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ABSTRACT
Sparsity-promoting regularization is often formulated as `ν-
penalized minimization (0 < ν ≤ 1), which can be efficiently
solved by iteratively reweighted least squares (IRLS). The re-
construction quality is generally sensitive to the value of reg-
ularization parameter. In this work, for accurate recovery, we
develop two data-driven optimization schemes based on min-
imization of Stein’s unbiased risk estimate (SURE). First, we
propose a recursive method for computing SURE for a given
IRLS iterate, which enables us to unbiasedly evaluate the re-
construction error, and select the optimal value of regulariza-
tion parameter. Second, for fast optimization, we parametrize
each IRLS iterate as a linear combination of few elementary
functions (LET), and solve the linear weights by minimizing
SURE. Numerical experiments show that iterating this pro-
cess leads to higher reconstruction accuracy with remarkably
faster computational speed than standard IRLS.

Index Terms— Sparse reconstruction, iteratively reweigh-
ted least squares (IRLS), Stein’s unbiased risk estimate
(SURE), linear expansion of thresholds (LET)

1. INTRODUCTION

Consider the standard estimation problem: find a good
estimate of x ∈ RN from the following linear model [1]:

y = µ+ ε, µ = Ax (1)

where y ∈RM is the observed data or the response vector, A =

[A1,A2, ...,AN] ∈ RM×N is a deterministic design matrix with
the column vectors An representing predictors or features, ε ∈
RM is a vector of i.i.d. centered Gaussian random variable
with known variance σ2 > 0.

In many real applications, e.g. model/feature selec-
tion [2], signal recovery [3] and compressed sensing [4], it is
preferable to promote the sparsity of the unknown vector x,
which is often formulated as `ν-penalized minimization [1,5]:

P: min
x

1
2
‖y−Ax‖22 +λ · ‖x‖νν︸                    ︷︷                    ︸

L(x)

where the `ν-norm regularization with 0 < ν ≤ 1 enhances the
sparsity of x, λ > 0 is a regularization parameter. In this work,

we use iteratively reweighted least squares (IRLS) to solve
(P), due to its superior convergence speed [1, 6].

For accurate sparse recovery, it is essential to select a
proper value of the regularization parameter λ, to keep a good
balance between data fidelity and sparsity enhancement. We
denote the IRLS solution to (P) by x̂λ and µ̂λ = Ax̂λ, to empha-
size the strong dependencies of the estimates upon λ. There
have been a number of criteria for this selection of λ, e.g.
generalized cross validation [7], L-curve method [8] and dis-
crepancy principle [9]. However, they have been only applied
to linear estimates, rather than the non-linear sparse recon-
struction considered here.

In this paper, we quantify the reconstruction accuracy by
the expected prediction error (EPE) [2, 10, 11]:

EPE(̂µλ) =
1
M
E
{∥∥∥̂µλ−µ∥∥∥2

2

}
(2)

and attempt to select a value of λ, such that the corresponding
IRLS solution µ̂λ achieves minimum prediction error. Note
that here we do not consider the estimation error ‖̂xλ − x‖22,
since EPE (2) is easier to manipulate and keep numerical sta-
bility [11], despite the fact that it gives only a partial account
of the actual reconstruction quality [15]. See [10, 11] for the
similar treatments.

Notice that EPE (2) is inaccessible due to the unknown µ.
In practice, Stein’s unbiased risk estimate (SURE) has been
proposed as a statistical substitute for EPE [10, 12]:

SURE(̂µλ) =
1
M

∥∥∥Ax̂λ−y
∥∥∥2

2 +
2σ2

M
Tr

(
AJy (̂xλ)

)
−σ2 (3)

since it depends on the observed data y only. Here, Jy (̂xλ)
∈ RN×M is a Jacobian matrix defined as:[

Jy (̂xλ)
]
n,m

=
∂(̂xλ)n

∂ym

Note that, here, we make it explicit that the IRLS solution x̂λ
depends on the observed data y.

This paper is to optimize the sparse reconstruction by
IRLS, based on minimization of SURE (3). Our main con-
tributions are twofold. First, we develop a recursive SURE
for IRLS, which finally provides a reliable estimate of the
prediction error of the non-linear sparse reconstruction. The



optimal λ can then be identified by exhaustive search for min-
imum SURE. Furthermore, for fast optimization, we adopt
a strategy very similar to [6, 13, 18]: approximate the sparse
estimation process by a linear combination of few elementary
functions (LET bases) with different but fixed λ, and solve
for the linear weights (LET coefficients) by minimizing recur-
sive SURE. Experimentally, IRLS iteration of the recursive
SURE-LET process is much more efficient in solving sparse
reconstruction problems, compared to the standard IRLS.

