
ON THE EXPONENTIAL REPRODUCING KERNELS FOR SAMPLING SIGNALS WITH FINITE
RATE OF INNOVATION
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ABSTRACT

The theory of Finite Rate of Innovation (FRI) broadened the traditional
sampling paradigm to certain classes of parametric signals. In the pres-
ence of noise, the original procedures are not as stable, and a different
treatment is needed.

In this paper we review the ideal FRI sampling scheme and some
of the existing techniques to combat noise. We then present alternative
denoising methods for the case of exponential reproducing kernels. We
first vary existing subspace-based approaches. We also discuss how to
design exponential reproducing kernels that are most robust to noise.
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1. INTRODUCTION

Recently, Vetterli et al. demonstrated how certain classes of non-
bandlimited signals can be sampled and perfectly reconstructed using
the sinc and the Gaussian kernels [1]. These signals are completely
determined by a finite number of degrees of freedom and are called
signals with Finite Rate of Innovation (FRI). In [2], these results were
extended to the case of sampling kernels with compact support and,
in particular, to exponential reproducing kernels such as E-Splines [3].
In the presence of noise, however, these approaches become unstable.
In [4] and [5] improved alternatives to the original methods were pre-
sented, focused on a subspace perspective for signal retrieval.

This paper focuses on the use of exponential reproducing kernels in
the noisy scenario. Our contribution is twofold. First, we discuss varia-
tions of the algorithms considered in [5] when exponential reproducing
kernels are involved. Second, we present a methodology to design ex-
ponential reproducing kernels that are most robust against noise.

The outline of the paper is as follows. In Section 2 we review the
noiseless scenario of [2]. Then, in Section 3 we give an overview of
the denoising techniques of [5]. We also introduce our modified pro-
cedures. In Section 4 we connect the Sum of Sincs kernel of [6] with
the exponential reproducing kernels. Finally, in Section 5 we show
simulation results, to then conclude in Section 6.

2. SAMPLING SIGNALS WITH FRI

For the sake of clarity we consider that xptq is a stream of K Diracs
with amplitudes takuK�1

k�0 located at instants of time ttkuK�1
k�0 P r0, τ r

xptq �
K�1̧

k�0

akδpt� tkq. (1)
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We assume the sampling period is T � τ
N

. The measurements
obtained sampling with ϕ

�
� t
T

�
, for n � 0, 1, . . . , N � 1, are

yn �

〈
xptq, ϕ

�
t

T
� n


〉
�
K�1̧

k�0

akϕ

�
tk
T
� n



. (2)

In [1, 2] it was shown that, with a proper choice of the acquisition
kernel, a perfect reconstruction of xptq from the samples yn is possible.
In this paper we concentrate on a specific class of kernels, used in [2],
that are able to reproduce exponentials. An exponential reproducing
kernel is any function ϕptq that satisfies¸

nPZ
cm,nϕpt� nq � eαmt with αm P C, (3)

for a proper choice of coefficients cm,n. The coefficients cm,n in the
above equation are given by

cm,n �

» 8
�8

eαmtϕ̃ pt� nq dt, (4)

where ϕ̃ptq is chosen to form with ϕptq a quasi-biorthonormal set [2].
Note that the coefficients cm,n are discrete-time exponentials. This can
be shown by making a change of variable in equation (4), which yields:

cm,n �

» 8
�8

eαmxeαmnϕ̃pxqdx � eαmncm,0. (5)

Exponential splines (E-Splines) [3] are central to the exponential re-
production property. The Fourier transform of the P -th order E-Spline
is:

β̂~αP pωq �
P¹

m�0

�
1� eαm�jω

jω � αm



. (6)

The above function is able to reproduce the exponentials eαmt, m �
0, 1, . . . , P . Moreover, since the exponential reproduction formula is
preserved through convolution [3], any composite function of the form
γptq
 β~αP ptq is also able to reproduce exponentials.

In the reconstruction scheme of [2] the samples yn are first com-
bined linearly with the coefficients cm,n to obtain the new measure-
ments

sm �
N�1̧

n�0

cm,nyn � âku
m
k (7)

for m � 0, . . . , P , and where âk � ake
α0

tk
T and uk � eλ

tk
T . Here

we have used the fact that the original signal is a stream of Diracs, we
have combined equations (2) and (4), and used αm � α0 �mλ. The
values sm represent the exact exponential moments of the continuous-
time signal xptq.



