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Abstract— This paper proposes a fast algorithm for Walsh Hadamard Transform on sliding windows which can be used to 

implement pattern matching most efficiently. The computational requirement of the proposed algorithm is about 4/3 additions per 

projection vector per sample which is the lowest among existing fast algorithms for Walsh Hadamard Transform on sliding 

windows.  

 
Index Terms— Fast algorithm, Computation of transforms, Walsh Hadamard Transform, Pattern Matching 

I. INTRODUCTION 

Pattern matching, also named as template matching, is widely used in signal processing, computer 

vision, image and video processing. Pattern matching has found application in manufacturing for 

quality control [1], image based rendering [2], image compression [3], object detection [4] and video 

compression. The block matching algorithm used for video compression can be considered as a pattern 

matching problem [5]-[8]. To relieve the burden of high complexity and high requirement of 

computational time for pattern matching, a lot of fast algorithms have been proposed [9]-[13]. 

It has been found that pattern matching can be performed efficiently in Walsh Hadamard Transform 

(WHT) domain [9]. In pattern matching, signal vectors obtained by a sliding window need to be 

compared to a sought pattern. Hel-Or and Hel-Or’s algorithm [9] requires 2N-2 additions for obtaining 

all WHT projection values in each window of size N. Note that one subtraction is considered to be one 

addition regarding the computational complexity in this paper. Their algorithm achieves efficiency by 

utilizing previously computed values in the internal vertices of the tree structure in Fig. 1. Recently, the 

Gray Code Kernel (GCK) algorithm [10] which utilizes previously computed values in the leaves of the 

tree structure in Fig. 1 was proposed. The GCK algorithm requires similar computation as [9] when all 

projection values are computed and requires less computation when only a small number of projection 

vectors are computed. 
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Fig. 1 Tree structure for Walsh-Hadamard Transform in sequency order 

This paper proposes a fast algorithm for WHT on sliding windows. Instead of performing order-N 

WHT by means of order-N/2 WHT and N additions in the tree structure, which is the technique adopted 

in [9], the proposed algorithm computes order-N WHT by means of order-N/4 WHT and N+1 additions. 

In this way, the proposed algorithm can obtain all WHT projection values using about 3N/2 additions 

per window. In the computation of partial projection values for sliding windows, the proposed 

algorithm requires only 1.5 additions per projection vector for each window. As shown by experimental 

results in Section VII, the computational time required by the proposed algorithm for computing ten or 

more projection values is about 75% of that of the GCK algorithm. 

The rest of the paper is organized as follows. Section II defines terms and symbols used in this paper. 

Then the WHT algorithm in [9] is briefly introduced. In Section III, we introduce two examples of the 

proposed algorithm. Section IV illustrates the proposed algorithm for 1-D order-N WHT. The algorithm 

computes order-N WHT using order-4 and order-N/4 WHT. In Section V, the number of additions 

required by the proposed algorithm is derived. Section VI gives the experimental result of motion 

estimation in video coding application, which utilizes the proposed algorithm for computing 2-D WHT 

on sliding windows. Finally, Section VII presents conclusions.  

II. WALSH HADAMARD TRANSFORM ON SLIDING WINDOWS 

A. Definitions 

Consider K input signal elements xn where n=0, 1, …, K-1, which will be divided into overlapping 

windows of size N (K>N). Let the jth input window be: 

 
NX
r (j)= [xj, xj+1, …, xj+N－1]T for j = 0, 1, …, K-N. (1) 

A 1-D order-N WHT transforms N numbers into N projection values. Let MN be an order-N WHT 

matrix and 

 MN= [ M
r

N(0), M
r

N(1), …, M
r

N(N-1)]T where )(iM N

r
 is the ith WHT basis vector. (2) 
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Let yN(i, j) be the ith WHT projection value for the jth window and 

 yN(i,j)= M
r

N(i)T X
r

N(j) for i = 0, 1, …N-1; j = 0, 1, …, K-N.  (3) 

In [10], )(iM N

r
 and yN(i, j) are called the ith projection kernel and projection result respectively. Let 

Y
r

N(j) be the projection vector containing all projection values of the jth window and 

 Y
r

N(j)=[yN(0, j), yN(1, j), …, yN(N-1, j)]T= MN X
r

N(j). (4) 

For example, when N=4, we have: 
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The WHT in (5) is in sequency order. Its basis vectors are ordered according to the number of zero 

crossings. The relationship between WHTs in sequency order, dyadic order and natural order can be 

found in [15]. 

