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ABSTRACT

The most essential ingredient of interpolation is its basis function.
We have shown in previous papers that this basis need not be nec-
essarily interpolating to achieve good results. On the contrary, sev-
eral recent studies have confirmed that non-interpolatingbases,
such as B-splines and O-moms, perform best. This opens up a
much wider choice of basis functions. In this paper, we give to the
designer the tools that will allow him to characterize this enlarged
space of functions. In particular, he will be able to specify up-front
the four most important parameters for image processing: degree,
support, regularity, and order. The theorems presented here will
then allow him to refine his design by dealing with additional co-
efficients that can be selected freely, without interfering with the
main design parameters.

1. INTRODUCTION

Interpolation is a standard operation in image processing. It is
usually described by the following equation:

fh(x) =
X
k2Z

fk 'int(x=h� k)

where fh is a continuous function reconstructed from discrete sam-
ples fk = f(h k), where h is the sampling step, and where 'int is
the interpolation function. If quality is a key issue—better than
commonplace linear interpolation—then the selection of an ap-
propriate 'int becomes very important. For practical reasons, this
function is often selected to be a piecewise polynomial of moder-
ate degree and support, with uniform knots.

Over the years, a large body of work has been devoted to the
design of interpolators that tend to be sinc-like while offering more
practical benefits, in particular a finite support. Beside the require-
ment that 'int be interpolating (i.e., 'int(k) = Æk), the aspects that
have been emphasized are: 1) its maximal degree N ; 2) the width
W of its support; 3) its regularity 'int 2 CR; and to some extent
4) its order of approximation L. This search for adequate inter-
polators is still active today; recent contributions include those of
Schaum [1], Appledorn [2], German [3], Dodgson [4], or Meijer-
ing [5]. Unfortunately, it appears that the improvements of each
new proposal have been less and less substantial. Recently, we
showed that one reason for this saturation of design is that the in-
terpolation constraint is too strong; only by relaxing it altogether
were we able to achieve significant gains in performance [6]. The
corresponding generalized interpolation model is

fh(x) =
X
k2Z

ck '(x=h� k)

where the function ' is not necessarily interpolating anymore, and
where the coefficients ck are determined from the samples fk such
that fh fits the sample values exactly: fk = f(h k) = fh(h k).

The traditional design of functions 'int imposes the interpola-
tion constraint from the start on, and thereafter builds on it. Here
instead, we propose to let the designer proceed by first imposing
the four other characteristics: degree N , support W , regularity R,
and order L. The main contribution of this paper is to be able to
express in a finite-dimension vector space the completeclass of
piecewise polynomials that satisfy these four characteristics. The
designer may then freely select among them, or may perhaps throw
in additional constraints for good measure, like the symmetry and
interpolation constraint if he so chooses.

Degree—The maximal degree of a piecewise polynomial is,
in some sense, an index of the complexity of what can be achieved
with the polynomial. In particular, a raise in the degree N results
in more parameters—in this case, coefficients—to play with.

To formulate our results, we shall extend the range of possible
N to negative values in the following way: the Dirac distribution
Æ is considered a piecewise polynomial of degree �1 while its n-
th derivative Æ(n) is a piecewise polynomial of degree (�n � 1).
Derivatives have to be understood in the sense of distributions.

Support—Without loss of generality, we consider that the sup-
port of ' or 'int is [0;W ]. The corresponding interpolation con-
straint becomes 'int(W=2 + k) = Æk. Outside this interval, we
have that ' = 'int = 0. The value of W is the most critical pa-
rameter to determine the computational cost of interpolation. In
p dimensions, this cost grows like W p. Distributions may have a
support concentrated on the origin, with W = 0.

Regularity—In the traditional design of interpolators, regu-
larity has often been maximized so as to give the designer a crite-
rion to help him reject solutions, by want of better design criteria.
In the context of image processing, less-than-maximal regularity
is often sufficient, because only the image and its gradient need be
continuously defined. Reclaiming degrees of freedom by reduc-
ing the requirement on the regularity of ' from Rmax to R can be
put to good use towards a better design. To formulate our results,
we shall extend to negative values the range to which R belongs:
a function u is said to be of regularity at least C�1 provided it
is bounded; a Dirac distribution Æ is said to be of regularity C�2

while its n-th derivative Æ(n) is of regularity C�2�n.
Order—One aspect often overlooked in the traditional design

of a function ' is its order of approximation L, which is an es-
sential index of its intrinsic quality [7]. It is defined by the rate
of decrease of the error between the original function f and the
reconstructed fh when the sampling step h vanishes

kf� fhk / h
L as h! 0



From approximation theory, we know that the order L can be de-
termined from ' or 'int only, no matter what the sampled function
f may be [8]. The order of approximation is particularly relevant to
image processing because the frequency content of most images is
essentially low-pass, which is equivalent to say that the sampling
step h is small relatively to the image content. Thus, the continu-
ous image fh reconstructed from the samples fk will be closer to
the original f when the approximation order L associated to ' is
high than when it is low. The importance of the order has been
confirmed by all our experiments [6].

