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Abstract—This paper addresses the problem of sampling
non-bandlimited signals within the Finite Rate of Innovation
(FRI) setting. We had previously shown that, by using sampling
kernels whose integer span contains specific exponentials (gener-
alized Strang-Fix conditions), it is possible to devise non-iterative,
fast reconstruction algorithms from very low-rate samples. Yet,
the accuracy and sensitivity to noise of these algorithms is highly
dependent on these exponential reproducing kernels — actually,
on the exponentials that they reproduce. Hence, our first contri-
bution here is to provide clear guidelines on how to choose the
sampling kernels optimally, in such a way that the reconstruction
quality is maximized in the presence of noise. The optimality
of these kernels is validated by comparing with Cramér-Rao’s
lower bounds (CRB). Our second contribution is to relax the exact
exponential reproduction requirement. Instead, we demonstrate
that arbitrary sampling kernels can reproduce the “best” expo-
nentials within quite a high accuracy in general, and that applying
the exact FRI algorithms in this approximate context results in
near-optimal reconstruction accuracy for practical noise levels.
Essentially, we propose a universal extension of the FRI approach
to arbitrary sampling kernels. Numerical results checked against
the CRB validate the various contributions of the paper and in
particular outline the ability of arbitrary sampling kernels to be
used in FRI algorithms.

Index Terms—DSP-SAMP, finite rate of innovation, matrix
Pencil, MOMS, noise, sampling.

I. INTRODUCTION

M OST signal acquisition systems involve the conversion
of signals from analog to digital, and sampling theorems

provide the bridge between the continuous and the discrete-time
worlds. Usually, the acquisition process is modelled as in Fig. 1,
where the smoothing function is called the sampling kernel
and normallymodels the distortion due to the acquisition device.
The filtered continuous-time signal is then
uniformly sampled at a rate . Following this setup, the
measurements are given by

Manuscript received December 11, 2012; revised May 03, 2013; revised May
03, 2013 and July 19, 2013; accepted July 24, 2013. Date of publication August
15, 2013; date of current version September 24, 2013. The associate editor coor-
dinating the review of this manuscript and approving it for publication was Prof.
Jian-Kang Zhang. This work was supported in part by the European Research
Council (ERC) starting investigator Award 277800 (RecoSamp); and in part by
a RGC Grant CUHK410110 of the Hong Kong University Grant Council.
J. A. Urigüen and P. L. Dragotti are with the Department of Electrical

and Electronic Engineering, Imperial College, London, U.K. (e-mail:
jau08@ic.ac.uk; p.dragotti@imperial.ac.uk).
T. Blu is with the Department of Electrical and Electronic Engineering, The

Chinese University of Hong Kong, Hong Kong (e-mail: thierry.blu@m4x.org).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2013.2278152

Fig. 1. Traditional sampling scheme . The continuous-time input signal
is filtered with and sampled every seconds. The samples are then given
by .

The fundamental problem of sampling is to recover the
original continuous-time waveform using the set of sam-
ples . In case the signal is bandlimited, the answer due to
Shannon is well known. Recently, it has been shown that it is
possible to sample and perfectly reconstruct specific classes of
non-bandlimited signals [1]–[3]. Such signals are called signals
with finite rate of innovation (FRI) since they are completely
described by a finite number of free parameters per unit of
time. Perfect reconstruction is achieved by using a variation
of Prony’s method, also known as annihilating filter method
[4]. Signals that can be sampled within this framework include
streams of pulses such as Diracs [1]–[3], [5], piecewise polyno-
mial signals, piecewise sinusoidal signals [6] and classes of 2-D
signals [7]–[10]. In the presence of noise, FRI reconstruction
techniques become unstable and methods to improve resiliency
to noise have been presented in [10]–[15].
Various sampling kernels can be used to perfectly reconstruct

FRI signals such as the sinc and Gaussian functions first pro-
posed in the original paper on FRI [1] and compact support
kernels such as polynomial and exponential reproducing ker-
nels [2], [3], [16]. While they all allow perfect reconstruction
in noiseless settings, their behavior changes in the presence of
noise. It is therefore natural to attempt to understand which fac-
tors cause a deterioration in performance and also to determine
sampling schemes and recovery methods that are resilient to
noise.
In this paper, we focus on the family of exponential repro-

ducing kernels [2] for two reasons: First, they can have com-
pact support, which is in itself a nice property when dealing with
noisy measurements. Second and more important, any compact
support kernel that has so far been used in FRI sampling using
the setting of Fig. 1 is a particular instance of the family of expo-
nential reproducing kernels (see Section II-C and Appendix B).
Our contribution is twofold: We first explain how to design

the most effective exponential reproducing kernels when sam-
pling and reconstructing FRI signals in noisy environments.
Since FRI recovery is equivalent to estimating a set of param-
eters in noise, we use the Cramér-Rao bound (CRB) of this es-
timation problem as our optimisation criterion when designing
the kernel. For the second contribution we depart from the pre-
vious setup and assume we have no control on the acquisition
device. In such scenario, we develop a universal FRI reconstruc-
tion strategy that works with samples taken by any kernel. In
contrast to existing techniques that attempt at finding parame-
ters of the input exactly [1]–[3], [12], we propose an alterna-
tive method that finds the parameters approximately. The ad-
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vantage of our new method is that, for kernels such as polyno-
mial splines or the Gaussian function which are in practice very
unstable, it provides a much more stable and accurate recovery
in the presence of noise.
The outline of the paper is as follows. In Section II we

