
yN(8i+4,j+N/4)
yN(8i+5,j+N/4)
yN(8i+6,j+N/4)
yN(8i+7,j+N/4)

Projection
Window j

Projection
Window j+N/4

Fig. 3 Signal flow diagram of the bottom up algorithm for order-N sequency WHT

9

TABLE IV

COMPUTATION OF ORDER-N WHT

V. COMPUTATION REQUIREMENT OF THE PROPOSED FAST ALGORITHMS FOR WINDOW SIZE N

A. When all projection values are computed

Let the total number of additions for obtaining NY
r (j+ N/4) be BN(N). According to the analysis in

Table IV, we have:

 BN(N) = 1+N/2 + N = 3N/2+1.

Overall procedure:

For each j {Step a};

For each i

{

For each j { Step b; }

For each j { Step c; }

}

Step a Compute dN(j) = xj - x j+N. This step provides the D
v

N/4(j) in (16).

Analysis: One addition per window is required. Size 2K memory is required for storing dN(j)

and the input data xj for j=0,… K-1.

Step b Compute tN/4(⌊i/4⌋, j)= M
r

N/4(⌊i/4⌋)T D
v

N/4(j). This step provides the tN/4 in (14). We can use

the GCK algorithm in [10] for computation.

Analysis: N/2 additions per window are required for the N/4 values of tN/4(⌊i/4⌋, j) for given

j. As stated in [10], size 2K memory is required by GCK.

Step c Obtain yN(i,j+N/4) using (14). Note that the yN(i,j) in (14) is computed previously.

Analysis: N additions per window are required for the N values of i. Size K memory is

required for storing the tN/4(i, j) for j=0,… K-1 which are computed in Step b; size O(N)

memory is required for storing at most two projection values yN/4(i, a) for j≤a<j+N/4

required in the right hand side of (14) for the given i. Since we have N<<K for most cases,

the memory requirement is less than 2K in this step.

10

The number of additions required for the GCK algorithm and the proposed algorithm are summarized

in Table V which shows that the proposed algorithm requires about 3N/2 additions while the GCK

algorithm requires 2N additions. The number of additions required by our algorithm for order-4 and

order-8 WHT are 5 and 11 respectively because we can use direct computation instead of the GCK for

calculating tN/4(i, j) in the Step b of Table IV. For example, if N=4, then tN/4(i, j)=d4(j) and no

computation is required in the Step b of Table IV for obtaining tN/4(i, j).

TABLE V

NUMBERS OF ADDITIONS REQUIRED BY THE GCK ALGORITHM AND THE PROPOSED ALGORITHM FOR ALL

PROJECTION VALUES OF ORDER-N WHT

Size 4 8 16 32 N

GCK 8 16 32 64 2N

Proposed 5 11 25 49 3N/2+1

B. When not all projection values are computed

In many applications, not all projection values are required. In this part, we analyze the computational

requirement when only the first P projection values are computed for window size N. Specifically, we

shall derive the number of additions for the computation of yN(0,j), yN(1, j), … and yN(P-1, j) for j = N/4,

N/4+1, …, K-N. Here we shall not consider the cases when j<N/4 because the computational

complexity is negligible as N << K in most cases. A zero padding approach dealing with the cases when

j<N/4 is introduced in [8].

TABLE VI

COMPUTATION OF ORDER-N WHT WHEN NOT ALL PROJECTION VALUES ARE REQUIRED

11

Let the number of additions per window required to obtain yN(i, j+N/4) for i=0,…, P-1; j=0, 1, …,

K-5N/4 be BN(P). Table VI lists the steps and the corresponding number of additions required. As

shown in Table VI, we require 1 addition in Step a, 2·⌈P/4⌉ additions in Step b and at most P+1

additions in Step c. The number of additions required for obtaining P projection values in order-N WHT

using the proposed algorithm as given in Table VI has the following inequality:

 BN(P) ≤1+2·⌈P/4⌉+P+1≤⌈3P/2⌉+3. (18)

The computation required is about 1.5 additions/pixel/kernel using the proposed algorithm.