2. DEFINITIONS

Let ' be a uniform piecewise polynomial distribution of unit in-
tegral characterized by a maximal degree N , a maximal support
W � 0, a minimal regularity R, and a minimal approximation or-
der L � 0. The distribution ' is a true function when R � �1
and N � 0. With some notational abuse, we write

' 2 fN;W;R;Lg

Let (x)n+ be the causal n-th power function defined by

(x)n+ =

�
1
2 (1 + sign(x)) n = 0
(max(0; x))n n 6= 0

Let �n(x) be the causal B-spline of degree n

�
n(x) =

1

n!

n+1X
k=0

(�1)k
�
n+ 1
k

�
(x� k)n+

Let nk (x) be a family of functions defined for k 2 [1; n] by


n
k (x) =

1

�k;n�k+1

 
(x)n�k+

(n� k)!

�
1

n!

n�kX
l=0

�k;l

k+lX
m=0

(�1)m
�
k + l
m

�
(x�m)n+

!

where the coefficients �k;l are defined by the Mac-Laurin devel-
opment of the function ( 1

z
log 1

1�z
)k =

P
l2N

�k;l z
l.

3. DECOMPOSITION THEOREMS

We first state a theorem that links the four most important design
parameters of the function 'which is expressed as the convolution
of two components, the first one carrying the full approximation
order and the second one carrying no order at all.

Theorem 1 Let' 2 fN;W;R;Lg be a uniform piecewise poly-
nomial function withL � 1. Then, there exists a distribution
u 2 fN � L;W � L;R � L; 0g such that

'(x) =
�
�
L�1

� u
�
(x)

Since the support of u has to be non-negative, a direct conse-
quence of Theorem 1 is that the conditionL �W must be satisfied
for ' to exist. In addition, since since

R
u(x) dx = 1, then u must

also satisfy N � L � �1.
The most important contribution of this paper is to develop an

explicit form for the distribution u which is made of two additive
terms: the first one consists in a true function, while the second
one carries the distributional aspect of u.

Theorem 2 Let u 2 fn;w; r; 0g be a uniform piecewise poly-
nomial distribution. Then, there exists a unique function 2

fn;w; �; 0g and a unique set of coefficientsdk;l such that

u(x) =  (x) +

�r�2X
k=0

wX
l=0

dk;l Æ
(k)(x� l)

where� = max(�1; r)

Note that the distribution u�  may exist whenever r � �2;
otherwise, u is itself a true function and we have that u =  .

Theorem 3 Let 2 fn;w; �; 0g be a bounded uniform piecewise
polynomial function with� � �1. Then, there exists a unique set
of coefficientsfbk;l; gk;lg such that

 (x) =

n���1X
k=0

w�n+k�1X
l=0

bk;l �
n�k(x� l)

+

n���1X
k=1

n�kX
l=0

gk;l (
n�l
k � �

l�1)(x)

Conversely, whenn � w, any arbitrary choice of unit-sum coef-
ficientsfbk;l; gk;lg results in 2 fn;w; �; 0g. However, when
n � w + 1, we have in general that 2 fn; n; �; 0g, and the co-
efficientsfbk;l; gk;lg must satisfy additional constraints to ensure
that 2 fn;w; �; 0g.

After examination of the limits of summation in Theorem 3,
we conclude that the condition � � n� 1 must hold true to avoid
 = 0. Since the function ' of Theorem 1 is at least of order 0,
we deduce from Theorem 3 that the condition R � N � 1 must
be satisfied for ' to exist. In addition, we deduce from Theorem 3
that every function  of the largest possible regularity � = n � 1
is a linear sum of shifted B-splines of degree n.

We now combine into a single result the conclusions of Theo-
rems 1, 2, and 3. The proof of these theorems will be presented in
a forthcoming paper.