review the noiseless scenario in which we sample and perfectly
reconstruct the prototypical FRI signal: a train of Diracs. We
also discuss exponential reproducing kernels and their gen-
eralised Strang-Fix conditions [17], for which we provide a
simple proof. In Section II-B we treat the more realistic setup
where noise is present in the acquisition process. Here, we
describe practical techniques to retrieve the train of Diracs and
in Section III we compute the Cramér-Rao bound (CRB) for
this problem. We also present a CRB formulation based on
the exponential moments of the input that has not been used
in the FRI literature to date. In Section IV we design a family
of exponential reproducing kernels that is most resilient to
noise. Then, in Section V we introduce the approximate FRI
framework and develop the basic ideas to sample FRI signals
with any kernel. In Section VI we present simulation results to
validate the various contributions of the paper. Interestingly,
we also show that with the new approximate framework we
can improve the accuracy of the reconstruction associated to
sampling kernels for which existing exact recovery methods
become unstable in the presence of noise. Finally, we conclude
the paper in Section VII.

II. SAMPLING SIGNALS WITH FINITE RATE OF INNOVATION

In this section we provide a brief overview of FRI theory.
Specifically, we explain how to reconstruct a stream of Diracs
from noisy or noiseless samples taken by an exponential repro-
ducing kernel. We also highlight some of the key properties of
this type of kernels which will be useful for the rest of the paper.

A. Perfect Reconstruction of a Stream of Diracs

Assume that the input is a stream of Diracs

(1)

where are the amplitudes and are the time
locations of the Diracs. We restrict the locations to the interval

for .
Now, based on the acquisition model of Fig. 1, we filter the

input with the kernel and obtain the samples

(2)

where and the sampling period satisfies
. Moreover, we assume that is an exponential re-

producing kernel of compact support. That is, is a function
satisfying:

(3)

for proper coefficients , with and .
Since this is an exponential reproducing kernel of
order . These kernels are discussed in detail in Section II-C.

From now on, we also assume for
.

Once we have sampled the input, the stream of Diracs can
be unambiguously retrieved from the set of measurements
as follows: First we linearly combine the samples with the
coefficients of (3), to obtain the new sequence:

(4)

for . Then, given that the signal is a stream
of Diracs (1) and combining (4) with (2) we have [2]:

(5)

with and . Here it is the choice
, where , that makes have a power

sum series form.We note that are precisely the (exponential)
moments of the signal [6].
The new pairs of unknowns can then be

retrieved from the moments using the annihilating filter
method (AFM) [1], [2], [12], also known as Prony’s method
[4]. Let with be the filter with -transform

, that is, its
roots correspond to the values to be found. Then, it follows
that annihilates the observed sequence :

(6)

Moreover, the zeros of this filter uniquely define the values
provided the locations are distinct. The identity (6) can be
written in matrix-vector form as:

(7)

which reveals that the Toeplitz matrix , with entries , is
rank deficient. By solving the above system, we find the filter
coefficients and then retrieve by computing the roots of

. Given we obtain the locations since .
Finally, we determine the weights by solving, for instance,
the first consecutive equations in (5). Notice that the problem
can be solved only when there are at least as many equations as
unknowns, implying that . This indicates that the
order of the exponential reproducing kernel has to be
chosen according to the number of degrees of freedom of the
input signal .
We end the above discussion by noting that all FRI

reconstruction setups proposed so far [1]–[3], [12] can be
unified as shown in Fig. 2. Here, the samples are represented
with the vector and the moments are
given by . The matrix , of size with
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Fig. 2. Unified FRI sampling and reconstruction . The continuous-time input
signal is filtered with and uniformly sampled. Then, the vector of samples
is linearly combined to obtain the moments . Finally, the parameters

of the input are retrieved from using the annihilating filter method (AFM).

coefficients at position , depends on the sampling
kernel and its role becomes pivotal in noisy scenarios as dis-
cussed throughout the paper.

B. Reconstruction of a Stream of Diracs in the Presence of
Noise

Any practical acquisition device introduces noise during the
acquisition process. We therefore assume that instead of (2) we
have access to the noisy samples

(8)

with and where are i.i.d. Gaussian random
variables, of zero mean and standard deviation . When the
samples are corrupted by noise, the sequence of (4) changes
and perfect reconstruction is no longer possible. We now have
the noisy moments:

(9)

for and where and
with .
Consequently, in the noisy setting (7) is not satisfied any more

because now where is Toeplitz with entries
from (9). We may however solve (7) approximately by taking
more than the critical number of moments
and applying a singular value decomposition (SVD) to . This
is the total least-squares (TLS) solution to (7). The procedure
may be improved by denoising before applying TLS using
the Cadzow iterative algorithm [12], [18]. There exist other
methods that attain a similar accuracy and are not iterative. One
such approach, based on solving a matrix pencil problem [19],
[20], was introduced for FRI in [11]. It has been employed in
other FRI publications such as [3], [16] and is used in the sim-
ulations of this paper as well.
These methods operate effectively when the perturbation is

white, that is when the covariance matrix of the noise satisfies
, where is a constant factor and is

the identity matrix. However, for many FRI kernels the white
Gaussian noise assumption does not hold and in order for SVD
to operate correctly it is necessary to “pre-whiten” the noise. In
our simulations we use a weighting matrix [21]
such that with . Here, is

the square root of the pseudoinverse of . Therefore, we work
with matrix , which is now characterised by white noise.
To conclude this part, we summarise the noisy FRI recovery

method which we use in our simulations in insert Algorithm 1.

