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ABSTRACT

In this paper, we propose a generalized Blind Source
Separation (BSS) method using a novel assumption which we
call "weak exclusion" principle. We first give the mathematical
definition of the exclusion criterion and propose an iterative
algorithm to minimize it. We then test WEP in simulated
and real datasets, compared with other four methods. The
experiments on synthetic and real datasets demonstrate
that WEP outperforms the other methods, both in terms
of accuracy and in terms of speed.

Index Terms— Blind Source Separation, Weak Exclusion
Principle, Hyperspectral Images Unmixing

1. INTRODUCTION

Blind source separation (BSS) is a kind of data-driven
problem, which separates underlying source signals and
corresponding mixing relationship from the observed signals
[1]. In the BSS problem, minimal prior knowledge and
flexible assumptions are utilized to complete the separation
task [2]. It emerged from the classical cocktail-party problem
in the field of audio signal processing [3]. BSS has a wide
range of applications in many fields, such as medical imaging,
remote sensing, finance, acoustics, radio communication [4].

In the past few years, the field of blind source separation
has mainly focused on the natural dimensional or high-range
dimensional characteristics of data, combining diversified
prior conditions with different decomposition models to
complete the separation task. There are various avenues
for research. Independent component analysis (ICA) is the
first efficient BSS method, which uses non-Gaussianity and
sample dependence in the way of diversity with according
mutual information rate as the cost. In terms of methods
utilizing statistic properties, the two main directions are
maximum likelihood estimation [5] and joint diagonalization
[6]. Considering the natural characteristics of the observed
signals, such as nonnegativity, nonnegative matrix factorization
(NMF) and tensors have become active fields. Various source
constraints are applied to the standard or modified NMF
and tensor frameworks to build temporal models, such as
FastMNMF [7] and KL-NMF [8]. Another widely developed
technical route is to decompose the mixed signals according
to the sparsity and low rank of the matrix. This type of method

uses a series of assumptions to provide the prior knowledge
required by the model and performs sparse representation or
low-rank representation on the matrix, such as LR-NTF[9].
The deep learning methods that have emerged in recent years
also have been applied in BSS, such as Deep S3PR [10]. Due
to the data limitations of the BSS task itself, on the one hand,
it is difficult to label datasets and calculate fast; on the other
hand, it is challenging to transfer the deep model between
different mixed datasets.

In this paper, the concept of "exclusion" is meant to
describe the ideal BSS situation where only one kind of
source exists at each time instant or pixel location. It is easy
to extend it to the general situation where one kind of source is
significantly larger than the others in each time signal, which
is called the Weak Exclusion Principle (WEP). It should be
pointed out that exclusion is an underlying property that is
implicitly present in the BSS field. A good example is the
sparsity assumption. This type of method seeks the most
sparse solution, that is, the number of zeros in the source
matrix is as large as possible. The optimal norm used in
the ideal state is considered to be the `0 norm. Because of
the NP-hard problem in solving `0 norm, `1 norm is often
used instead for sparse representation [11]. The effect of the
maximum number of zeros pursued by sparsity might result
in the absence of source distribution in some time signals.
But the complete exclusion property can ensure sparseness
without causing loss of source data.

In this paper, we propose a theoretical reformulation of
the empirical algorithm that we had earlier developed for EEG
only[12]. The theory now includes a quantitative definition
of the exclusion, the minimization of which results in our
algorithm. Moreover, we show how to use this algorithm
for images, even for those that do not satisfy the exclusion
principle. As far as we know, this is the first application of
this criterion to hyperspectral images.

2. PROPOSED MATHEMATICAL MODEL

2.1. Blind Source Separation

In a blind source separation (BSS) setting, a K × L matrix
X with K time samples and L signals can be separated as a
linear combination ofK×M source matrix S withM sources
using weights from a M ×L mixing matrix A. This model is



described mathematically as

X = SA (1)

where X = [xk,l]1≤k≤K,1≤l≤L,S = [sk,m]1≤k≤K,1≤m≤M ,
and A = [am,l]1≤m≤M ,1≤l≤L. The goal of BSS is to
retrieve S and A from the knowledge of X. Without further
hypotheses, the solution of BSS is not unique, which has been
explained clearly in[1, 13].

