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Abstract—This paper presents a new approach to enhancing
noisy (white Gaussian noise) speech signals for robust speech
recognition. It is based on the minimization of an estimate
of denoising MSE (known as SURE) and does not require
any hypotheses on the original signal. The enhanced signal is
obtained by thresholding coefficients in the DCT domain, with
the parameters in the thresholding functions being specified
through the minimization of the SURE. Thanks to a linear
parametrization, this optimization is very cost-effective. This
method also works well for non-white noise with a noise whitening
processing before the optimization. We have performed automatic
speech recognition tests on a subset of the AURORA 2 database,
to compare our method with different denoising strategies. The
results show that our method brings a substantial increase in
recognition accuracy.

Index Terms—Speech enhancement, Stein’s unbiased risk es-
timate, MMSE, automatic speech recognition

I. INTRODUCTION

Speech enhancement aims at improving the performance

of speech communication between humans (e.g., in telecom-

munication systems, for hearing-aids users, etc.), or between

human and machines (e.g., automatic speech recognition). In

these communication systems, the interference sources could

be either additive or convolutive, and sometimes both. In

this paper, we focus on additive wide-band Gaussian noise

(white or colored noise). Although there are many approaches

developed for estimating clean speech from noisy input, e.g.,

[1][2][3][4][5][6], the most effect approach is the Wiener

filtering-based speech estimation, which aims at minimizing

the mean square error (MSE) between the estimated signal

and the original one. This category of approaches include

spectral subtraction [1] and its derivatives such as the sig-

nal subspace approach [4] and the estimation of short-time

spectral magnitude [2] or log-magnitude [3]. The MMSE

estimator, however, requires prior knowledge of the second-

order statistics (the variance or covariance) of the noise and

the clean signal. In practice, although the noise statistics can

be obtained from the non-speech portion by voice activity

detection (VAD), the clean speech signal is generally not

available and should be estimated from noisy signals. Thus the

MMSE criteria is not guaranteed. More importantly, the error

in clean speech statistics estimation leads to a certain degree

of speech distortion, which would reduce the accuracy of

automatic speech recognition. As a matter of fact, most of the

existing speech enhancement approaches improve the signal-

to-noise ratio (SNR) at the expense of decreasing speech

intelligibility. But a significant improvement in SNR does not

necessarily lead to better recognition performance [7].

In this paper, we present a new MMSE speech enhancement

approach. Instead of minimizing the true denoising MSE, our

approach minimizes a statistically unbiased MSE estimate –

Stein’s unbiased risk estimate (SURE), which depends on the

noise and the noisy signal, but not on the clean signal. Blu

et al. [8][9] presented an effective image denoising approach

based on the SURE MSE estimate in the DWT domain. In this

paper, the enhanced speech signal is obtained by thresholding

the coefficients in the DCT domain. The thresholding param-

eters are specified through the minimization of the SURE-

MSE. Thanks to the linear parametrization, the optimization

process can be made very cost-effective. We demonstrate the

effectiveness of this method in enhancing speech corrupted by

additive noise, and its performance as an front-end processor

for robust speech recognition. Speech recognition experiments

on the AURORA 2 database [10] show that our method brings

a substantial increase in word accuracy.

II. SURE-BASED MMSE APPROACH FOR SIGNAL

DENOISING

Consider a clean signal x contaminated by additive white

Gaussian noise b ∼ " (0, �2). The observed noisy signal is

y = x+ b. The basic idea of MMSE denoising is to find an

estimate of x, x̂, which minimizes the mean square error

MSE = ⟨∣x̂− x∣2⟩ =
1

!

 ∑

!=1

∣"̂! − "!∣
2, (1)

where ! is the number of samples. The task can be solved

as finding a transformed function of y, i.e., x̂ = �(y) that

minimizes

MSE = ⟨∣�(y)− x∣2⟩ = ⟨�(y)2⟩ − 2⟨x�(y)⟩+ ⟨x2⟩. (2)

A. Stein’s unbiased risk estimate (SURE)

Since we do not have access to x, the MSE form (2) can not

be computed directly. Nevertheless, following Stein’s theorem,

an unbiased estimate of the MSE, which does not depend on

the clean signal, can be found.
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Fig. 1. Block diagram for the SURE approach for speech enhancement.

Theorem: Let � : R → R be a smooth function. The random

variable

� = ⟨�2(y)− 2y�(y) + 2�2�′(y)⟩+ ⟨y2⟩ − �2 (3)

is an unbiased estimate of the MSE, i.e.,

ℰ{�} = ℰ{⟨∣�(y)− x∣2⟩}. (4)

Refer to Blu [8] and Stein [11] for the proof of this theorem.