Algorithm 1 Reconstruction of a stream of Diracs in the
presence of noise.

1) Calculate the sequence of moments (9) from the
noisy samples of (8). Then, build the Toeplitz matrix
with the sequence . Here .

2) Estimate and define the newmatrix
, where .

3) Apply the matrix pencil method to : Obtain the
decomposition , keep the columns
of corresponding to the dominant singular values
and estimate as the eigenvalues of . Here,

and are operations to omit the last and first rows of .
4) Compute the locations of the Diracs as .
5) Calculate as the least mean square solution of
the equations for

.

C. Exponential Reproducing Kernels

An exponential reproducing kernel is any function that,
together with a linear combination of its shifted versions, can
reproduce functions of the form , with complex parameters
. This can be expressed mathematically as follows:

(10)

for properly chosen coefficients and where
and . Exponential reproducing

kernels for which (10) is true satisfy the so-called generalised
Strang-Fix conditions [17] (see Appendix A for a simple proof).
In particular, Equation (10) holds if and only if

(11)

for and , where rep-
resents the bilateral Laplace transform of , i.e.,

, at . Moreover, the coef-
ficients in (10) are given by

(12)

where forms a biorthonormal set with [2], and where
.

Any exponential reproducing kernel can be written as
[2], [22], [23], where is an arbitrary func-

tion, even a distribution, and is an E-Spline. A func-
tion with Fourier transform is an
E-spline of first order. Higher order E-Splines can be obtained
through convolution of first order ones. For instance

, where is an
E-Spline of order , has compact support and has

continuous derivatives. This function can reproduce any
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exponential in [2], [22]. Moreover,
when for , the function becomes
a B-Spline and no longer reproduces exponentials but polyno-
mials up to degree .

Remarks

In this paper we work with real valued sampling kernels,
therefore we require that and be real functions.
E-Splines are real if the exponents are
real or exist in complex conjugate pairs. Since we also restrict
the exponents to be of the form , ,
then either and are real or is purely imaginary and is
complex with . For the rest of the paper
we use , , which satisfies
all the requirements with and .
Note that since is purely imaginary then there may exist

ambiguities when obtaining the locations from . This is
because and , where , produce the same
annihilating filter roots .
It is thus necessary that for in
order to retrieve the locations unambiguously.

III. MEASURING THE PERFORMANCE

FRI signals are completely characterised by their in-
novation parameters. For instance, a stream of Diracs
can be determined from the locations and ampli-
tudes . The goal of FRI reconstruction is to estimate

from the vector of
noisy samples given by (8). For sim-
plicity we assume the sampling period is . A way to
determine the CRB of this estimation problem was given in [12]
assuming is a zero-mean Gaussian noise with covariance
matrix , where is the vector of length
with values . In this set-up any unbiased estimate of the

unknown parameters
has a covariance matrix that is lower bounded by

(13)

where the matrix is given by (14),1 shown at the bottom of
the page.
While this is one possible way to measure the performance of

various FRI recovery techniques [11], [12] given the noisy sam-
ples , we also note that in practice FRI reconstruction methods
operate on the moments . We therefore present the CRB
associated to the moments, since this will indicate the best per-
formance that can be achieved when working with . In this case
the bound is given by [24]:

(15)

where takes the form (16) at the bottom of the page and
. Here, is Hermitian transpose and is the

vector of noisy values .
Furthermore, since we have assumed that the noise added

to the samples is additive, white and Gaussian (AWGN), with
variance , the covariance matrix of the transformed noise is

. Then, by taking into account that
and also that , we may write

since the noise is AWGN. Consequently, it is true that

where is the left pseudo-inverse of .
When the number of moments equals the number of sam-
ples , then (13) and(15) are equivalent. This is easily seen
since in such case . A moment-based
algorithm is, of course, likely to underperform a sample-based
algorithm because it is the number of these moments that are an
indicator of the quality of the retrieval, not the number of sam-
ples (which is always larger than the number of moments).
We have seen experimentally that FRI algorithms reach the

bound (15) when is sufficiently well conditioned. Therefore

1The matrix can be obtained calculating the derivative of with respect to
each parameter in . That is, the columns of to the left of are
and the columns of to the right of are .

...
. . .

...
...

. . .
...

(14)

...
. . .

...
...

. . .
...

(16)



5314 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 21, NOVEMBER 1, 2013

our goal now is to design kernels that lead to properly condi-
tioned that minimise (15) for any choice of .2

IV. OPTIMAL EXPONENTIAL REPRODUCING KERNELS

As mentioned before, an exponential reproducing kernel can
be written as , where is arbitrary and

is an E-Spline. In this section we want to find rules on
how to choose the exponential parameters of the E-Spline

for and the function in
order to make FRI recovery techniques with these kernels as
stable as possible. Finding the best parameters translates into the
optimisation of the matrix of coefficients . Therefore we first
determine the properties that has to satisfy and then design
the kernels that lead to our choice of .