Then, the new pairs of unknowns tâk, ukuK�1
k�0 can be retrieved

from the power series in (7) using the classical Prony’s method. The
key ingredient of this method is the annihilating filter. Call thiuKi�0 the
filter with z-transform ĥpzq �

°K
i�0 hiz

�i �
±K�1
k�0 p1 � ukz

�1q.
That is, the roots of ĥpzq correspond to the locations uk. It clearly
follows that hm
sm � 0 [2]. The filter hm is thus called annihilating
filter since it annihilates the observed series sm. Moreover, the zeros
of this filter uniquely define the set of locations uk since the locations
are distinct. The last identity can be written in matrix-vector form as
follows:

Sh � 0 (8)

which reveals that the Toeplitz matrix S is rank deficient. By solving
the above system, we find the filter coefficients hm and then retrieve
the uk’s by computing the roots of ĥpzq. Given the uk’s we can find the
locations tk. Finally, we obtain the weights ak by solving, for instance,
the first K consecutive equations in (7). Notice that the problem can
be solved only when P ¥ 2K � 1.

We thus conclude that perfect reconstruction of a stream of K
Diracs is possible with any kernel able to reproduce exponentials,
namely, with any kernel ϕptq of the form ϕptq � γptq
 β~αP ptq.

3. SAMPLING AND RECONSTRUCTION IN THE
PRESENCE OF NOISE

When noise is present in the acquisition process we do not have access
to the ideal measurements. In contrast, we get the following set of
samples:

ŷn � yn � εn. (9)

The natural question we want to address is what is the best method
to handle the noise effectively. As we explain in the following sub-
sections, one way to control how noise affects the measurements is by
studying the rank deficiency property of S, shown by equation (8). An
alternative to this involves designing a specific kernel in the family of
exponential reproducing functions that is more resilient to noise. For
both approaches we assume for simplicity that εn is a set of i.i.d. addi-
tive Gaussian measurements, with zero mean and variance σ2.

3.1. Denoising: A subspace approach

Before discussing in detail other alternatives, we review briefly the de-
noising strategy that has been used successfully in [5].

First of all, because of noise, equation (8) is not satisfied any more.
The reason is that, now, matrix S is perturbed and it becomes:

Ŝ � S�B. (10)

However, it is reasonable to look for a solution that minimises
}Ŝh}2 under the constrain that }h}2 � 1. This is a classical total-
least-square (TLS) problem that can be solved using Singular Value
Decomposition (SVD).

The algorithm may be further improved by denoising Ŝ before ap-
plying TLS. This is done by using the Cadzow iterative algorithm [7].
Cadzow algorithm is based on the fact that, in the absence of any per-
turbation, the matrix S is Toeplitz and rank deficient (i.e., it has rank
K). When noise is present Ŝ becomes full rank. So, in the first step of
the Cadzow iteration an SVD of Ŝ is performed leading to Ŝ � UΛV,
where Λ is a diagonal matrix. Then, only the firstK diagonal elements
of Λ are kept and Ŝ is reconstructed. The new matrix Ŝ is now rank de-
ficient by construction, but is not Toeplitz anymore. This condition is
then imposed by averaging the diagonal elements of Ŝ. The procedure
is then iterated.

3.2. Modified Total Least Squares and Cadzow algorithm

The minimisation problem described so far was derived assuming that
the perturbation in Ŝ is due to additive white Gaussian noise. This is
indeed the case in [5], because the properties of the noise added to the
samples are preserved when their discrete Fourier transform is com-
puted. This causes that matrix B in (10) to have a covariance matrix
multiple of the identity matrix.

However, for exponential reproducing kernels, this assumption does
not hold any more. More specifically, when the samples are corrupted
by noise, equation (7) becomes

ŝm �
N�1̧

n�0

cm,nŷn � sm �
N�1̧

n�0

cm,nεn m � 0, . . . , P. (11)

We can rewrite the above equation as follows:

ŝ � s� ê � Cy �Ce (12)

where C is the pP � 1q �N matrix with the exponential reproducing
coefficient cm,n at location pm,nq, and s is a vector of length P � 1.