Theorem 4 The function' 2 fN;W;R;Lg withL � W ,�1 �
N�L, andR � N�1, is uniquely defined by a set of coefficients
fdk;l; gk;l; bk;lg such that

'(x) =

N�R�1X
k=0

W�N+k�1X
l=0

bk;l �
N�k(x� l)

+

N�R�1X
k=1

N�L�kX
l=0

gk;l (
N�L�l
k � �

L+l�1)(x)

1 =

N�R�1X
k=0

W�N+k�1X
l=0

bk;l +

N�R�1X
k=1

N�L�kX
l=0

gk;l

for R � L� 1, and

'(x) =

N�LX
k=0

W�N+k�1X
l=0

bk;l �
N�k(x� l)

+

N�LX
k=1

N�L�kX
l=0

gk;l (
N�L�l
k � �L+l�1)(x)



Table 1. Partition of the degrees of freedom

R � L� 1

cardfbk;lg 1
2
(N � R) (2W � (N +R)� 1)

cardfgk;lg 1
2
(N � R� 1) (N +R� 2L+ 2)

cardfdk;lg 0

R � L� 2

cardfbk;lg 1
2
(N � L+ 1) (2W � (L+N))

cardfgk;lg 1
2
(N � L+ 1) (N � L)

cardfdk;lg (L� R� 1) (W � L+ 1)

+

L�R�2X
k=0

W�LX
l=0

dk;l
dk�L�1(x� l)

dxk

1 =

N�LX
k=0

W�N+k�1X
l=0

bk;l +

N�LX
k=1

N�L�kX
l=0

gk;l +

W�LX
l=0

d0;l

for R � L� 2.
Conversely, any choice of coefficientsfdk;l; gk;l; bk;lg satisfy-

ing the normalization constraints above results in' 2 fN;W;R;Lg
whenN � W .

3.1. Degrees of Freedom

When a degree larger than the support is desired, more constraints
than those mentioned in Theorem 4 must be satisfied by the design
coefficients fdk;l; gk;l; bk;lg. We note however that the existence
of a basis function ' that satisfies N � W +1 is often impossible
because desirable external constraints (e.g., symmetry, interpola-
tion) may be incompatible with the design parameters. To the best
of our knowledge, no ' that would satisfy N � W + 1 has ever
been found useful in the literature. For this reason, from now on
we concentrate on the case N �W .

Taking the normalization condition of the coefficients into ac-
count, there are (N�R) (W�L)+L�R�2 degrees of freedom,
irrespective of whether R � L � 1 or R � L � 2. Table 1 ex-
plains how to split them. Finally, for a function ' 2 fN;W;R;Lg
to exist in the case N �W , the design parameters must satisfy

L � W � 1 � N � L R � N � 1

0 � (N �R) (W � L) + L� R� 2

The attractiveness of this result is that the designer can address
at an early stage the aspects of the design that are the most im-
portant in the context of image processing—particularly, support
and order—while he can defer to later stages the fulfilling of less
important constraints. Of most relevance is that the coefficients
fdk;l; gk;l; bk;lg are essentially free (except when N � W + 1),
so that they do not interfere with the characteristics fN;W;R;Lg.

4. EXAMPLES

4.1. MOMS

Since u satisfies L � W , we see that no function ' has a smaller
support than that of �L�1 for the same order L (or, for that matter,

a larger order for the same support). However, there exist functions
other than B-splines with L = W ; those are called MOMS (Max-
imal Order Minimal Support) and all are members of the family

'(x) =

L�1X
m=0

am
dm

dxm
�
L�1(x)

where famg is a set of constants [7].
Members of this family include the symmetric and interpolat-

ing functions discussed by Schaum [1]. Let us apply the design
methodology proposed in this paper to rederive the Lagrange-like
quadratic Schaum interpolator 'S 2 f2; 3;�1; 3g. We first verify
that the existence conditions are satisfied, and determine that there
are two degrees of freedom. Since N � W , these two degrees of
freedom need not be further reduced. Since R � L� 2, we verify
from Table 1 that the degrees of freedom are carried exclusively by
the coefficients dk;l when L = N + 1. In the present case, these
coefficients are d1;0 and d2;0 (d0;0 = 1 because of the normal-
ization condition). The symmetry condition removes a first degree
of freedom by imposing that d1;0 = 0; the interpolation property
removes the last one and results in

'S(x) = �
2(x)�

1

8

d2

dx2
�
2(x)

Other members of the family of MOMS include the so-called
O-moms functions discussed by Blu [7]. Such functions share the
same parameters fN;W;R;Lg than those of Schaum, are sym-
metric too, but are not interpolating. For example, the actual de-
sign methodology implies that every symmetric ' 2 f2; 3;�1; 3g
is uniquely defined by the single free coefficient d2;0. By asking
that ' be interpolating, we already built 'S. Alternatively, by opti-
mizing some mathematically well-defined criterion that expresses
the intrinsic quality of ', we can also get the optimal function