A. How To Choose Matrix

The first step in the FRI reconstruction stage is to transform
the vector of samples into the vector of moments ,
therefore, our first aim is to get a well conditioned . From
(12) we note that matrix is composed of elements

at position , where and
:

...
...

. . .
...

...
...

. . .
...

Here, is diagonal and Vandermonde. Hence, to have a
stable we want the absolute values of the diagonal elements
of to be the same, for instance . Moreover, we want
the elements in to lie on the unit circle:

(17)

Clearly, purely imaginary make the Vandermonde matrix
better conditioned [25]. We are therefore only left with the

problem of finding the best in (17). Since we have experimen-
tally seen that FRI algorithms are able to reach the CRB (15) if
is well conditioned, one way to determine is to choose the

value that minimises (15) for the location of a single Dirac. It
turns out the minimum is always achieved when , as
shown in Fig. 3 for various choices of and , given
for all .
To some extent, this is not surprising since this choice en-

sures that the exponentials span the entire unit circle, which is
well known to be the best configuration when recovering the
parameters of a power sum series [26]. Finally, when we im-
pose with , besides minimising (15),
we also ensure that the moment-based CRB in(15) matches the
sample-based bound in(13), leading to the best possible perfor-
mance. In this situation, the matrix ends up being square and
unitary. This is the most stable numerical transformation since
its condition number is one.

2The condition can be imposed only for blockwise sampling,
e.g., when sampling periodic signals using samples. This condition cannot
be imposed on infinite length signals since sequential reconstruction algorithms
will operate on blocks with possibly varying number of samples.

Fig. 3. CRB vs. . Here we plot various CRB values (15) for coeffi-
cients satisfying , when we vary in (17). For any
value of the CRB is minimised when (note that all the lines are
monotonically increasing).

In summary, the best exponential reproducing kernels
should reproduce exponentials with exponents of the form

and have for .
Finally, whenever possible, the order of the kernel (which
equals the number of moments) should be . In the
next section we show how to obtain such kernels.

B. Exponential MOMS

Equipped with the analysis of the previous section, we now
design optimal exponential reproducing kernels of maximum-
order and minimum-support (e-MOMS). We require
for and exponential parameters of the form:

(18)

By taking into account that any exponential reproducing kernel
can be written as , we design so

that is satisfied. We note that, by using (3), we have
that

Consequently

where follows from Poisson summation formula3 and
from the application of the generalised Strang-Fix conditions
(11). Therefore, we have that for any exponential reproducing
kernel . We then realise that imposing

is equivalent to requiring . Finally, by
using the fact that and evaluating the
Laplace transforms at , we arrive at the following
condition on :

(19)

where we nowworkwith the Fourier transform of each function.

3Poisson summation: .
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Fig. 4. Examples of exponential MOMS. These are 3 of the 30 possible kernels with support samples. They coincide with one period of
the Dirichlet kernel of period for even or for odd (see Appendix B). All of them are built selecting the phase of such that they are
continuous-time functions centred around , where indicates rounded to the nearest integer. They are shown in the middle of the sampling interval
for . (a) ; (b) ; (c) .

Among all the admissible kernels satisfying (19), we are in-
terested in the one with the shortest support . We thus
consider the kernels given by a linear combination of various
derivatives of the original E-Spline , i.e.,:

(20)

where is the th derivative of , with
, and is a set of coefficients. This is like saying that

is a linear combination of the Dirac delta and its derivatives,
up to order [23]. These kernels are still able to reproduce
the exponentials and are a variation of the maximal-order
minimal-support (MOMS) kernels introduced in [27]. This is
why we call them exponential MOMS (or e-MOMS). They
are also a specific case of the broader family of generalised
E-Splines presented in [28]. The advantage of this formulation
is twofold: first the modified kernel is of minimum support

, the same as that of ; second we only need to find
the coefficients that meet the constraint (19), in order to
achieve . Using the Fourier transform of (20), which
is given by:

we realise that we can satisfy (19) by choosing the coefficients
so that the resulting polynomial

interpolates the set of points ( for
.

Once we have designed the kernels satisfying that has
modulus one for all , we are left with a phase ambiguity. Hy-
pothesising a linear phase behavior, this ambiguity can be re-
duced to a time shift for the E-Spline in (20), introducing an
additional degree of freedom. It is possible to show that, in order
for the exponential MOMSwith and parameters (18)
to be continuous-time functions, then for

, where is an integer larger than or equal to 1
and smaller than or equal to .
In Fig. 4 we present some of the kernels obtained by imple-

menting the procedure explained above. Interestingly, as shown
in Appendix B, these specific functions always equal one period
of the Dirichlet kernel. We also point out that when

the scenario derived using this family of exponential repro-
ducing kernels converges to the original FRI formulation of
[1] when we periodise the input or, equivalently, the sampling
kernel.