B. Previous WHT computation methods 

In [9], Hel-Or and Hel-Or proposed a fast algorithm that computes Y
r

N(j) from Y
r

N/2(j) and 

Y
r

N/2(j+N/2) using (6). 
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where % is the module operation; and ⌊·⌋ is the floor function. 

As shown in Fig. 1, their algorithm first computes WHT projection values for window size N being 2, 

which are then used to compute WHT projection values for window size being 4 and so on. The 

computation starts at the root and moves down the tree until the projection values represented by the 

leaves are computed. The algorithm in [9] requires 1 addition per window along each node of the tree in 

Fig. 1. The GCK algorithm [10] utilizes previously computed order-N projection values for computing 

the current order-N projection value. When a small number of projection values are computed, the GCK 

algorithm requires 2 additions per window for each projection value while the algorithm in [9] requires 

O(logN) additions. When all projection values are computed, both the algorithms in [9] and [10] 

requires about 2N additions. 

A new fast algorithm which is more efficient than that reported in [9][10], is proposed in this paper. It 

can efficiently compute order-N WHT on sliding windows, i.e. yN(i, j) for i = 0, …, P-1 (P≤N) and j = 0, 

1, 2, …, K-N. 
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III. FAST ALGORITHM FOR WHT ON SLIDING WINDOWS FOR WINDOW SIZES 4 AND 8 

This section gives examples of computing order-N WHT on sliding windows of sizes N=4 and 8 using 

the proposed algorithm. 

A. Fast Algorithm for Window Size 4 

The proposed algorithm and the GCK algorithm [10] for window size being 4 are described in Table I. 

The proposed algorithm computes Y
r

4(j+1) (the WHT projection values in window j+1) using Y
r

4(j) 

(the computed projection values in window j) as shown in Table I. Except for the 0th projection value 

y4(0, j+1), the GCK algorithm utilizes the previous order-4 projection values to compute the current 

order-4 projection value. 

TABLE I  

FAST ALGORITHM WHEN WINDOW SIZE IS 4 
 xj xj+1 xj+2 xj+3 xj+4 Proposed algorithm GCK algorithm[10] 

y4(0, j) 1 1 1 1  

y4(0, j+1)  1 1 1 1 
y4(0, j+1) 
= y4(0, j) - xj + x j+4 

y4(0, j+1) 
= y4(0, j) - xj + x j+4 

y4(2, j) 1 -1 -1 1  

y4(1, j+1)  1 1 -1 -1
y4(1, j+1) 
=－y4(2, j)+xj－x j+4 

y4(1, j+2) 
= y4(0, j)－y4(0, j+2)－y4(1, j) 

y4(1, j) 1 1 -1 -1  

y4(2, j+1)  1 -1 -1 1 
y4(2, j+1) 
= y4(1, j)－xj+xj+4 

y4(2, j+2) 
= y4(1, j+1)－y4(1, j+2)－y4(2, j+1)

y4(3, j) 1 -1 1 -1  

y4(3, j+1)  1 -1 1 -1
y4(3, j+1) 
= －y4(3, j)+ xj－xj+4

y4(3, j+2) 
= y4(3, j) －y4(2, j)－y4(2, j+2) 

 

Define dN(j) as: 

  dN(j) = xj - xj+N . (7) 

We can see from Table I that the WHT projection values in window j+1 can be computed from those in 

window j and dN(j). Therefore, we have 
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and Fig. 2 shows the signal flow diagram. 