'O(x) = �
2(x) +

1

60

d2

dx2
�
2(x)

Last but not least, the B-splines themselves are members of
the family of MOMS. In addition to having the best order of ap-
proximation for a given support (L = W ), they are also the most
regular functions for a given degree (R = N � 1). Moreover, they
exhibit the lowest possible degree for a given order (N = L� 1).
Like the O-moms functions, they are not interpolating. We gain
two orders of regularity over 'S or 'O by imposing d2;0 = 0 in
the derivation above, or, equivalently, by setting u = Æ in Theo-
rem 1, which results in 'B 2 f2; 3; 1; 3g.

4.2. Dodgson

As another simple design example, we now rederive the Dodgson
function 'D characterized by fN;W;R;Lg = f2; 3; 0; 2g which
is interpolating and symmetric [4]. We first verify that 'D satisfies
the existence conditions. Moreover, the design has exactly two
degrees of freedom sinceN �W . From their partition in the case
R � L � 2, and from the normalization condition, we conclude
that 1 = b0;0+d0;0+d0;1. The symmetry imposes d0;0 = d0;1 =
d0; the symmetry and interpolation imposes 'D(

1
2
) = 'D(

5
2
) = 0

and 'D(
3
2
) = 1. From �2( 3

2
) = 3

4
, �2( 1

2
) = �2( 5

2
) = 1

8
,

�1(� 1
2
) = 0, and �1( 1

2
) = �1( 3

2
) = 1

2
, we get that8<

:
'D(x) = b0;0 �

2(x) + d0 (�
1(x) + �1(x� 1))

'D(
1
2
) = 1

8
b0;0 + d0(

1
2
+ 0) = 0

'D(
3
2
) = 3

4
b0;0 + d0(

1
2
+ 1

2
) = 1



which results in b0;0 = 2 and d0 = �
1
2

. We finally get that

'D(x) = 2�2(x)�
1

2
(�1(x) + �

1(x� 1))

The important message of this derivation is that the crucial de-
sign parameters fN;W;Rg, and especially fLg, have been spec-
ified up-front. We could have assigned random numbers to fb0;0;
d0;0; d0;1g and we would still have satisfied the design parameters
(up to the normalization condition

R
'(x) dx = 1).

5. EXPERIMENTS

Comparing the design parameters of 'S 2 f2; 3;�1; 3g to those
of 'D 2 f2; 3; 0; 2g, we see that the approximation order of the
former has been traded for the regularity of the latter, the other
design parameters (i.e., degree, support, symmetry, and interpola-
tion constraint) having been kept constant. Comparing the design
parameters of 'O 2 f2; 3;�1; 3g to those of 'B 2 f2; 3; 1; 3g,
we see that only their regularity differs, the other design parame-
ters (i.e., degree, support, symmetry, and non-interpolating basis)
having been kept constant.

We now perform a compound-rotation experiment in which
we rotate the standard Lena image in 18 incremental steps of 20Æ

each, which tends to amplify the imperfections of the interpolators
so that they become clearly perceptible. The top-left and bottom-
left of Figure 1 shows the result of this process for the O-moms
and for the Schaum quadratic interpolator which are both char-
acterized by f2; 3;�1; 3g, respectively, while the bottom-right of
Figure 1 corresponds to the more regular Dodgson interpolator of
same support and degree characterized by f2; 3; 0; 2g. Even more
regularity applies to the B-spline characterized by f2; 3; 1; 3g and
shown at top-right.

After a full 360Æ turn, the difference between the original Lena
and the one obtained from the compounded rotation can be ex-
pressed as a signal-to-noise ratio in dB; we get SNRO = 20:32,
SNRB = 20:15, SNRS = 19:13, and SNRD = 16:98, which tends
to show that the order of approximation L is more important than
the regularity R in the context of image processing. This claim is
supported from the visual inspection of Figure 1.

6. CONCLUSION

The main contribution of this paper is a unique and complete rep-
resentation of the functions ' or 'int of given degree, support, reg-
ularity, and approximation order, in terms of essentially free coeffi-
cients. This result can be used as a tool which allows the designer
to specify—from the onset—an arbitrary degree N , an arbitrary
support size W , an arbitrary regularity R, and an arbitrary order
L. The remaining degrees of freedom are decoupled from these
four design parameters and can be tuned to specific applications.
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