2.2. Exclusion Principle

We say that a source matrix S is exclusive iff, for any row
index k, only one column of S is non-zero. Equivalently, for
any diagonal matrix W, then SH WS is a diagonal matrix as
well. The "exclusion" of a K ×M matrix S is defined as a
positive scalar number according to

E {S} def
= 1− 1

M

K∑
k=1

max
m=1,...,M

|s̃k,m|2 (2)

where the tilde notation stands for the normalization that
transforms S into a matrix of same dimension defined by
S̃ = S diag

(
SHS

)−1/2
; or, equivalently

s̃k,m
def
=

sk,m√∑K
k′=1 |sk′,m|

2
. (3)

Through (2), it can be obtained that 0 ≤ E {S} ≤ 1 − 1/M
and S is exclusive iff E {S} = 0, which suggests that it is
possible to define the exclusion of sources using the quantity
E {S}. In that case, weakly exclusive sources are sources
for which E {S} is small. To describe the exclusion directly
by source matrix, consider the diagonal K × K matrices
{Wm}1≤m≤M whose diagonal elements are given by

wm[k, k] =

{
1, if |s̃k,m| ≥ |s̃k,m′ | ,∀m′ ∈ {1, . . . ,M};
0, otherwise .

Then, denoting by {em}m=1,...,M the M × 1 canonical basis
of vectores of CM (mth coordinate equal to 1, and all others
equal to 0), we have

E {S} = 1− 1

M

M∑
m=1

∥∥∥WmS̃em

∥∥∥2 (4)

2.3. Separation of Exclusive Sources

Assume the matrix S in Eq.2 is exclusive and choose two
different diagonal matrices W1 and W1, we have that
SHWiS = Di(i = 1, 2) are diagonal matrices. Then,
this means that

XHW1X = AHD1A and XHW2X = AHD2A (5)

Let us assume that A is invertible and D1D
−1
2 =

diag (λ1, λ2, . . . , λM ) has distinct diagonal values (λi 6=
λj , if i 6= j). It is observed that XHW1XA−1D2 =
XHW2XA−1D1 or, better,

XHW1X V︸︷︷︸
A−1

= XHW2XV D︸︷︷︸
D1D

−1
2

. (6)

This shows that V and D are the generalized eigenvectors and
eigenvalues of the matrices XHW1X and XHW2X, which
suggests a simple algebraic solution to the BSS problem. The
fact that the generalized eigenvalue decomposition is unique
up to scaling ensures the unicity of the matrix A−1.
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Fig. 1. Generation progress of the simulated image dataset.
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Fig. 2. Visualization of the matrix Aexact × A−1estimated for
SNR = 30 dB.

2.4. Separation of Weakly Exclusive Sources

Looking for the most exclusive solution of a BSS problem can
be formulated through the minimization:

min
B

E {XB}. (7)

where B = A−1, which in turn provides that S = XB.
WEP Algorithm-Solving the non-convex optimization

problem Eq.(7) can be done by iteratively:



1. minimizing Eq.(4) under the normalization constraint
that XB = X̃B, assuming that the matrices Wm in Eq.(4) are
known;

2. updating Wm. The advantage of knowing matrices
Wm is that the exclusion criterion becomes quadratic in B.

Table 1. Numerical Results and Running Time(seconds) on Simulated
Separation Dataset. Best Results are Illustrated in Bold.