As a consequence, the entries of the noise matrix B in (10), formed
from the filtered noise ê, no longer have the same variance. In order
for SVD to provide a reliable separation of the signal and noise sub-
spaces it is necessary to “pre-whiten” the noise. This is a well known
approach proposed by various authors in the spectral estimation com-
munity (for instance by De Moor in [8]). It was also successfully used
in the context of FRI in [4].

The key idea is that we need to know the covariance matrix of the
noise B up to a constant factor λ [8]. In this situation, and assuming
R � λB�B is positive definite, we can factor it as R � QTQ (using
Cholesky decomposition). Then, we can still recover the appropriate
subspaces by considering the SVD of Ŝ1 � ŜQ�1. It is easy to see that
the entries of the weighted noisy matrix Ŝ1 have now the same variance,
which is the reason why the subspace division is again successful. This
is not the only way to make the noise white (see for example [4]). In
any case, once we modify the singular values of Ŝ1 to denoise the ma-
trix, we need to revert the effect, reconstructing S̃ � Ŝ1Q. The explicit
use of Q�1 may result in inaccurate data calculations [8]. This can be
avoided by using the quotient singular value decomposition (QSVD)
of the pair pŜ,Qq.

To conclude, note that the modified TLS approach can be combined
with a further enhancement, in a similar fashion as explained in the
previous section. It is possible to do an SVD on Ŝ1, find the low rank
approximation Ŝ1LR by keeping the K largest singular values, and then
compute the closest Toeplitz matrix to Ŝ1LRQ. The process can then be
iterated. We will call this the modified Cadzow procedure.

3.3. Modified E-Splines

As we mentioned before, it would be desirable for the noise term ê of
(12) to be i.i.d. This is equivalent to saying that we want Rê,ê � σ2I,
and this can be achieved by making the rows of C orthonormal. The
issue then is to find the exponential reproducing kernels that lead to the
desired C. Recall from (5) that for any m � 0, 1, . . . , P , we have that

cm,n � eαmncm,0, n � 0, 1, . . . , N � 1. (13)

Thus, orthogonality of the rows of C is achieved by choosing αm �
j 2πm
N

. The norm of each row is then equal to |cm,0| and, by using (5),
we have that

|cm,0| �

����
» 8
�8

ϕ̃ ptq ej
2πm
N

tdt

���� �
���� ˆ̃ϕ
�
2πm

N


���� , (14)



for m � 0, 1, . . . , P , where ˆ̃ϕpωq is the Fourier transform of the dual
of ϕptq. Therefore, orthonormality is achieved when���� ˆ̃ϕ

�
2πm

N


���� � 1, m � 0, 1, . . . , P. (15)

Since any exponential reproducing kernel ϕptq can be written as
ϕptq � γptq 
 β~αP ptq, we have that ϕ̂pωq � γ̂pωqβ̂~αP pωq. For the
particular case that we are considering, the Fourier transform of β~αP ptq
is given by

β̂~αP pωq �
P¹

m�0

e�j
ω�ωm

2 sinc
�ω � ωm

2

	
, (16)

where the E-Spline parameters satisfy αm � jωm � j 2πm
N

. More-
over, it is well known (e.g. [9]) that the Fourier transforms of ϕptq and
of its dual ϕ̃ptq are related as follows:

ˆ̃ϕpωq �
ϕ̂pωq°

kPZ |ϕ̂pω � 2πkq|2
, (17)

which reveals that
ˆ̃ϕpωmq �

ϕ̂pωmq

|ϕ̂pωmq|2
. (18)

Here we have used the fact that β̂~αP pωm � 2πkq � 0 for k P Z and
k � 0 (see equation (16)). We thus conclude that it is possible to solve
the original problem in (15) by just imposing

|ϕ̂pωmq| � |γ̂pωmqβ̂~αP pωmq| � 1

ô |γ̂pωmq| � |β̂~αP pωmq|
�1. (19)

Among all the admissible kernels satisfying (19), we are interested
in the kernel with the shortest support. We therefore consider the ker-
nels given by a linear combination of various derivatives of the original
E-Spline β~αP ptq, i.e.:

ϕptq �
P�1̧

i�0

diβ
piq
~αP
ptq, (20)

where βpiq~αP ptq is the ith derivative of β~αP ptq, β
p0q
~αP
ptq � β~αP ptq, and

di is a set of coefficients. This is like saying that γptq is a distribu-
tion. These kernels are clearly still able to reproduce the exponentials
and are a variation of the maximal-order minimal-support kernels in-
troduced in [10, 11]. The advantage of this formulation is twofold:
first the modified kernel ϕptq is of minimum support P � 1, the same
as that of β~αP ptq; second we only need to find the coefficients di to
satisfy (19).