2. RECURSIVE SURE FOR IRLS ALGORITHMS

2.1. Basic scheme of IRLS algorithms

To solve P with given fixed λ, the IRLS algorithm updates
x by solving the following data-dependent linear system of
equations [3, 5, 6]:(

ATA +λW(i−1)
)
x(i) = ATy (4)

at i-th iteration, where W(i−1) ∈ RN×N is a diagonal matrix

and W(i−1)
n,n = ν

(
|x(i)

n |
2 + β

) ν
2−1

for n = 1,2, ...,N. β is a small
constant [5]. (4) leads to the following update of x(i):

x(i) =
(
ATA +λW(i−1)

)−1
ATy (5)

By (3), SURE of the i-th iterate µ(i) = Ax(i) is:

SURE(µ(i)) =
1
M

∥∥∥Ax(i)−y
∥∥∥2

2 +
2σ2

M
Tr

(
AJy(x(i))

)
−σ2 (6)

The SURE computation requires to evaluate Jy(x(i)). Note that

Jy(x(i)) ,
(
ATA+λW(i−1)

)−1
AT, since (5) indicates that x(i) is

NOT a linear transformation of y: W(i−1) is constructed by
x(i−1), which is dependent on data y.

2.2. Matrix splitting to solve IRLS iteration

It is not easy to directly compute Jy(x(i)) by the closed-
form solution (5). Instead, we apply the matrix-splitting (MS)
scheme [14] to solve (4), which, as we will see later, enables
us to evaluate Jy(x(i)) in a recursive manner. This method
splits the matrix ATA +λW(i−1) as:

ATA +λW(i−1) = (D +λW(i−1))︸          ︷︷          ︸
P(i−1)

− (D−ATA)︸      ︷︷      ︸
Q

(7)

for any matrix D ∈ RN×N , and the solution x(i, j) is generated
as follows (fixed i, indexed by j):

x(i, j) = P−1
(i−1)

(
Qx(i, j−1) + ATy

)
(8)

provided that matrix P(i−1) is invertible. The MS iteration (8)
is convergent to the unique solution of (4) for any initial x(i,0),
if and only if the spectral radius ρ(P−1

(i−1)Q) < 1 [14]. To guar-
antee the convergence and easy inversion of P(i−1), we choose
D = αI with α > ρ(ATA) to satisfy that: (1) ρ(P−1

(i−1)Q) < 1;
(2) P(i−1) is diagonal: its inverse is easy to compute.

2.3. Recursion of Jacobian matrix

In this part, we will see that the computation of Jacobian
matrix becomes tractable by the matrix splitting.

Rewrite (8) as v = Hb for brevity, where v = x(i, j), H =

P−1
(i−1) and b = ATy + Qx(i, j−1). The Jacobian matrix of (8) is

derived as:

[Jy(v)]m,k =

N∑
n=1

Hm,n
∂bn

∂yk
+

N∑
n=1

bn
∂Hm,n

∂yk

=
[
HJy(b)

]
m,k

+ bm
∂Hm,m

∂yk
(9)

for the (m,k)-th entry of Jacobian matrix, where Jy(b) = AT +

QJy(x(i, j−1)) by the property of Jacobian matrix.
Considering the second term of (9):

∂Hm,m

∂yk
=

∂
[
λν

(
|x(i−1)

m |2 +β
) ν

2−1
+α

]−1

∂yk

=
∂
[
λν

(
|x(i−1)

m |2 +β
) ν

2−1
+α

]−1

∂
∣∣∣x(i−1)

m
∣∣∣ ·

∂|x(i−1)
m |

∂x(i−1)
m︸                                             ︷︷                                             ︸

em

·
∂x(i−1)

m
∂yk

where em is given as:

em =
[
λν

(
|x(i−1)

m |2 +β
) ν

2−1
+α

]−2
·λν(2− ν) ·

(
|x(i−1)

m |2 +β
) ν

2−2
· x(i−1)

m

then, the second term of (9) becomes:

bm
∂Hm,m

∂yk
= bmem︸︷︷︸

cm

∂x(i−1)
m
∂yk

= [diag(c)︸ ︷︷ ︸
C

]m,m
[
Jy(x(i−1)

m )
]
m,k

=
[
CJy(x(i−1)

m )
]
m,k

where diagonal matrix C = diag(c) ∈ RN×N with (m,m)-th en-
try Cm,m = bmem for m = 1,2, ...,N. Finally, (9) becomes:

Jy
(
x(i, j)

)
= P−1

(i−1)A
T + P−1

(i−1)QJy
(
x(i, j−1)

)
+ CJy

(
x(i−1)

)
(10)

The key equation (10) expresses the recursion of the Ja-
cobian matrix. For (i, j)-th iterate, SURE is:

SURE(µ(i, j)) =
1
M

∥∥∥Ax(i, j) −y
∥∥∥2

2 +
2σ2

M
Tr

(
AJy(x(i, j))

)
−σ2 (11)

where x(i) = x(i,∞) = x(i+1,0) and Jy(x(i)) = Jy(x(i,∞)) = Jy(x(i+1,0)),
assuming that matrix splitting is converged at j =∞.