Thus, after obtaining Y
r

4(j), the proposed algorithm obtain Y
r

4(j+1) by 5 additions as shown in (7)-(8) 

whereas the algorithm in [9] requires 6 additions and the GCK algorithm requires 8 additions. 
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Fig. 2 Signal flow diagram of the Bottom up algorithm for window size equal 4 

B. Fast Algorithm for Window Size 8 

The proposed algorithm and the GCK algorithm [10] for window size being 8 are described in Table 

II. The proposed algorithm computes Y
r

8(j+2)=[y8(0,j+2), y8(1,j+2), …, y8(7,j+2)]T, which is the WHT 

projection vector in window j+2 for j=0, 1, …K-8, using Y
r

8(j), which is the computed projection vector 

in window j. 

TABLE II  

FAST ALGORITHM WHEN WINDOW SIZE IS 8 
 xj xj+1 xj+2 xj+3 xj+4 xj+5 xj+6 xj+7 xj+8 xj+9 Proposed algorithm GCK 

y8(0, j) 1 1 1 1 1 1 1 1   

y8(0, j+2)   1 1 1 1 1 1 1 1 

y8(0,j+2) 
=y8(0,j)-xj-xj+1+xj+8+xj+9 

y8(0,j+2) 
=y8(0,j+1)－xj+1+xj+9 

y8(2, j) 1 1 -1 -1 -1 -1 1 1   

y8(1, j+2)   1 1 1 1 -1 -1 -1 -1

y8(1,j+2) 

=-y8(2,j)+xj+xj+1-xj+8-xj+9

y8(1, j+2) 
= y8(0, j-2)－y8(0, j+2)－y8(1, j-2) 

y8(1, j) 1 1 1 1 -1 -1 -1 -1   

y8(2, j+2)   1 1 -1 -1 -1 -1 1 1 

y8(2,j+2) 

=y8(1,j)-xj-xj+1+xj+8+xj+9 
y8(2, j+2) 
= y8(1, j)－y8(1, j+2)－y8(2, j) 

y8(3, j) 1 1 -1 -1 1 1 -1 -1   

y8(3, j+2)   1 1 -1 -1 1 1 -1 -1

y8(3,j+2) 

=-y8(3,0)+xj+xj+1-xj+8-xj+9

y8(3, j+2) 
=y8(3, j-2)－y8(2, j+2)－y8(2, j-2) 

y8(4, j) 1 -1 -1 1 1 -1 -1 1   

y8(4, j+2)   1 -1 -1 1 1 -1 -1 1 

y8(4,j+2) 

=-y8(4,j)+xj-xj+1-xj+8+xj+9

y8(4, j+2) 
= y8(3, j+1)－y8(3, j+2)－y8(4, j+1)

y8(6, j) 1 -1 1 -1 -1 1 -1 1   

y8(5, j+2)   1 -1 -1 1 -1 1 1 -1

y8(5,j+2) 

=y8(6,j)-xj+xj+1+xj+8-xj+9 
y8(5, j+2) 
= y8(4, j-2)－y8(4, j+2)－y8(5, j-2) 

y8(5, j) 1 -1 -1 1 -1 1 1 -1   

y8(6, j+2)   1 -1 1 -1 -1 1 -1 1 

y8(6,j+2) 

=-y8(5,j)+xj-xj+1-xj+8+xj+9

y8(6, j+2) 
= y8(6, j) －y8(5, j)－y8(5, j+2) 

y8(7, j) 1 -1 1 -1 1 -1 1 -1   

y8(7, j+2)   1 -1 1 -1 1 -1 1 -1

y8(7,j+2) 

=y8(7,j)-xj+xj+1+xj+8-xj+9 
y8(7, j+2) 
= y8(7, j-2) －y8(6, j-2)－y8(6, j+2)

 

Define tN/4(i, j) as: 

 tN/4(i, j) = yN/4(i, j) - yN/4(i, j+N) for i = 0, …, N/4-1; j = 0, 1, …, K-5N/4. (9) 

For N=8, we have: 
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From (3) and then (7), we have: 
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As given by (10), t2(i, j) is the ith order-2 WHT projection value of [d8(j), d8(j+1)]T. According to Table 

II and (10), WHT projection vector in window j+2 can be computed from those in window j as well as 

tN/4(i, j) as follows: 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+
+
+
+
+