Using the Fourier transform of (20), which is given by:

ϕ̂pωq � β̂~αP pωq
P�1̧

i�0

dipjωq
i, (21)

we realise that we can satisfy (19) by choosing the coefficients di so
that the resulting polynomial γ̂pωq �

°
i dipjωq

i interpolates the set
of points (ωm, |β̂~αP pωmq|

�1q for m � 0, 1, . . . , P .
One last consideration is in order here. When jωm � j 2πm

N
, m �

0, 1, . . . , P , the resulting E-Spline and modified kernels are complex-
valued functions. This can be avoided by choosing

jωm �

#
j 2π
N
p2m� P q when P is odd

j 2π
N

2m�P
2

, when P is even
(22)

for m � 0, 1, . . . , P . The conditions derived throughout the section
are still valid for the new choices of parameters αm. To conclude, in
Figure 1 we present some of the kernels obtained by the above proce-
dure.

−1 −0.5 0 0.5 1 1.5 2 2.5 3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(a) P � 1

−1 0 1 2 3 4 5

0

0.05

0.1

0.15

(b) P � 3

0 5 10 15

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(c) P � 13

0 2 4 6 8 10 12 14 16

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(d) P � 15

Fig. 1. Examples of modified E-Splines. These are four of the eight
possible functions with P odd, support P � 1 (indicated -o-) and N �
32 samples. The first one is identical to the original E-Spline of order
P � 1. The last one is exactly half period of the Dirichlet kernel of
period 2pP � 1q � N .

4. THE SOS: A MODIFIED E-SPLINE

Following the E-Spline modification presented in the previous section,
we are now going to show that the family of Sum of Sincs (SoS) kernels
introduced in [6] is a particular instance of exponential reproducing
kernels. We restrict our analysis to P being even and the number of
samples equal to N � P � 1. A similar development applies when P
is odd.

Let us consider the kernel ϕ1ptq � ϕ
�
t� P�1

2

�
, centred in zero,

with ϕptq � γptq 
 β~αP ptq, where β~αP ptq is defined to have Fourier
transform (16). We relax condition (19) and now we allow

|ϕ̂pωmq| � |γ̂pωmqβ̂~αP pωmq| � bm. (23)

The next step is to use the periodic extension of ϕ1ptq, which can
be written as follows:

bptq �
¸
lPZ
ϕ1pt� lNq �

1

P � 1

¸
kPZ

ϕ̂1
�

2πk

P � 1



e

2πk
P�1

t, (24)

where the last term follows from the application of Poisson summation
formula, and N � P � 1.

Now, note that the Fourier transform of the shifted kernel can be
written using (16) as:

ϕ̂1pωq � γpωq
P¹

m�0

sinc
�ω � ωm

2

	
. (25)

In (24) the Fourier transform ϕ̂1pωq is evaluated at ωk � 2πk
P�1

.
If we use (22) for P even then we have ωk � ωm for K � tk :
k � 2m�P

2
,m � 0, . . . , P u. We have designed the filter γpωq so

that (23) holds. As a consequence, whenever k P K, it follows that
ϕ̂1pωkq � bk. In contrast, for any k R K, we have that ϕ̂1pωkq � 0
because we can find a term in the product of (25) equal to sincp`πq
with ` P Z. Therefore, equation (24) can be reduced to:

bptq �
1

P � 1

P
2̧

k��P
2

bke
2πk
P�1

t. (26)



If, now, we consider just one period of (26) and we use t � x
T

, we get
precisely the time domain definition of the SoS kernel:

b
� x
T

	
� gpxq � rect

�x
τ

	 1

N

¸
kPK

bke
2πk
τ
x. (27)

To conclude, note that when the values bk � 1,@k, then equation
(26) reduces to the Dirichlet kernel of period N � P � 1. This is
an example of the modified E-Spline kernels with orthonormal rows of
coefficients, and is therefore the SoS kernel most robust against noise.