SNR Metric LR-NTF GLMM FCLSU-VCA NMF-QMV WEP

15dB

PI 0.4722 0.3597 0.3427 0.3566 0.0573

RMSE_A 0.1805 0.1943 0.1792 0.1776 0.1010

RMSE_S 0.2800 0.2795 0.2707 0.2156 0.1334

RMSE_I 0.1896 0.1346 0.1576 0.1687 0.1287

Time 1025.98 960.66 26.51 883.84 4.21

20dB

PI 0.4658 0.3597 0.3427 0.2889 0.0226

RMSE_A 0.1832 0.1943 0.1792 0.1757 0.0819

RMSE_S 0.2785 0.2795 0.2707 0.1952 0.1264

RMSE_I 0.1921 0.1346 0.1576 0.1271 0.0848

Time 1008.65 999.51 30.33 886.98 4.11

30dB

PI 0.4089 0.4209 0.3147 0.2369 0.0177

RMSE_A 0.1795 0.1998 0.1794 0.1752 0.0792

RMSE_S 0.2295 0.2791 0.2697 0.1917 0.1343

RMSE_I 0.1617 0.0967 0.1290 0.0749 0.0438

Time 1040.81 977.78 23.32 869.01 4.49

40dB

PI 0.5123 0.3254 0.4542 0.3714 0.0165

RMSE_A 0.3030 0.2002 0.1795 0.1757 0.0798

RMSE_S 0.2434 0.2792 0.2697 0.2007 0.1362

RMSE_I 0.1690 0.1055 0.1247 0.0540 0.0399

Time 1041.51 1043.22 29.08 2088.70 4.37

The optimal solution of this problem is given by

XHWmXBem = λmXHXBem, m = 1, . . . ,M. (8)

where λm are positive real numbers which should be chosen
to maximize

∑M
m=1 λm for the reason that this is a set

of decoupled generalized eigendecomposition problems.
Perform the economy size SVD of X under the form of
U∆VH(U and V unitary, ∆ diagonal ) and introduce the
vector variable Ym = ∆VHBem.

In this way, the generalized eigendecomposition problem
simplifies to the eigendecomposition of the matrix UHWmU,
where Ym is the eigenvector. So it can be efficiently obtained
by performing the SVD of WmU. This provides Ym, which
in turn provides Bem = V∆−1Ym. Once B has been
obtained, S = XB is estimated and the diagonal matrices
Wm are updated according to their definition in Eq.(4).
The algorithm stops iterating when the matrices Wm do not
change anymore.

3. EXPERIMENT WITH SIMULATED DATA

A 512×512×100−size dataset is made by randomly mixing
ten 512 × 512−size images, which are chosen arbitrarily

Table 2. Numerical Results and Running Time(seconds) on Hyperspectral
Urban Dataset. Best Results are Illustrated in Bold.

Metric LR-NTF GLMM FCLSU-VCA NMF-QMV WEP

PI 0.5099 0.4237 0.4280 0.4442 0.1149

RMSE_S 0.0231 0.0469 0.0326 0.0272 0.0185

RMSE_A 0.1067 0.0855 0.0917 0.0845 0.0306

RMSE_I 0.1749 0.1409 0.1046 0.0539 0.0454

E{Sest} 0.4711 0.2390 0.1646 0.4372 0.1299

Time 238.17 165.32 6.34 413.54 1.47

from the Internet and between which there is no spatial
or temporal connection. The mixing relationship is also
a randomly formed matrix. The purpose of separation is
to decompose these ten pictures from the dataset. The
generation progress of this simulated dataset is shown in
Figure 1. Four useful algorithms are utilized for comparison:
LR-NTF[9], GLMM[14], FCLSU-VCA[15], NMF-QMV[16].
LR−NTF and NMF−QMV are newly−published algorithms.
GLMM and FCLSU−VCA are classical blind source separation
methods with good efficiency.

Three kinds of metrics are used in experiments to measure
the separation results of WEP and comparison algorithms:
Performance Index(PI), Root-Mean-Square-Error(RMSE)
and Running Time. PI is used to evaluate how close the
retrieved mixing matrix is to the ground-truth Aexact. A
common condition is that the ordering of the sources cannot
be retrieved only through the BSS progress. So ideally, what
is expected is that the matrix P = Aexact × A−1estimated is
diagonal after a suitable permutation of columns. This leads
to the definition of PI [17]. When Aestimated is closer to
Aexact, PI is smaller.