V. UNIVERSAL SAMPLING OF SIGNALS WITH FRI

In the previous section we have shown how to design optimal
exponential reproducing kernels for noisy FRI sampling. In
many practical circumstances, however, the freedom to choose
the sampling kernel is a luxury we may not have.
Essential in the FRI setting is the ability of to repro-

duce exponential functions, because this allows us to map the
signal reconstruction problem to Prony’smethod in spectral-line
estimation theory. In this section we relax this condition and
consider any function for which the exponential repro-
duction property (3) does not necessarily hold. For these func-
tions it is still possible to find coefficients such that the
reproduction of exponentials is approximate rather than exact.
We propose to use this approximate reproduction and the cor-
responding coefficients to retrieve FRI signals from the
samples obtained using these kernels.
This new approach has several advantages: First, it is uni-

versal in that it can be used with any kernel . In fact, as
we shall show in the following sections, this new formulation
does not even require an exact knowledge of the kernel. Second,
while reconstruction of FRI signals with this new method is not
going to be exact, we will show that in many cases a proper
iterative algorithm can make the reconstruction error arbitrarily
small. Finally, it can be used to increase the resiliency to noise
of some unstable kernels proposed in the FRI literature. For
example, kernels like polynomial splines or the Gaussian func-
tion lead to very ill-conditioned reconstruction procedures. We
show that by replacing the original with the one formed from
properly chosen coefficients , based on approximate repro-
duction of exponentials, we achieve a much more stable recon-
struction with the same kernels.

A. Approximate Reproduction of Exponentials

Assume we want to use the linear combination of a function
and its integer shifts to approximate the exponential .

Specifically, we want to find the coefficients such that:

(21)
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This approximation is exact only when satisfies the gener-
alised Strang-Fix conditions (11). For any other function it is of
particular interest to find the coefficients that best fit (21). In
order to do so, we directly use4 and introduce the
1-periodic function

(22)

We then find that approximating the exponential with
integer shifts of can be transformed into approximating

by the constant value 1. The reason is that we can rewrite
(21) in the form of the right-hand side of(22) by substituting

and moving to the left-hand side.
As a consequence of Poisson summation formula, we have

that the Fourier series expansion of is given by

and that our approximation problem reduces to:

(23)

This shows more deeply the relation between the generalised
Strang-Fix conditions (11) and the approximation of exponen-
tials. If satisfies the generalised Strang-Fix conditions (11)
then for and (23) holds ex-
actly when . Otherwise, the terms for

do not vanish, and we can only find the coefficient
so that . However, the closer the values
are to zero, the better the approximation in (21) is.
In general can be any function and we can find different

sets of coefficients in order for (21) to hold. Regardless of
the coefficients we use, we can determine the accuracy of our
approximation by using the Fourier series expansion of .
In fact, the error of approximating by the function

with coefficients is equal
to:

(24)

Note that, if the Laplace transform of decays sufficiently
quickly, very few terms of the Fourier series expansion are
needed to have an accurate bound for the error.
A natural choice of the coefficients is the one

given by the least-squares approximation. Despite the fact that
is not square-integrable, we can still obtain the coefficients

by computing the orthogonal projection of onto the sub-
space spanned by [29]. They are

where is the -transform of
, evaluated at .

4The exact exponential reproducing coefficients always satisfy .
We now anticipate that different sets of approximation coefficients we derive
throughout the section also have the same form.

TABLE I
COEFFICIENTS FOR THE APPROXIMATE REPRODUCTION (21)

The least-squares approximation has the disadvantage that it
requires exact knowledge of . However, as we stated before,
if the Laplace transform of decays sufficiently quickly,
we can assume the terms are close to zero for

. In this case we have that the error in (24) is easily
minimised by choosing . We denote this second
type of approximation constant least-squares . Besides its sim-
plicity, a second advantage of choosing is
that it requires only the knowledge of the Laplace transform
of at . If we put ourselves in the FRI setting where we
require the approximate reproduction of the exponentials
with , then this simplified formulation needs
only the knowledge of the Laplace transform of at ,

.
Finally, a third interesting choice of coefficients is the one

that ensures that interpolates exactly at integer points
in time [22], [30]. These coefficients are as follows:

Note that in order to use the interpolation coefficients we only
need information on at integer instants of time. We sum-
marise the previous results in Table I.
According to our experience, in most cases, the constant

least-squares approximation is just as good as the least-squares
approximation and has the advantage of requiring only the
knowledge of the Laplace transform of the kernel at . In-
terpolation coefficients are also very easy to compute. However,
they always provide a worse approximation quality. Therefore,
for the rest of the paper, we use constant least-squares approxi-
mation and constant least-squares coefficients.
We show an example of the above analysis in Fig. 5. Here

we want to approximate exponentials using linear combina-
tions of integer shifts of a linear spline. First, note that this
spline reproduces polynomials of orders 0 and 1 exactly,
as shown in Figs. 5(a)–5(b). Then, with the same func-
tion, we approximately reproduce 4 complex exponentials

for , using the constant
least-squares coefficients . We present
the approximation of their real part in Figs. 5(c)–5(f). We notice
that some exponentials are better approximated than others,
in this example the ones with lower frequency. If we used a
higher order spline, the approximation quality would improve.
However, we have chosen a linear spline for illustration pur-
poses. Also note that the number of exponentials that can be
approximated is now independent of the order of the spline.
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Fig. 5. B-Spline kernel reproduction and approximation capabilities . Figures (a-b) show the exact reproduction of polynomials of orders 0 and 1 with a linear
spline. Figures (c-f) show the approximation of the real parts of 4 complex exponentials: for , with the constant least-squares
coefficients , using a linear spline. We plot the weighted and shifted versions of the splines with dashed blue lines, the reconstructed
polynomials and exponentials with red solid lines, and the original functions to be reproduced with solid black lines. (a) Reproduction of 1; (b) Reproduction of ;
(c) Approximation of ; (d) Approximation of ; (e) Approximation of ; (f) Approximation of .