VI. EXPERIMENTAL RESULTS

To investigate the computational efficiency of the proposed algorithm for pattern matching in practical

applications, block matching in motion estimation is utilized. Block matching in motion estimation

using fast WHT was carried out on the first 200 frames of a video sequence “tempete” which has a

resolution of 352×288. The experiment considers the execution time required for obtaining different

numbers of WHT projection values, which ranges from 1 to 20. The proposed algorithm is compared

with the algorithm in [8], which utilized the GCK algorithm.

In a similar experiment reported in [8], two projection value computation orders were used. They are

the “snake order” and “increasing frequency order”. Fig. 4 shows the ordering of the first 20 projection

values of these two orders. The percentage of the time required by the proposed algorithm with respect

to the GCK algorithm is given in Fig. 6. The proposed algorithm outperforms the GCK algorithm when

the number of projections is greater than 6. As the proposed algorithm computes 3 or 4 projection

values together to save computation whereas the GCK algorithm does not, so the percentage of

The overall procedure and the three steps are the same as that in Table IV. The only

difference is that the total number of i is P now.

Analysis:

Step a: 1 addition per window is required in this step.

Step b: 2·⌈P/4⌉ additions are required in this step using the GCK for the ⌈P/4⌉ values of

tN/4(⌊i/4⌋, j).

Step c: If P % 4 ≡ 2 (for example P is 6 or 10), for the computation in (14), the proposed

algorithm need to compute yN(4·⌊P/4⌋+2, j) for yN(4·⌊P/4⌋+1, j+N/4). So P+1

additions are required if the P % 4 ≡ 1; Otherwise, P additions are required.

12

computational time saved by the proposed algorithm in comparison with the GCK algorithm depends

on the number of projections. Generally, the proposed algorithm achieves a higher saving when most

projection values to be computed can take advantage of this property. This is why when the number of

projection values approaches 13 and 16 for snake order, the proposed algorithm requires the least

percentage of time compared with the GCK algorithm. When the number of projection values is less

than 5, the proposed algorithm requires more computational time because projection values cannot be

grouped together for computation. Therefore, we would suggest the use of the GCK algorithm when the

number of projection values is less than 5.

 (a) Snake order (b) Increasing frequency order

Fig. 4 Two different projection orders

0 5 10 15 20
50

100

150

200

250

%

4x4 Snake
8x8 Snake
16x16 Snake

0 5 10 15 20

50

100

150

200

250

%

4x4 IF
8x8 IF
16x16 IF

 (a) Snake order (b) Increasing frequency order

Fig. 5 The percentage of time required by our algorithm with respect to GCK algorithm, where Snake stands for the snake

order and IF stands for the increasing frequency order. The experiment is implemented on a 2.13GHz PC using C on

windows XP system with compiling environment VC 6.0.

VII. CONCLUSIONS

This paper proposes a fast computational algorithm for Walsh Hadamard Transform on sliding

windows, which requires about 1.5 additions per projection vector per window. The computational time

of the proposed algorithm is about 75% that of the GCK algorithm which is the fastest algorithm

reported so far. In cases where not all projection values are needed, the proposed algorithm can

0 2 5 10 16
1 3 7 12 18
4 6 9 14
8 11 13 19
15 17

0 1 8 9
3 2 7 10
4 5 6 11
15 14 13 12
16 17 18 19

13

outperform the GCK algorithm when the number of projection values is five or above. The proposed

algorithm achieves its high efficiency in the computation of order-N WHT by using order-4 and

order-N/4 WHT. This paper provides fast algorithm for 1-D WHT. In the future, we are going to seek

even faster algorithm. We will also try to see if there exists the superset of GCK that can be computed

by constant number of additions per window per projection value independent of the size and

dimension of the transform.

ACKNOWLEDGEMENT

The work described in this paper was partially supported by a grant from the Research Grants

Council of the Hong Kong Special Administrative Region, China CUHK410307. The authors are also

thankful to Prof. Hel-Ors’ for providing their code implementing the GCK algorithm.