) (1,
) (1,
) (1,

) (1,
) (0,
) (0,

) (0,
) (0,

) (7,
) (5,

) (6,
) (4,
) (3,

) (1,
) (2,

) (0,

)2 ,7(
)2 ,6(
)2 ,5(
)2 (4,
)2 ,3(
)2 ,2(
)2 ,1(
)2 (0,

2

2

2

2

2

2

2

2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

jt
jt
jt

jt
jt
jt

jt
jt

jy
jy

jy
jy
jy

jy
jy

jy

jy
jy
jy
jy
jy
jy
jy
jy

. (11) 

In summary, (11) can be represented by: 
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, where v =⌊i/4⌋. (12) 

 

TABLE III  

COMPUTATION OF ALL ORDER-8 WHT PROJECTION VALUES IN WINDOW J+2 

 
 

Step a d8(j+1) = xj+1-xj+9.  

- One addition is required.  

Step b t2(0,j) = [1, 1] [ d8(j), d8(j+1)]T and t2(1,j)= [1, -1] [d8(j), d8(j+1)]T.  

- Two additions are required. Note that d8(j) was obtained during computation of Y
r

8(j+1) in 

Step a. 

Step c 
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, where v =⌊i/4⌋. 

- Eight additions are required in this step for i = 0, 1, …, 7. 



7 

Table III gives the three steps for computing Y
r

8(j+2) from Y
r

8(j) as well as Y
r

8(j+1) and the 

corresponding number of operations required. 

Therefore, the proposed algorithm requires 11 additions whereas the algorithm in [9] requires 14 

additions for obtaining the 8 projection values in Y
r

8(j+2). The GCK algorithm requires 16 additions. 

IV. FAST ALGORITHM FOR WHT ON SLIDING WINDOWS FOR WINDOW SIZE N 

A. The algorithm 

Let DN be the order-N reverse-identity matrix, i.e., elements at the reverse-diagonal positions are 1 

and 0 at others. For example, D4 is: 
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The equation below is proved in the appendix: 
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 for i=0, 1, …, N/8－1. (13) 

Hence, order-N WHT is partitioned into N/4 groups of order-4 WHT. Utilizing the method in (8) for 

each of the order-4 WHT in (13), WHT projection values in window j+N/4 can be computed using 

projection values in window j as well as tN/4(2i, j) and tN/4(2i+1, j) as follows: 
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where tN/4(i, j) is defined in (9). Equation (14), which is for order-N WHT, becomes (11) when N=8. Let 

us first consider the computation of tN/4(i, j) in (14). Utilizing the dN(j) in (7), we define: 
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 D
v

N/4(j)=[dN(j), dN(j+1), …, dN(j+N/4-1)]T=[ X
r

N/4(j)－ X
r

N/4(j+N)]. (15) 

From (3), (9) and then (15), we have: 

tN/4(i, j) = yN/4(i, j) - yN/4(i, j+N)  

= M
r

N/4(i)T X
r

N/4(j) - M
r

N/4(i)T X
r

N/4(j+N) = M
r

N/4(i) T[ X
r

N/4(j) - X
r

N/4(j+N) ] 

= M
r

N/4(i)T D
v

N/4(j).  (16) 

Equation (16) shows that tN/4(i, j) is the ith projection value of the order-N/4 WHT of D
v

N/4(j). When 

N=8, (16) becomes (10). 

The signal flow diagram in Fig. 3 depicts the computation of order-N WHT using (14)-(16). Table 

IV describes the computation of Y
r

N(j+N/4) from Y
r

N(j) and the corresponding number of operations as 

well as memory required. Since at most size 2K memory is required for the proposed algorithm at each 

step, the memory required for the proposed algorithm is 2K which is the same as the GCK algorithm. 