2.4. Summary of IRLS with matrix-splitting strategy

Finally, we summarize the proposed IRLS-MS-SURE al-
gorithm as Algorithm 1, which enables us to solve P with a
prescribed value of λ, and simultaneously evaluate the SURE
during the IRLS iterations.

To find the optimal value of λ, an intuitive idea is to re-
peatedly implement Algorithm 1 for various tentative values
of λ, then, the minimum SURE indicates the optimal λ (see
Fig.2-(1) for example). This grid search has been frequently
used in [11, 15–17], despite of its high computational cost.



Algorithm 1: SURE evaluation for IRLS-MS

Input: y, A, λ, ν, α, β, initial x(0)

Output: reconstructed x̂λ, µ̂λ, and SURE(̂µλ)
for i = 1,2, ... (IRLS iteration) do

for j = 0,1,2, ... (MS iteration) do
1 compute x(i, j) by (8);
2 update Jy(x(i, j)) by (10);
3 compute SURE of µ(i, j) by (11);

end
end

3. ITERATIVE SURE-LET RECONSTRUCTION

Now, for fast optimization, based on Algorithm 1, we
adopt our previously used strategy in [6, 13, 18], which de-
composes each IRLS iterate (5) into a linear combination
of elementary thresholding functions—Linear Expansion of
Thresholds (LET):

x(i) =

K∑
k=1

ak
(
ATA +λkW(i−1)

)−1
ATy︸                          ︷︷                          ︸

x(i)
k

; µ(i) =

K∑
k=1

ak Ax(i)
k︸︷︷︸

µ(i)
k

(12)

Thus, the update x(i) is a linear combination (by LET coeffi-
cients ak) of a number of LET bases x(i)

k . Each LET basis x(i)
k

is constructed by different but fixed λk. Now, the optimization
problem becomes to determining the optimal LET coefficients
ak instead of unique non-linear parameter λ. Substituting (12)
into (6), we have:

SURE(µ(i)) =
1
M

∥∥∥∥ K∑
k=1

akAx(i)
k −y

∥∥∥∥2

2
+

2σ2

M

K∑
k=1

akTr
(
AJy(x(i)

k )
)
−σ2

(13)
where x(i)

k and Jy(x(i)
k ) are again obtained by MS iteration (8)

and (10), respectively, with λk for k = 1,2, ...,K.
The SURE (13) is a quadratic functional of ak: minimiz-

ing SURE w.r.t. ak boils down to solving the following linear
system of equations:

K∑
k′=1

1
M
µ(i)T

k′ µ
(i)
k︸      ︷︷      ︸

Mk,k′

ak′ =
1
M

(
yTµ(i)

k −σ
2Tr

(
Jy(µ(i)

k

))
︸                            ︷︷                            ︸

ck

(14)

for k = 1,2, ...,K. These equations can be summarized in ma-
trix form as Ma = c, where M = [Mk,k′ ]k,k′=1,2,...,K and c =

[c1,c2, ...,cK]T.
The underlying principle of the SURE-LET approach is

that different values of λk capture various features of the data
x: smaller λ reveals more details of signal, whereas larger λ
yields smoother data but with more noise suppression. The
SURE-LET method consists in finding the best combination
of the candidates µ(i)

k in terms of SURE, which is automat-
ically done by solving (14). The optimal linear coefficients

ak control the best balance between data fidelity and regular-
ization enforcement. In practice, the number of LET bases
K is very small (typically, less than 10), which dramatically
reduces the problem dimension. Therefore, we expect the
SURE-LET update (12) to achieve smaller SURE with faster
computational speed, though it is not an exact solution to (P)
with any value of λ. The proposed method is summarized in
Algorithm 2.

Algorithm 2: SURE-LET within IRLS-MS algorithms

Input: y, A, ν, α, β, initial x(0), λk for k = 1,2, ...,K
Output: reconstructed x̂λ, µ̂λ, and SURE(̂µλ)
for i = 1,2, ... (IRLS iteration) do

for j = 0,1, ... (MS iteration) do
(1) update x(i, j)

k and µ(i, j)
k by (8) with λk for

k = 1,2, ...,K;
(2) update of Jy(x(i, j)

k ) by (10) with λk for
k = 1,2, ...,K;

end
1 update x(i,∞)

k = x(i)
k = x(i+1,0)

k and
Jy(x(i,∞)

k ) = Jy(x(i)
k ) = Jy(x(i+1,0)

k );
2 build and solve (14) for ak;
3 update x(i) and µ(i) by (12);
4 compute SURE of µ(i) by (13).

end

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we are going to solve (P) with ν = 0.5 by
IRLS, and present the results of the proposed recursive SURE
(i.e. Algorithm 1) and iterative SURE-LET algorithm (i.e.
Algorithm 2).