APPENDIX A
This appendix provides the proof for (13). Except for this appendix, sequency order is used for
representing WHT. In this appendix, dyadic-ordered WHT will be utilized for proving (13). Natural
order-N WHT can be represented by:

 MN= M2 ⊗ MN/2 ,

where ⊗ is the Kronecker product (A ⊗ B is a mp×nq matrix composed of the m×n blocks (ai,j B)) and

 M2 .
11

11
⎥
⎦

⎤
⎢
⎣

⎡
−

=

Both sequency and dyadic orders [15] are the reordering form of the natural order for WHT. Here we

denote Z
NM as the order-N sequency-ordered WHT matrix; denote D

NM as the order-N

dyadic-ordered WHT matrix and:

 D
NM = [D

NM
r

(0), D
NM

r
(1), …, D

NM
r

(N-1)]T where)(iM D
N

r
 is the ith WHT basis vector. (a1)

The binary vector representation of i in (a1) [i1, i2, …, ig]T, where ik are 0 or 1 for k = 1, … g and:

 i = 2g-1i1+ 2g-2i2+…+2ig-1+ig .

For dyadic-ordered WHT, for b=0,…,a-1, a= 2, 4, 8, …,N, we have:

)()()(/ iMbMbaiM D
aN

D
a

D
N

rrr
⊗=+ . (a2)

Let iZ and iD
 be index of sequency-ordered and dyadic-ordered WHT respectively.

As pointed out in [15], the relationship between the binary vector representation of iZ and iD is:

 iZ=[WD,Z]g iD, (a3)

14

where [WD,Z]g=

gg×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1...11
............
0...11
0001

.

According to (a3), if)(Z
i

ZZ
N baiM +

r
=)(DDD

N baiM +
r

, where bZ, bD<a, a=2k, then iZ is only decided by

iD. So we have:

)(Z
i

ZZ
N baiM +

r
=)(DDD

N baiM +
r

 =>)(/
ZZ

aN iM
r

=)(/
DD

aN iM
r

. (a4)

Denote f(b,a,i) as:

⎩
⎨
⎧

−−
=

numberoddanisiba
numberevenanisib

iabf
,1

,
),,(, (a5)

The Z
ib in (a4) is decided by both iZ and bD:

 Z
ib =f([WD,Z]bD,a, iZ),

where the size of [WD,Z] is log2a×log2a.

It is obvious that f[f(b,a,i),a,i]=b, so we have:

 [WD,Z]bD= f[f([WD,Z]bD,a, iZ), a, iZ]=f(Z
ib ,a, iZ). (a6)

),(jbaiM Z
i

ZZ
N +

r
 can be represented as follows using (a2), (a4) and (a6):

)()],,([)()]([

)()(),(),(

//,

/

ZZ
aN

ZZ
i

Z
a

ZZ
aN

D
ZD

Z
a

DD
aN

DD
a

DDD
N

Z
i

ZZ
N

iMiabfMiMbWM

iMbMjbaiMjbaiM
rrrr

rrrr

⊗=⊗=

⊗=+=+
. (a7)

According to (a7), we have:

][)],,([),(/ iMiabfMjbaiM Z
aN

Z
a

Z
N

rrr
⊗=+ . (a8)

Therefore,),(jbaiyZ
N + can be represented as follows:

1/

/

/

/

/

/

/1

/1

/

)/,(
...

)/,(
),(

)],,([

)(
...

)(
)(

)],,([

)]()]][,,([[

)]([])],,([[

]}[)],,([{),(

×⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+

+
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⊗⊗=

⊗=

⊗=+

a
Z

aN

Z
aN

Z
aN

Z
a

N

z
aN

z
aN

z
aN

Z
a

N
z

aNa
z
a

N
z

aNa
z
a

N
Z

aN
Z
a

Z
N

aNNjiy

aNjiy
jiy

iabfM

X

iM

iM
iM

aibfM

XiMIaibfMI

XiMIIaibfM

XiMaibfMjbaiy

r

r

r

r

r

rrr

rrr

rrr

. (a9)

15

The following equation is valid using (a9):

.

)/,12(
...

)/,12(
),12(

)/,2(
...

)/,2(
),2(

)/,12(
...

)/,12(
),12(

)/,2(
...

)/,2(
),2(

) ,12(2
...

) ,1(2
) ,(2

) ,1(2
...