This paper focuses on 1-D WHT. However, it is easy to extend the proposed 1-D WHT algorithm 

to higher dimensions. For example, when the 2-D WHT of size N×N is computed, our algorithm in 

Table IV can use GCK for computing the WHT of size N×N/4 in Step b and using the Step c to obtain 

the projection values of size N×N. In this way, we require 1 addition in Step a, N 2/2 additions in Step b 

and N 2 additions in Step c, i.e. 1.5N 2 additions in all. In this way, the proposed algorithm requires 1.5 

additions per window per projection value independent of dimension. In Section VI, we will show the 

experimental result that uses the fast algorithm for 2-D WHT.  
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Fig. 3 Signal flow diagram of the bottom up algorithm for order-N sequency WHT 
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TABLE IV  

COMPUTATION OF ORDER-N WHT 

 

V. COMPUTATION REQUIREMENT OF THE PROPOSED FAST ALGORITHMS FOR WINDOW SIZE N 

A. When all projection values are computed 

Let the total number of additions for obtaining NY
r (j+ N/4) be BN(N). According to the analysis in 

Table IV, we have: 

 BN(N) = 1+N/2 + N = 3N/2+1. 

Overall procedure: 

For each j {Step a}; 

For each i 

{ 

For each j  { Step b; } 

For each j  { Step c; } 

} 

Step a Compute dN(j) = xj - x j+N. This step provides the D
v

N/4(j) in (16). 

Analysis: One addition per window is required. Size 2K memory is required for storing dN(j) 

and the input data xj for j=0,… K-1. 

Step b Compute tN/4(⌊i/4⌋, j)= M
r

N/4(⌊i/4⌋)T D
v

N/4(j). This step provides the tN/4 in (14). We can use 

the GCK algorithm in [10] for computation. 

Analysis: N/2 additions per window are required for the N/4 values of tN/4(⌊i/4⌋, j) for given 

j. As stated in [10], size 2K memory is required by GCK. 

Step c Obtain yN(i,j+N/4) using (14). Note that the yN(i,j) in (14) is computed previously. 

Analysis: N additions per window are required for the N values of i. Size K memory is 

required for storing the tN/4(i, j) for j=0,… K-1 which are computed in Step b; size O(N) 

memory is required for storing at most two projection values yN/4(i, a) for j≤a<j+N/4 

required in the right hand side of (14) for the given i. Since we have N<<K for most cases, 

the memory requirement is less than 2K in this step. 
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The number of additions required for the GCK algorithm and the proposed algorithm are summarized 

in Table V which shows that the proposed algorithm requires about 3N/2 additions while the GCK 

algorithm requires 2N additions. The number of additions required by our algorithm for order-4 and 

order-8 WHT are 5 and 11 respectively because we can use direct computation instead of the GCK for 

calculating tN/4(i, j) in the Step b of Table IV. For example, if N=4, then tN/4(i, j)=d4(j) and no 

computation is required in the Step b of Table IV for obtaining tN/4(i, j). 

 

TABLE V 

NUMBERS OF ADDITIONS REQUIRED BY THE GCK ALGORITHM AND THE PROPOSED ALGORITHM FOR ALL 

PROJECTION VALUES OF ORDER-N WHT 

Size 4 8 16 32 N 

GCK 8 16 32 64 2N 

Proposed 5 11 25 49 3N/2+1

B. When not all projection values are computed 

In many applications, not all projection values are required. In this part, we analyze the computational 

requirement when only the first P projection values are computed for window size N. Specifically, we 

shall derive the number of additions for the computation of yN(0,j), yN(1, j), … and yN(P-1, j) for j = N/4, 

N/4+1, …, K-N. Here we shall not consider the cases when j<N/4 because the computational 

complexity is negligible as N << K in most cases. A zero padding approach dealing with the cases when 

j<N/4 is introduced in [8]. 

 

TABLE VI  

COMPUTATION OF ORDER-N WHT WHEN NOT ALL PROJECTION VALUES ARE REQUIRED 
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Let the number of additions per window required to obtain yN(i, j+N/4) for i=0,…, P-1; j=0, 1, …, 

K-5N/4 be BN(P). Table VI lists the steps and the corresponding number of additions required. As 

shown in Table VI, we require 1 addition in Step a, 2·⌈P/4⌉ additions in Step b and at most P+1 

additions in Step c. The number of additions required for obtaining P projection values in order-N WHT 

using the proposed algorithm as given in Table VI has the following inequality: 

 BN(P) ≤1+2·⌈P/4⌉+P+1≤⌈3P/2⌉+3. (18) 

The computation required is about 1.5 additions/pixel/kernel using the proposed algorithm. 