PI =
1

M(M − 1)

 M∑
m,n=1

|pm,n|2

max
m′=1,...,M

|pm,m′ |2
−M

 (9)

RMSE is utilized to measure the difference between the
groundtruth Q and estimated results Q̂ as follows[18]:

RMSE =

√
1

J ×K
‖Q− Q̂‖2F (10)

where J and K are the number of columns and rows of the
measured matrixes. Source matrix (RMSE_S), the mixing
matrix (RMSE_A), and the mixed matrix (RMSE_I) are used
respectively. Four different values of Signal-Noise-Ratio
(SNR) is set as: 15dB, 20dB, 30dB and 40dB. Given that
the exclusion of the source matrix in groundtruth is 0.7637,
it should be noted that the simulated dataset is not naturally
exclusive, so we need to apply a Laplacian of Gaussian (LoG)
filter to the mixture in WEP.

Table 1 illustrates the numerical results of WEP and four
comparison algorithms on the simulated dataset. It can be



observed clearly that the metric values of WEP on PI and
RMSE are significantly smaller than comparison methods.
Figure 2 shows the visualization of the matrix P in SNR =
30dB. The darker the color of the square, the closer the
value is to 0, and the brighter the color, the closer the value
is to 1. Observing Table 1 and Figure 2, it can be seen that
WEP is less affected by different SNR values compared with
other algorithms, which shows that WEP has good robustness.
Another thing shown in the Table 1 is that WEP is very fast
on the simulated image dataset. It benefits from calculating
the SVD of a tall matrix, which is fast.
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Fig. 3. Experimental results on Urban dataset. Parts of the
source images are blocked with yellow frames and enlarged
to show the detailed separation performance.

4. EXPERIMENT WITH REAL DATA

Blind source separation has many practical applications, one
of which is hyperspectral image unmixing. In order to test
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Fig. 4. The spectral wavelengths of groundtruth (dotted
orange lines) and mixing matrices (solid blue lines) estimated
by WEP.

the performance of the proposed algorithm in the real dataset,
Urban, a hyperspectral dataset with groundtruth provided in
[19], is utilized for separation. The size of Urban is 307 ×
307 × 162 with 4 kinds of sources or endmembers named in
unmixing. Same comparison algorithms and metrics as the
simulated dataset are employed in the Urban dataset. Given
that the exclusion value of source matrices in the Urban is
0.0653, it is obvious that Urban dataset is exclusive. So the
metric E {Sest} can be used here to measure the exclusion of
estimated results.

Table 2, Figure 3 and Figure 4 show the quantitative and
visual results obtained by WEP and comparison algorithms
on Urban dataset. It should be pointed out that the results of
comparison algorithms on the real dataset are better than the
results on the simulated data. There are two main reasons. On
the one hand, comparison algorithms contain many specific
constraints for the task of hyperspectral unmixing. On the
other hand, source matrices of the real dataset are spatially
related, which is randomly mixed in the simulated dataset.
The separation is less difficult in the Urban dataset compared
with the above simulated dataset.

It is important to note that WEP, as a generalized blind
source separation theory, does not add any specific constraints
for hyperspectral datasets. However, it can be observed on
Table 2 that PI and RMSE of WEP are the lowest among
all the results. This shows that WEP can be used in a wide
range of practical applications without being restricted by
data types. It can be noticed that the smaller the exclusion
value of the separation source results, the better the algorithm
works. That is to say, it verifies the assumption that the
retrieval and utilization of exclusion is the underlying unified
theory of BSS algorithms.

5. CONCLUSION

This paper proposes a BSS method using exclusion. The
main advantages are listed as follows: no additional prior
knowledge is required; it is a general theory for different
applications; the calculation is very fast. Experiments prove
that it gives excellent results on different data sets.



6. REFERENCES

[1] Tülay Adalı, Christian Jutten, Arie Yeredor, Andrzej
Cichocki, and Eric Moreau, “Source separation and
applications,” IEEE Signal Processing Magazine, 2014.

[2] Te-Won Lee, Michael S Lewicki, Mark Girolami,
and Terrence J Sejnowski, “Blind source separation
of more sources than mixtures using overcomplete
representations,” IEEE signal processing letters, vol.
6, no. 4, pp. 87–90, 1999.