B. Denoising in a transformed domain

Suppose ỹ is a transformed version of y, i.e.,

ỹ = Ay, (5)

where ỹ = [ỹ1, ỹ2, ⋅ ⋅ ⋅ , ỹ ]
" , y = [y1, y2, ⋅ ⋅ ⋅ , y ]

" . A is

supposed to be orthonormal, i.e., A" = A−1, in order to

preserve the MSE in the transformed domain. Similarly, we

have the transformed version of the clean speech x̃ = Ax,

x̃ = ["̃1, "̃2, ⋅ ⋅ ⋅ , "̃ ]
" , x = ["1, "2, ⋅ ⋅ ⋅ , " ]

" . The MSE in

the transformed domain can be written as

MSE = ⟨∣�(ỹ)− x̃∣⟩2. (6)

Note that � is a pointwise denoising function. That is,

�(ỹ) = [�(ỹ1), �(ỹ2), ⋅ ⋅ ⋅ , �(ỹ )]
" . In that case, the MSE

estimate (SURE) is

� =
∑

!

(�2(ỹ!)− 2ỹ!�(ỹ!) + 2�2�′(ỹ!) + ỹ2
!)− �2. (7)

C. Minimizing the SURE-MSE

Now the task is to find an appropriate denoising function

� to minimize �. To do so, we use a linearly parameterized

pointwise thresholding function as follows

�(ỹ!) =
K∑

k=1

$k'k(ỹ!), (8)

where K is the number of parameters, and

'k(ỹ!) = ỹ!%−(k−1)
ỹ2
n

12�2 . (9)

The derivative of Gaussian is selected in (9) for its fast decay,

which ensures a linear behavior of large signal coefficients.

The thresholding parameters $k can be computed by mini-

mizing the MSE estimate �. That is, for each k ∈ [1, K],
performing differentiation of � over $k, we obtain

1

2

∂�

∂$k
=

∑

!

{�(ỹ!)'k(ỹ!)− ỹ!'k(ỹ!) + �2'′
k(ỹ!)} = 0.

(10)

The following equations are obtained for each k,

K∑

#=1

∑

!

'k(ỹ!)'#(ỹ!)$# =
∑

!

{ỹ!'k(ỹ!)− �2'′
k(ỹ!)}.

(11)

These equations can be summarized in a matrix form as

Ma = c, where a = [$1 ⋅ ⋅ ⋅ $k]" and c = [c1 ⋅ ⋅ ⋅ ck]" are

vectors of size K × 1, and M = [&k,#]1≤k,#≤K is a matrix of

size K × K. The linear system is solved for a by

a = M−1c, (12)

which makes the approach very simple to implement.

III. SURE APPROACH TO SPEECH ENHANCEMENT

In this study, the enhanced speech signal is obtained by

thresholding the DCT coefficients of the noisy signal. In

practical speech communication environments, the contam-

inating noise is usually not white noise. To deal with the

non-white noise, a pre-whitening processing is implemented

before denoising. The procedures are illustrated as in Fig. 1

and summarized below:

∙ Voice activity detection: an energy-based VAD is applied

to separate speech from non-speech.

∙ Frame blocking: the signal is divided into frames of 512

samples.

∙ Noise spectrum estimation: a smooth noise spectrum

(̄!, ) ∈ [1, 512] is estimated from detected non-speech

segments. The noise spectrum (̃! is first computed by

the averaging periodograms method. Then, (̃! is further

smoothed by a seven-point mean processing. That is,

(̄! = mean((̃!−3 : (̃!+3).
∙ Noise whitening: on each frame of noisy speech, DCT

spectrum is computed and divided by the noise spectrum,

i.e., ỹw! = W(ỹ!) = ỹ!/(̄!.

∙ Subband SURE denoising: the SURE denoising process

is applied to ỹw! in 4 subbands, i.e., 0∼0.5 kHz, 0.5∼1

kHz, 1∼2 kHz and 2∼4 kHz, respectively. The enhanced

coefficients in each subband are obtained by "̃w
Bi(!)

=
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Fig. 2. Comparison of speech waveforms obtained from different denoising methods. (a) SNR = 0 dB, (b) SNR = 20 dB. From top to bottom are clean
speech, noisy speech, and enhanced speech by E-M, subspace and SURE approach, respectively.

�(ỹw
Bi(!)

), where i = 1, 2, 3, 4, � takes the form as in (8)

and K is selected to be 3. Note that subband processing

would not change the MSE estimate since the MSE in

the DCT domain is the weighted sum of MSEs from

individual subbands.

∙ Signal reconstruction: the estimated coefficients are mul-

tiplied by noise spectrum (̄! and then the speech signal

is obtained by inverse DCT, i.e., "̂! = IDCT("̃w! ⋅ (̄!).
Finally the denoised speech signal *̂! is reconstructed

from each frame of "̂!.

IV. SPEECH ENHANCEMENT RESULTS

We evaluate the performances of three MMSE-based al-

gorithms: 1) Ephraim-Malah’ short-time spectral amplitude

estimator (E-M); 2) Ephraim-Van Tree’s signal subspace ap-

proach (SubSp); and 3) our proposed SURE-MSE approach.

We compare them in the cases of additive white Gaussian and

non-white noises.