VI. EXPERIMENTAL RESULTS 

To investigate the computational efficiency of the proposed algorithm for pattern matching in practical 

applications, block matching in motion estimation is utilized. Block matching in motion estimation 

using fast WHT was carried out on the first 200 frames of a video sequence “tempete” which has a 

resolution of 352×288. The experiment considers the execution time required for obtaining different 

numbers of WHT projection values, which ranges from 1 to 20. The proposed algorithm is compared 

with the algorithm in [8], which utilized the GCK algorithm. 

In a similar experiment reported in [8], two projection value computation orders were used. They are 

the “snake order” and “increasing frequency order”. Fig. 4 shows the ordering of the first 20 projection 

values of these two orders. The percentage of the time required by the proposed algorithm with respect 

to the GCK algorithm is given in Fig. 6. The proposed algorithm outperforms the GCK algorithm when 

the number of projections is greater than 6. As the proposed algorithm computes 3 or 4 projection 

values together to save computation whereas the GCK algorithm does not, so the percentage of 

The overall procedure and the three steps are the same as that in Table IV. The only 

difference is that the total number of i is P now. 

Analysis: 

Step a: 1 addition per window is required in this step. 

Step b: 2·⌈P/4⌉ additions are required in this step using the GCK for the ⌈P/4⌉ values of 

tN/4(⌊i/4⌋, j). 

Step c: If P % 4 ≡ 2 (for example P is 6 or 10), for the computation in (14), the proposed 

algorithm need to compute yN(4·⌊P/4⌋+2, j) for yN(4·⌊P/4⌋+1, j+N/4). So P+1 

additions are required if the P % 4 ≡ 1; Otherwise, P additions are required. 
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computational time saved by the proposed algorithm in comparison with the GCK algorithm depends 

on the number of projections. Generally, the proposed algorithm achieves a higher saving when most 

projection values to be computed can take advantage of this property. This is why when the number of 

projection values approaches 13 and 16 for snake order, the proposed algorithm requires the least 

percentage of time compared with the GCK algorithm. When the number of projection values is less 

than 5, the proposed algorithm requires more computational time because projection values cannot be 

grouped together for computation. Therefore, we would suggest the use of the GCK algorithm when the 

number of projection values is less than 5. 

 

           
 (a) Snake order     (b) Increasing frequency order 

Fig. 4 Two different projection orders 
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16x16 IF

 
 (a) Snake order                                (b) Increasing frequency order 

Fig. 5 The percentage of time required by our algorithm with respect to GCK algorithm, where Snake stands for the snake 

order and IF stands for the increasing frequency order. The experiment is implemented on a 2.13GHz PC using C on 

windows XP system with compiling environment VC 6.0. 

VII. CONCLUSIONS 

This paper proposes a fast computational algorithm for Walsh Hadamard Transform on sliding 

windows, which requires about 1.5 additions per projection vector per window. The computational time 

of the proposed algorithm is about 75% that of the GCK algorithm which is the fastest algorithm 

reported so far. In cases where not all projection values are needed, the proposed algorithm can 

0 2 5 10 16
1 3 7 12 18
4 6 9 14
8 11 13 19
15 17

0 1 8 9
3 2 7 10
4 5 6 11
15 14 13 12
16 17 18 19
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outperform the GCK algorithm when the number of projection values is five or above. The proposed 

algorithm achieves its high efficiency in the computation of order-N WHT by using order-4 and 

order-N/4 WHT. This paper provides fast algorithm for 1-D WHT. In the future, we are going to seek 

even faster algorithm. We will also try to see if there exists the superset of GCK that can be computed 

by constant number of additions per window per projection value independent of the size and 

dimension of the transform. 
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APPENDIX A 
This appendix provides the proof for (13). Except for this appendix, sequency order is used for 
representing WHT. In this appendix, dyadic-ordered WHT will be utilized for proving (13). Natural 
order-N WHT can be represented by: 

  MN= M2 ⊗ MN/2 , 

where ⊗  is the Kronecker product (A ⊗ B is a mp×nq matrix composed of the m×n blocks (ai,j B)) and  