B. Approximate FRI Recovery

Consider again the stream of Diracs
and the noiseless samples

(25)

We want to retrieve the locations and amplitudes of the Diracs
from the samples (25), but now we make no assumption on
the sampling kernel. We find proper coefficients for to
approximate the exponentials , where ,

, and . From the previous section
we know that a good approximation is achieved if we choose

with . We thus only need
to know the Laplace transform of at , .
Also, note that no longer needs to be related to the support
of , but we can use any value subject to .
In order to retrieve the innovation parameters ,

we proceed as in the case of exact reproduction of exponentials,
but now using (24) we have that the moments are

(26)

where and . There is a model mis-
match due to the approximation error of (24), equal to
. We treat it as noise and retrieve the parameters of the signal

using the methods of Section II-B. The model mismatch de-
pends on the quality of the approximation, dictated by the co-
efficients , the parameters and , and the kernel .

The estimation of the Diracs can be refined using the iterative al-
gorithm shown in the box Algorithm 2. The basic idea of the al-
gorithm is that, given an estimate of the locations of the Diracs,
we can compute an approximation of and use it to refine the
computation of the moments . In noisy scenarios, if is
negligible when compared to other forms of noise then the pro-
cedure is sufficiently good.

Algorithm 2 Approximate recovery of a train of Diracs

1) Calculate the approximation coefficients by choosing
one expression from Table I subject to the available
information on the kernel .

2) Compute the moments , from the
original data , and set ,

. The iteration is .
3) Obtain by applying either TLS and Cadzow
or matrix pencil to the sequence . Determine the
locations and amplitudes , for the th iteration.

4) Recalculate the moments for the next iteration by
removing the model mismatch from . This can be done
by using (26) as follows:

for and where is the error of the
approximation (24).

5) Repeat steps 3 and 4 until convergence of the values
.

C. How to Select the Parameters

In Section IV we have determined that, if we have full control
on the design of the sampling kernel, we should use as many
moments as samples: , the exponential parameters
should be purely imaginary and of the form
and the coefficients should be such that for

. However, in the approximated FRI scenario, the
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Fig. 6. CRB vs. . Here we plot different CRB values (15) for expo-
nential parameters (27) when we vary . We use for

, where is the Fourier transform of a B-Spline of order 6.
Note that the minima are always for around .

sampling kernel is fixed and we can only choose the number
of moments and the values but we cannot impose

.
This fact leads to a trade-off in the choice of . On the one

hand, we want them to be purely imaginary: and
to span the entire unit circle. On the other hand, we want the
values to have modulus as close as possible
to 1. Since is normally a low-pass filter, the condition

for is satisfied when all are very
close to zero, which is contrary to spanning the unit circle. We
therefore choose the exponential parameters to be of the form:

(27)

and then determine and that optimise the above trade-off.
Again the criterion we follow is to choose the values of

and that minimise the CRB (15) when retrieving the location
of a single Dirac. We have found that the best is normally
greater or equal than the support of the sampling kernel
and that should be in the range .
We show an example of the choice of in Fig. 6 for the case
where is a B-Spline of order 6. Here, we first determine a
value for and compute parameters (27). Then, we calculate
the coefficients for ,
where is the Fourier transform of . We finally build
matrix and compute (15) for a single Dirac. The minima of
the CRB in this example are always around .

VI. SIMULATIONS

We now present simulation results to validate the main con-
tributions of the paper. Specifically, we show the performance
of the e-MOMS kernels introduced in Section IV-B and of the
approximate FRI recovery method introduced in Section V.

A. The Experimental Setup

We take samples following the scheme of Fig. 1 by directly
calculating for ,
since we have a train of Diracs as the input. We then
either use the noiseless samples or corrupt them with addi-
tive white Gaussian noise of variance . The variance is
chosen according to the target signal-to-noise ratio defined
as . We finally compute the
noisy moments and then retrieve the innovation parameters

of the input using the matrix pencil method.

We present results for single realisations of the sampling and
reconstruction process or for average performance overmultiple
trials. For the latter, we are mainly interested in the error in
the estimation of the time locations, since these are the most
challenging parameters to retrieve. For each Dirac, we show the
standard deviation of this error:

(28)

where are the estimated time locations at iteration and
is the total number of iterations. We calculate (28) for a range
of fixed signal-to-noise ratios and average the effects using

noise realisations for each SNR. We compare the perfor-
mance (28) with the square root of the variance predicted by
the two different Cramér-Rao bounds (CRB) of Section III: the
sample-based CRB (13) and the moment-based CRB (15).

B. Exponential MOMS

In Figs. 7(a)–7(b) we present simulation results when we re-
trieve Diracs from samples using a standard
E-Spline and the exponential MOMS kernels of Section IV-B.
The former are characterised by purely imaginary exponents

for . The sampling
period is such that .
We see that for any order , e-MOMS outperform

E-splines. Moreover, e-MOMS always achieve the mo-
ment-based CRB (in red and denoted s-CRB in the legend).
This bound gets closer to the sample-based CRB (in black and
denoted y-CRB in the legend) as the value of increases
and as expected matches it when .
To further illustrate the stability of e-MOMS, in Fig. 7(c) we

show the retrieval of Diracs randomly spaced over
and with arbitrary amplitudes. We obtain

samples, contaminate them with AWGN of signal-to-noise
ratio equal to 15 dB and estimate the Diracs from
moments.