4.1. Experimental setting

To demonstrate the wide applicability of our proposed ap-
proaches, we consider a random numerical example: we ran-
domly generate the matrix A ∈ R300×500, and set x ∈ R500 as
a sparse vector with very few non-zeros (in this example, 10
non-zeros). Then, we add the noise ε with noise variance σ2

to obtain the observed data y = Ax + ε, such that the input
SNR is 10dB1.

4.2. Recursive SURE for IRLS-MS with fixed λ

First, we apply Algorithm 1 to solve P with fixed λ = 1.
Fig.1 shows the IRLS-MS convergence. The objective value
of L(x(i)) keeps decreasing to converge, as shown in Fig.1-
(1). Fig.1-(2) shows the evolutions of SURE and true EPE

1Input signal-to-noise ratio (SNR) is defined as: 10log10

( ‖µ‖22
‖y−µ‖22

)
=

10log10

( ‖µ‖22
Mσ2

)
in dB.



during the iterations. We can see that the SURE is always a
reliable substitute for EPE.

(1) objective value of L(x(i)) (2) SURE and true EPE
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Fig. 1. The convergence of IRLS-MS with fixed λ = 1.0.

4.3. Optimization of sparse reconstruction

In this work, the optimization of sparse reconstruction can
be performed by grid search or iterative SURE-LET. For grid
search, we repeatedly implement Algorithm 1 for 50 ten-
tative values of λ (logarithmically spaced), and obtain the
corresponding SURE. Fig.2-(1) shows the relation between
SURE and λ, where the minimum point indicates optimal
value of λ. For iterative SURE-LET, we set K = 3 regular-
ization parameters (i.e. three LET bases): λ1 = 1, λ2 = 10
and λ3 = 100, and solve three LET coefficients by minimiza-
tion of recursive SURE for each update. Fig.2-(2) shows that
the iterative SURE-LET produces the optimal reconstruction
in ONE implementation of IRLS-MS, which achieves smaller
SURE with much faster convergence speed, compared to ba-
sic IRLS-MS (see Fig.1).

(1) SURE as a function of λ (grid) (2) SURE-LET within IRLS-MS
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min. SURE = 0.52
λopt = 79.06

min. SURE = 0.25

Fig. 2. Optimizations by grid search and iterative SURE-LET.

Fig. 3 shows two fractions of reconstructed signal x̂ for
the comparison between grid search and iterative SURE-LET
method.

(1) first fraction of signal (2) second fraction of signal
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Fig. 3. Two small fractions of the signal reconstruction.

Table 1 reports the errors and computational time of grid
search and iterative SURE-LET method. The errors of x and
µ are defined as: ‖̂x−x‖22/N and ‖̂µ−µ‖22/M, respectively.

Table 1. Comparisons between grid search and iterative SURE-
LET

methods grid search iterative SURE-LET

error of x 1.21×10−3 5.34×10−4

error of µ 0.52 0.25
time (in sec.) 852.32 23.50

From Fig.3 and Table 1, we can see that the iterative
SURE-LET produces more accurate reconstruction. The re-
markably improved computational efficiency is due to the
following several facts: (1) grid search requires 50 times of
implementations of IRLS-MS with various λ; (2) SURE-LET
greatly accelerates the convergence speed of IRLS-MS, and
complete the optimization in ONE execution; (3) SURE-LET
for each IRLS update finally boils down to solving a 3-order
(i.e., K = 3) linear system of equations (14), which costs
negligible time.

5. CONCLUSIONS

SURE has been proven a powerful tool to select reg-
ularization parameter [11, 15]. In this paper, to solve `ν-
minimization problem, we proposed a recursive method for
computing SURE for a given IRLS iterate, which always
keeps statistical unbiasedness w.r.t. the prediction error dur-
ing the iterations. It enables us to accurately estimate the
prediction loss, without referring to the true unknown data.
Furthermore, for fast optimization of sparse reconstruction,
we represent each IRLS iterate as a linear combination of
elementary functions (LET basis) with optimal weights (LET
coefficients) obtained by minimizing recursive SURE.

Theoretical derivations in this work related to the SURE
evaluation and SURE-LET framework can be extended, in
principle, to other types of regularizers and regularized itera-
tive reconstruction algorithms. We would also like to empha-
size that not limited to the simple example shown here, the
developed recursive SURE and iterative SURE-LET can be
applied to many practical applications, e.g. MRI reconstruc-
tion [11] and image deconvolution [6, 13].
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