 M2 .
11

11
⎥
⎦

⎤
⎢
⎣

⎡
−

=  

Both sequency and dyadic orders [15] are the reordering form of the natural order for WHT. Here we 

denote Z
NM  as the order-N sequency-ordered WHT matrix; denote D

NM  as the order-N 

dyadic-ordered WHT matrix and: 

 D
NM = [ D

NM
r

(0), D
NM

r
(1), …, D

NM
r

(N-1)]T where )(iM D
N

r
 is the ith WHT basis vector.  (a1) 

The binary vector representation of i in (a1) [i1, i2, …, ig]T, where ik are 0 or 1 for k = 1, … g and: 

 i = 2g-1i1+ 2g-2i2+…+2ig-1+ig . 

For dyadic-ordered WHT, for b=0,…,a-1, a= 2, 4, 8, …,N, we have: 

 )()()( / iMbMbaiM D
aN

D
a

D
N

rrr
⊗=+ . (a2) 

Let iZ and iD
 be index of sequency-ordered and dyadic-ordered WHT respectively.  

As pointed out in [15], the relationship between the binary vector representation of iZ and iD is: 

 iZ=[WD,Z]g iD, (a3) 
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where [WD,Z]g=

gg×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1...11
............
0...11
0001

. 

According to (a3), if )( Z
i

ZZ
N baiM +

r
= )( DDD

N baiM +
r

, where bZ, bD<a, a=2k, then iZ is only decided by 

iD. So we have: 

 )( Z
i

ZZ
N baiM +

r
= )( DDD

N baiM +
r

 => )(/
ZZ

aN iM
r

= )(/
DD

aN iM
r

. (a4) 

Denote f(b,a,i) as: 

 
⎩
⎨
⎧

−−
=

numberoddanisiba
numberevenanisib

iabf
,1

,
),,( , (a5) 

The Z
ib  in (a4) is decided by both iZ and bD: 

 Z
ib =f([WD,Z]bD,a, iZ), 

where the size of [WD,Z] is log2a×log2a. 

It is obvious that f[f(b,a,i),a,i]=b, so we have: 

 [WD,Z]bD= f[ f([WD,Z]bD,a, iZ), a, iZ]=f( Z
ib ,a, iZ). (a6) 

),( jbaiM Z
i

ZZ
N +

r
 can be represented as follows using (a2), (a4) and (a6): 

 
)()],,([)()]([

)()(),(),(

//,

/

ZZ
aN

ZZ
i

Z
a

ZZ
aN

D
ZD

Z
a

DD
aN

DD
a

DDD
N

Z
i

ZZ
N

iMiabfMiMbWM

iMbMjbaiMjbaiM
rrrr

rrrr

⊗=⊗=

⊗=+=+
. (a7) 

According to (a7), we have: 

 ][)],,([),( / iMiabfMjbaiM Z
aN

Z
a

Z
N

rrr
⊗=+ . (a8) 

Therefore, ),( jbaiyZ
N +  can be represented as follows: 

 

1/

/

/

/

/

/

/1

/1

/

)/,(
...

)/,(
),(

)],,([

)(
...

)(
)(

)],,([

)]()]][,,([[

)]([])],,([[

]}[)],,([{),(

×⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+

+
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⊗⊗=

⊗=

⊗=+

a
Z

aN

Z
aN

Z
aN

Z
a

N

z
aN

z
aN

z
aN

Z
a

N
z

aNa
z
a

N
z

aNa
z
a

N
Z

aN
Z
a

Z
N

aNNjiy

aNjiy
jiy

iabfM

X

iM

iM
iM

aibfM

XiMIaibfMI

XiMIIaibfM

XiMaibfMjbaiy

r

r

r

r

r

rrr

rrr

rrr

. (a9) 
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The following equation is valid using (a9): 

.

)/,12(
...

)/,12(
),12(

)/,2(
...

)/,2(
),2(

)/,12(
...

)/,12(
),12(

)/,2(
...

)/,2(
),2(

) ,12(2
...

) ,1(2
) ,(2

) ,1(2
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) 1,(2
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/
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⎥
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⎥
⎥
⎥
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 (a10) 

Equ. (13) is valid when a=4 in (a10). 
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