[3] Seungjin Choi and Andrzej Cichocki, “Adaptive blind
separation of speech signals: Cocktail party problem,”
in International conference on speech processing, 1997,
pp. 617–622.

[4] Michael Zibulevsky and Barak A Pearlmutter, “Blind
source separation by sparse decomposition in a signal
dictionary,” Neural computation, vol. 13, no. 4, pp. 863–
882, 2001.

[5] M Kumar and VE Jayanthi, “Blind source separation
using kurtosis, negentropy and maximum likelihood
functions,” International Journal of Speech Technology,
vol. 23, no. 1, pp. 13–21, 2020.

[6] Kouhei Sekiguchi, Yoshiaki Bando, Aditya Arie
Nugraha, Kazuyoshi Yoshii, and Tatsuya Kawahara,
“Fast multichannel nonnegative matrix factorization
with directivity-aware jointly-diagonalizable spatial
covariance matrices for blind source separation,”
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 28, pp. 2610–2625, 2020.

[7] Robin Scheibler and Nobutaka Ono, “Fast and stable
blind source separation with rank-1 updates,” in
ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 236–240.

[8] Valentin Leplat, Nicolas Gillis, and Andersen MS Ang,
“Blind audio source separation with minimum-volume
beta-divergence nmf,” IEEE Transactions on Signal
Processing, vol. 68, pp. 3400–3410, 2020.

[9] Lianru Gao, Zhicheng Wang, Lina Zhuang, Haoyang
Yu, Bing Zhang, and Jocelyn Chanussot, “Using
low-rank representation of abundance maps and
nonnegative tensor factorization for hyperspectral
nonlinear unmixing,” IEEE Transactions on Geoscience
and Remote Sensing, 2021.

[10] Christopher A Metzler and Gordon Wetzstein, “Deep s 3
pr: Simultaneous source separation and phase retrieval
using deep generative models,” in ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, 2021, pp.
1370–1374.

[11] Pau Bofill and Michael Zibulevsky, “Underdetermined
blind source separation using sparse representations,”
Signal processing, vol. 81, no. 11, pp. 2353–2362, 2001.

[12] Lan Ma, Thierry Blu, and William SY Wang, “Event-
related potentials source separation based on a weak
exclusion principle,” in 2017 IEEE 14th International
Symposium on Biomedical Imaging (ISBI 2017). IEEE,
2017, pp. 1011–1014.

[13] Pierre Comon and Christian Jutten, Handbook of Blind
Source Separation: Independent component analysis
and applications, Academic press, 2010.

[14] Tales Imbiriba, Ricardo Augusto Borsoi, and José
Carlos Moreira Bermudez, “Generalized linear mixing
model accounting for endmember variability,” in 2018
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2018, pp.
1862–1866.

[15] Rob Heylen, Dževdet Burazerovic, and Paul
Scheunders, “Fully constrained least squares spectral
unmixing by simplex projection,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 49, no. 11, pp.
4112–4122, 2011.

[16] Lina Zhuang, Chia-Hsiang Lin, Mario AT Figueiredo,
and Jose M Bioucas-Dias, “Regularization parameter
selection in minimum volume hyperspectral unmixing,”
IEEE Transactions on Geoscience and Remote Sensing,
vol. 57, no. 12, pp. 9858–9877, 2019.

[17] Toshihisa Tanaka and Andrzej Cichocki, “Subband
decomposition independent component analysis
and new performance criteria,” in 2004 IEEE
International Conference on Acoustics, Speech, and
Signal Processing. IEEE, 2004, vol. 5, pp. V–541.

[18] Tianfeng Chai and Roland R Draxler, “Root mean
square error (rmse) or mean absolute error (mae)?–
arguments against avoiding rmse in the literature,”
Geoscientific model development, vol. 7, no. 3, pp.
1247–1250, 2014.

[19] Feiyun Zhu, Ying Wang, Bin Fan, Shiming Xiang,
Geofeng Meng, and Chunhong Pan, “Spectral unmixing
via data-guided sparsity,” IEEE Transactions on Image
Processing, vol. 23, no. 12, pp. 5412–5427, 2014.