) 1,(2
) 0,(2

/

/

/

/

/

/

/

/

/

/

/

/

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−++

++
+

−+

+

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−++

++
+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+

+

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+

++
+

−+

+
+

aNNjiy

aNjiy
jiy

aNNjiy

aNjiy
jiy

MD
M

aNNjiy

aNjiy
jiy

MD

aNNjiy

aNjiy
jiy

M

jaaiy

jaaiy
jaaiy

jaaiy

jaiy
jaiy

ZZ
aN

ZZ
aN

ZZ
aN

ZZ
aN

ZZ
aN

ZZ
aN

Z
aa

Z
a

ZZ
aN

ZZ
aN

ZZ
aN

Z
aa

ZZ
aN

ZZ
aN

ZZ
aN

Z
a

ZZ
N

ZZ
N

ZZ
N

ZZ
N

ZZ
N

ZZ
N

 (a10)

Equ. (13) is valid when a=4 in (a10).

REFERENCES

[1] M. S. Aksoy , O. Torkul, and I. H. Cedimoglu, “An industrial visual inspection system that uses

inductive learning,” Journal of Intelligent Manufacturing, vol. 15(4), pp. 569-574, Aug. 2004.

[2] A.W. Fitzgibbon, Y. Wexler, and A. Zisserman, “Image-Based rendering using image-based

priors,” Proc. Int’l Conf. Computer Vision, vol. 2, pp. 1176-1183, Oct. 2003.

[3] T. Luczak and W. Szpankowski, “A suboptimal lossy data compression based on approximate

pattern matching,” IEEE Trans. Information Theory, vol. 43, pp. 1439-1451, Sept. 1997.

[4] R. M. Dufour, E. L. Miller, and N. P. Galatsanos, “Template matching based object recognition

with unknown geometric parameters,” IEEE Trans. Image Process., vol. 11, no. 12, pp. 1385–1396,

Dec. 2002.

[5] C.M. Mak., C.K. Fong, and W.K. Cham, “Fast motion estimation for H.264/AVC in Walsh

Hadamard domain,” IEEE Trans. Circuits Syst. Video Technol., accepted.

[6] ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC, JVT-G050, March, 2003.

[7] C.M. Mak., C.K. Fong, W.K. Cham, “Fast motion estimation for H.264/AVC in Walsh Hadamard

domain,” IEEE Trans. Circuits Syst. Video Technol., 18(6):735 – 745, Jun. 2008.

[8] Y. Moshe and H. Hel-Or, “A Fast Block Motion Estimation Algorithm Using Gray Code Kernels”,

in Proc. IEEE Symp. Signal Processing and Information Technology, pp.185 - 190, Vancouver,

Canada, Aug. 2006.

[9] Y. Hel-Or and H. Hel-Or, “Real time pattern matching using projection kernels,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 27, no. 9, pp. 1430-1445, Sept. 2005.

[10] G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or, “The gray-code filter kernels,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 29, no. 3, pp.382 – 393, Mar. 2007.

[11] S. Omachiand and M. Omachi, “Fast template matching with polynomials,” IEEE Trans. Image

Process., vol. 16, no. 8, pp.2139 – 2149, Aug. 2007.

16

[12] G. J. VanderBrug and A. Rosenfeld, “Two-stage template matching,” IEEE Trans. Comput., vol.

C-26, no. 4, pp. 384–393, Apr. 1977.

[13] M. Ben-Yehuda, L. Cadany, H. Hel-Or, and Y. Hel-Or, “Irregular Pattern Matching using

Projection,” in Proc. IEEE International Conference on Image Processing, Genoa Italy, Sept. 2005.

[14] J.L. Shanks, “Computation of the Fast Walsh-Fourier Transform,” IEEE Trans. Comput, Vol.

C-18, No. 5, pp.457 – 459, May 1969.

[15] W.K. Cham and R.J. Clarke, “Dyadic Symmetry and Walsh Matrices,” IEE Proceedings, Pt.F.,

Vol.134, No.2, pp.141-145, Apr. 1987.

Wanli Ouyang received the B.S. degree in computer science from Xiangtan University, Hunan, China,

in 2003. He received the M.S. degree with the College of Computer Science and Technology, Beijing

University of Technology, Beijing, China. He is now pursuing Ph.D in the Department of Electronic

Engineering, The Chinese University of Hong Kong.

Wai-Kuen Cham graduated from The Chinese University of Hong Kong in 1979 in Electronics. He

received his M.Sc. and Ph.D. degrees from Loughborough University of Technology, U.K., in 1980 and

1983 respectively. Since May 1985, he has been with the Department of Electronic Engineering, The

Chinese University of Hong Kong. Prof. Cham is a Chartered Engineer and a senior member of IEEE.