The evaluation is conducted on the AURORA 2 Set A test

data. The database has been widely used for developing and

evaluating noise-robust speech recognition techniques [10]. It

contains both clean and noisy speech data. The clean speech

is the 8 kHz down-sampled TIDIGIT utterances. The noisy

speech were obtained by artificially adding different types of

noise to the clean data at various SNRs.

A. Speech enhancement performance on white noise

Fig. 2 shows the waveforms of clean speech, white noise

contaminated speech, and the enhanced speech by different ap-

proaches. We can see from the figure that the SURE approach

performs better than the other two methods in suppressing

white noise. Fig. 3 illustrates the performance of the three

methods in terms of segmental SNR improvement. The results

are the average over the 1001 test sentences from AURORA 2

Test Set A. The noises are white Gaussian noise artificially

added to clean speech at SNRs of 0, 5, 10, 15 and 20

dB. Here the computation of segmental SNR improvement
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Fig. 3. Improvement of segmental SNR obtained by different approaches at
various SNRs.

covers only the speech frames detected by VAD. The SURE

approach outperforms the E-M and the subspace approaches

at low SNRs. For SNR of 15 dB and 20 dB, SURE and

subspace method have comparable performance and both are

significantly better than the E-M method.

B. Speech recognition accuracy

The effectiveness of the SURE approach as a front-end pro-

cessor for speech recognition is evaluated with the AURORA

2 database. We follow the standard AURORA experimental

framework as described in [10], except that VAD and speech

enhancement are performed before feature extraction.

Word accuracies on AURORA 2 Test Set A are given in

Table I. The baseline front-end refers to that described in

[10] plus a VAD. The front-end with SURE denoising is as

described in Section III. We can see that the SURE front-

end brings an overall absolute improvement of 7% in word

accuracy. The improvement is more noticeable for low SNR

conditions. At 20 dB SNR, the SURE front-end causes a slight

degradation of 0.43% in word accuracy. Table I also shows that
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TABLE I
WORD ACCURACIES FOR THE AURORA 2 RECOGNITION TASK (SET A).

THE ACOUSTIC MODELS ARE TRAINED ON CLEAN DATA.

(a) Word accuracy (in %) by the baseline front-end.

Subway Babble Car Exhibition Average

20dB 97.39 97.61 97.64 97.72 97.59

15dB 93.71 94.98 95.50 94.63 94.71

10dB 83.36 84.19 83.66 83.83 83.76

5dB 63.22 59.16 53.06 57.91 58.34

0dB 36.48 22.91 21.00 23.05 25.86

Average 74.83 71.77 70.17 71.43 72.05

(b) Word accuracy (in %) by the SURE denoising front-end.

Subway Babble Car Exhibition Average

20dB 97.24 96.70 97.49 97.22 97.16

15dB 95.36 94.07 95.76 94.75 94.99

10dB 88.03 86.28 90.69 87.38 88.10

5dB 69.82 67.32 78.20 71.27 71.65

0dB 42.25 30.59 56.34 44.83 43.50

Average 78.54 74.99 83.70 79.09 79.08

TABLE II
WORD ACCURACIES FOR THE AURORA 2 RECOGNITION TASK WITH

DIFFERENT DENOISING FRONT-ENDS.

(a) Average word accuracy (in %) for different SNRs.

0 dB 5 dB 10 dB 15 dB 20 dB Average

Baseline 25.86 58.34 83.76 94.71 97.59 72.05

E-M 34.98 64.49 84.09 93.28 96.49 74.67

SubSp 36.40 66.26 85.87 93.99 96.85 75.88

SURE 43.50 71.65 88.10 94.99 97.16 79.08

(b) Average word accuracy (in %) for different noise types.

Subway Babble Car Exhibition Average

Baseline 74.83 71.77 70.17 71.43 72.05

E-M 76.50 71.62 76.81 73.74 74.67

SubSp 77.91 72.01 78.41 75.18 75.88

SURE 78.54 74.99 83.70 79.09 79.08

the SURE front-end brings more performance improvement

for car and exhibition noises than for subway and babble

noises. The car and exhibition noises are found to be relatively

stationary as compared with the other two types of noise. In

our experiments, we made an assumption of stationary noise

and did not performance noise spectrum updating. We expect

that greater benefit would be seen from the SURE approach

if the noise statistics are updated dynamically.

Table II compares the word accuracy obtained from dif-

ferent denoising front-ends. The SURE front-end consistently

outperforms the other two approaches at all SNRs and for all

noise types.

V. CONCLUSION

We present a new speech enhancement approach based on

the minimization of SURE-MSE, which does not require any

hypothesis on the clean speech. The enhanced signal is ob-

tained by thresholding signal coefficients in the DCT domain

and the thresholding parameters are specified by minimizing

the SURE-MSE. The effectiveness of the new approach is eval-

uated on a subset of the AURORA 2 database, in comparison

with other two MMSE based enhancement approaches relying

on the prior knowledge of the clean speech. Experimental

results show that our method brings a substantial increase in

both segmental SNR and speech recognition accuracy.
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