C. Approximate FRI Recovery

In this section we apply the approximate FRI sampling
methods of Section V to two unstable kernels: B-Splines and
Gaussian kernel. We show that this new framework leads to
much more precise reconstructions than those obtained using
the traditional exact FRI recovery methods.
1) The B-Spline Case: In this example we compare the per-

formance of our method with the traditional recovery strategy
based on the exact reproduction of polynomials [2]. We sample
a stream of Diracs that has been filtered with a B-Spline
kernel of order . We then reconstruct the input from

noisy samples by obtaining moments using the
constant least-squares coefficients. These take the form

, where represents the Laplace transform
of the B-Spline. We adjust as suggested in Section V-C to
choose appropriate exponential parameters ,

. The Diracs are located at random over
and have arbitrary amplitudes. The signal-to-noise

ratio is .
In Fig. 8(b) we present the estimation for the method based

on reproduction of polynomials with moments.
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Fig. 7. Performance of e-MOMS kernels. (a-b) compare the performance of e-MOMS and E-Splines of different orders when noise is added to
samples. We show the recovery of the first of Diracs. Note that e-MOMS always outperform E-splines and achieve the moment-based CRB (s-CRB).
This bound gets closer to the sample-based CRB (y-CRB) as the value of increases and matches it when . Finally, (c) shows the retrieval of

Diracs randomly spaced over . The signal-to-noise ratio is 15 dB, and we use samples and moments. (a) e-MOMS
; (b) e-MOMS ; (c) Retrieval of Diracs.

Fig. 8. Estimation of multiple Diracs with the B-Spline kernel . We recover Diracs from (a) noisy samples taken by a kernel of order .
(b) Default polynomial recovery of [2], enhanced using pre-whitening. (c) Approximate recovery with , where

. The SNR in both cases is 25 dB. (a) and ; (b) Default FRI retrieval; (c) Approximate FRI retrieval.

Fig. 9. Approximate retrieval using a B-Spline . These figures show the error in the estimation of the first Dirac out of retrieved using the approximated
FRI recovery. We show how, even when we fix the order of the kernel , we can reconstruct any number of moments and improve the performance.
In fact, with the appropriate choice the performance improves until the sample-based CRB is reached. (a) l (b) ;
(c) .

Note that not all the Diracs can be found. In Fig. 8(c) we show
the estimation given by the method based on approximation of
exponentials, when we select and generate

exponential moments. In this case all the Diracs
are retrieved with a root mean squared error on the estimation
of the locations of the order of .
We show further results whenwe use the approximate method

to retrieve Diracs from noisy samples taken by
a B-Spline kernel of order . We use exponential
parameters with and

. In Fig. 9 we show that, even though the order of
the kernel is fixed at , we improve the performance
by generating more moments, that is, by choosing . As

the number of moments increases, the performance improves to
eventually reach the sample-based CRB as shown in Fig. 9(c).
2) The Gaussian Kernel Case: We conclude this set of

simulations by showing an example with the Gaussian kernel
[1]. Since for this kernel the samples are

the approximation problem (21)
becomes:

In order to use the coefficients of Table I we need to consider
and and manipulate the original ex-

pressions. For example, the constant least-squares coefficients
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Fig. 10. Approximate FRI with the Gaussian kernel . We recover Diracs from (a) noisy samples taken by a Gaussian kernel of standard deviation
with period . (b) Recovery using the approximate method with , where . The SNR

is 25 dB. (a) and (b) Approximate FRI retrieval.

Fig. 11. Piecewise constant functions and B-Splines . These figures show the sampling and retrieval process, based on approximation of exponentials, for a
piecewise constant function with discontinuities in the presence of noise of 25 dB. (a) Samples; (b) Equivalent samples; (c) Retrieved signal.

are now given by . Here, again
, and we adjust as sug-

gested in Section V-C.
In Fig. 10 we show the reconstruction of Diracs from

noisy samples taken by a Gaussian kernel of stan-
dard deviation with sampling period .
The signal-to-noise ratio is . We choose

to compute the constant least-squares coefficients
and generate moments to estimate the parameters
of the Diracs. The Diracs have random locations in the interval

. Fig. 10(b) shows that all the Diracs are correctly re-
trieved with a root mean squared error on the estimation of the
locations of the order of . We also note that this kernel
is so unstable that the traditional FRI exact recovery method of
[11] fails completely in this case.

D. Approximation Error and Accuracy of the Reconstruction

In this example we test the hypothesis that better approxi-
mation of exponentials leads to more accurate reconstruction of
Diracs. Assume we sample a single Dirac with a linear spline
and we recover its location using approximation of exponen-
tials. In Fig. 5 we have shown that the linear spline can approx-
imate complex exponentials of lower frequencies better than
those with higher frequencies. We now generate four moments

using the constant least-squares coefficients that are asso-
ciated to the same exponentials for

of Fig. 5. Finally, we compare the estimation of the lo-
cation of the Dirac obtained from the moments associated to the
higher frequencies (HF) and to the estimation obtained

TABLE II
ACCURACY OF THE RECONSTRUCTION.

from the moments associated to the lower frequencies (LF)
and .
In Table II we show the root mean squared error of the es-

timation obtained from either pair of moments. The error is
averaged over 100 realisations each of which corresponds to
placing the Dirac at for . As
expected the approximation with lower frequency achieves a
better performance.