5. SIMULATIONS

We have implemented the denoising approaches explained in Section
3 to test the retrieval of K � 2 Diracs. The samples provided by an
exponential reproducing kernel are corrupted by additive white Gaus-
sian noise (AWGN). We have added the noisy samples to the ideal
measurements, calculating the variance of the noise according to the
desired signal-to-noise ratio (SNR) we wanted to test.

For the original E-Spline, we have used αm � j 2π
50
p2m � P q,

and for the modified E-Spline αm � j 2π
N
p2m � P q, where N � 32,

and m � 0, . . . , P . The kernels are, thus, real. We use the original
and modified Cadzow algorithms for the E-Spline, and Cadzow for the
modified E-Spline, iterating the routine 30 times.

The results, shown in Figure 2, are the average of 10000 realisa-
tions. They reveal, as expected, that the modified E-Spline kernels have
a better performance than the original E-Splines, and this improves as
the order P increases. On the other hand, the modified Cadzow al-
gorithm, for low and intermediate orders, performs almost the same
as the original subspace method. For the highest order (P � 13) it
beats the best performance of the original algorithm, even though more
marginally than the modified kernels.
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Fig. 2. Retrieval of K � 2 Diracs in the presence of noise. The
continuous line, dashed line and dash-dotted line are the performances
of the original E-Spline kernel with Cadzow algorithm (C), with the
new Cadzow (MC) and of the modified E-Spline (ME) respectively.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have reviewed the exponential reproducing kernels
used to sample signals with Finite Rate of Innovation (FRI). We have
also considered the noisy scenario for the same type of kernels. Our
contribution is that we have adapted the denoising methods of [5] to
the case of exponential reproducing kernels. In addition, we have pre-
sented a methodology to design exponential reproducing kernels that
are the most resilient to noise. We have also connected the family of
Sum of Sincs (SoS) kernels presented in [6] with that of exponential
reproducing kernels.

Future work will consider the subspace perspective of the denois-
ing algorithms presented in this paper more in depth. There exist al-
ternatives to the Total Least Squares solution and Cadzow’s iterative
algorithm, as well as other approaches, which are relevant for further
development.

7. REFERENCES

[1] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with fi-
nite rate of innovation,” IEEE Transactions on Signal Processing,
vol. 50, pp. 1417–1428, 2002.

[2] P. L. Dragotti, M. Vetterli, and T. Blu, “Sampling Moments
and Reconstructing Signals of Finite Rate of Innovation: Shan-
non Meets Strang-Fix,” IEEE Transactions on Signal Processing,
vol. 55, no. 5, pp. 1741–1757, 2007.

[3] M. Unser and T. Blu, “Cardinal Exponential Splines: Part I—
Theory and Filtering Algorithms,” IEEE Transactions on Signal
Processing, vol. 53, pp. 1425–1438, April 2005.

[4] I. Maravic and M. Vetterli, “Sampling and reconstruction of sig-
nals with finite rate of innovation in the presence of noise,”
IEEE Transactions on Signal Processing, vol. 53, pp. 2788–2805,
2005.

[5] T. Blu, P.-L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot,
“Sparse Sampling of Signal Innovations,” IEEE Signal Process-
ing Magazine, vol. 25, no. 2, pp. 31–40, 2008.

[6] R. Tur and Y. C. Eldar, “Low Rate Sampling of Pulse Streams
with Application to Ultrasound Imaging,” Submitted to IEEE
Transactions on Signal Processing, 2010.

[7] J. A. Cadzow, “Signal Enhancement – A Composite Property
Mapping Algorithm,” Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 36, pp. 49–62, January 1988.

[8] B. De Moor, “The Singular Value Decomposition and Long and
Short Spaces of Noisy Matrices,” Signal Processing, IEEE Trans-
actions on, vol. 41, pp. 2826–2838, September 1993.

[9] M. Unser, “Sampling-50 years after Shannon,” in Proceedings of
the IEEE, pp. 569–587, 2000.

[10] T. Blu, P. Thevenaz, and M. Unser, “MOMS: maximal-order in-
terpolation of minimal support,” Image Processing, IEEE Trans-
actions on, vol. 10, pp. 1069–1080, July 2001.

[11] A. Ron, “Factorization theorems for univariate splines on regular
grids,” Israel J. Math, vol. 70, no. 1, pp. 48–68, 1990.