E. Alternative FRI Signals

We conclude the simulations by showing that it is possible to
adapt the approximate FRI framework to sample and reconstruct
alternative FRI signals. For example, sampling a piecewise con-
stant function with a kernel and calculating the first fi-
nite difference of the samples yields the
same measurements as sampling the derivative of the signal
with , where is a box function [2]. The
derivative of the signal is a train of Diracs. Consequently, we
may recover the signal by calculating for the linear com-
bination of shifted versions of to approximate exponentials
and then applying the annihilating filter method to the moments

.
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We illustrate the process in Fig. 11. Here, we sample a piece-
wise constant function with discontinuities using a
B-Spline kernel of order . The sampling period is

. In Fig. 11(a) we show the samples contami-
nated with additive white Gaussian noise and in Fig. 11(b) we
show their first order difference. Then, we generate
moments using the constant least-squares coefficients from ex-
ponential parameters with
and . The signal-to-noise ratio is 25 dB. Note
that the order of the spline is not sufficient to apply the retrieval
method based on reproduction of polynomials of [2]. On the
contrary, we can use the method based on approximation of ex-
ponentials as long as . The original and recon-
structed signal are shown in Fig. 11(c).

VII. CONCLUSIONS

In this paper we have considered the FRI reconstruction
problem in the presence of noise. We have first revisited
existing results in the noiseless setting, and the most effective
treatment of noise in the current literature. Then, we have
studied robust alternatives to the previous line of work.
More specifically, our contribution is twofold: We have de-

termined how to design optimal exponential reproducing ker-
nels, in the sense that they lead to the most stable signal recon-
struction. Moreover, we have departed from the ideal situation
in which we have full control of the sampling kernel and consid-
ered the case where we are given corrupted samples taken with
an arbitrary acquisition device. In this situation, we have de-
veloped a universal FRI reconstruction strategy that works with
any kernel. In contrast to the original FRI framework, which
tries to find the exact parameters of the input signal, we have
proposed an approximate recovery of the input based on the
approximate reproduction of exponentials. The advantage of our
new approach is that it can be applied to any sampling kernel
and provides more stable and precise reconstructions than those
obtained with specific classes of kernels used in the past.

APPENDIX A
GENERALISED STRANG-FIX CONDITIONS

An exponential reproducing kernel is any function that,
together with a linear combination of its shifted versions, can
generate exponential polynomials of the form [22], [28]
for and . The parameters are in
general complex. In this appendix we prove that exponential re-
producing kernels satisfy the generalised Strang-Fix conditions.
More specifically, a kernel is able to reproduce exponential
polynomials, i.e.,:

if and only if

for , and . Here,
represents the th order derivative of the double-sided Laplace
transform of .
The proof is obtained from the Strang-Fix conditions for

polynomial reproducing kernels, by considering the function

that clearly reproduces polynomials of the
form for . The Strang-Fix conditions [2], [31]
state that a kernel is able to reproduce polynomials, i.e.,:

if and only if

for and . Here, is the Fourier
transform of , and represents its th order deriva-
tive. Then, by taking into account that the Fourier transform
of is related to the Laplace transform of through

, the above equation turns into the
generalised Strang-Fix conditions for :

for , and . Now
represents the th order derivative of the double-sided Laplace
transform of . This proves that a kernel that reproduces
exponential polynomials satisfies the generalised Strang-Fix
conditions.
The converse is also true. Consider a kernel that satisfies

the generalised Strang-Fix conditions. Then, a kernel with
Fourier transform is guaranteed to satisfy
the Strang-Fix conditions and, consequently, reproduces poly-
nomials for . Finally, due to the relation of the
kernels in the Laplace domain it follows that
implying that reproduces exponential polynomials
for , and , which completes
the proof.

APPENDIX B
E-MOMS INCLUDE THE DIRICHLET AND SOS KERNELS

Let us consider the exponential reproducing kernel
of support and centred in zero, with

, where is an E-Spline.We restrict our analysis
to being even and we use exponential parameters

(29)

where . We next use the –periodic extension
of , that is , which is
equivalent to:

(30)

from the application of Poisson summation formula. The case
of being odd can be derived likewise, but by periodising over

. Also note that the Fourier transform of the shifted
kernel is equal to:

(31)

The set of equations

(32)
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are just like (19) and lead to design exponential reproducing
kernels of maximum order and minimum support (e-MOMS),
different from those of Section IV-B, but that still correspond to
a specific subfamily of the generalised exponential reproducing
kernels of [28].
In (30) the Fourier transform is evaluated at
. Taking into account (32), we know that

for . We also have that for any
other , because we can find a term in the product (31) equal to

, . Therefore, (30) can be reduced to:

(33)

Note that when the values for all , then (33) reduces
to one period of the Dirichlet kernel of period :

And this is precisely the –periodic extension of the
e-MOMS kernels of Section IV-B.
To end, we now consider one period of (33) and denote
, and . Then we get the time

domain definition of the SoS kernel [3]:

Here, the number of samples needs to be odd, since is even,
and the set of indices .
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