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1. ABSTRACT

Signal and image representations that are steerable are essen-
tial to capture efficiently directional features. However, those
that are successful at achieving directional selectivity usually
use too many subbands, resulting in low computational effi-
ciency. In this paper, we propose a two-dimensional nonlinear
transform that uses only two subbands to achieve rotation in-
variance property, and enjoys a mirror reconstruction making
it similar to a “tight frame”. The two-subband structure is
merged into a unique, concise, complex-valued subband that
approximates a Wirtinger gradient which is naturally steer-
able. Complete steerability, though, is achieved by utilizing
the Fourier-Argand representation, which provides a steerable
filter able to estimate the amplitude and direction of image
features, even in the presence of very high noise. We demon-
strate the efficiency of the representation by comparing how
it performs in wavelet-based denoising algorithms.

Index Terms— Complex wavelet, nonlinear transform,
rotation-invariance, steerable, Fourier-Argand representation.

2. INTRODUCTION

The discrete wavelet transform (DWT)[13, 5], as a popular
multi-resolution signal representation, has been intensively
applied in image processing, such as segmentation, tex-
ture classification[21], edges detection[1]and denoising[15].
However, separable wavelet transform performs less effi-
ciently on 2D image signals compared to its remarkable
success on 1D signals. One reason is that DWT regards
2D images as an extension of 1D signal and neglects the
underlying intrinsic geometric information.

To mitigate the limitation of wavelets in higher dimen-
sion data, multiscale decompositions that enjoy some form of
steerability have been proposed. For example, ridgelet[4],
curvelet[19], contourlet[7], directionlet[22] and shearlet
[10, 12], etc. However, edges with different orientations
are isolated in different subbands, which inevitably uses
many filters to achieve multiple orientations. Besides, the
directional selectivity is limited, and the rotation sensitiv-
ity problem still exists: slight rotation in the input signal will
completely change the coefficient pattern. Simoncelli’s Steer-

able Pyramid[18] claims approximate rotational symmetry,
but uses many subbands and has high redundancy. DT-
CWT[16] use the complex filter to render it shift-invariant.
Its 2D version has six oriented subbands, which is makes it
possible to distinguish orientations by steps of 15 degrees.

Many methods also take nonlinear operation into con-
sideration. Lifting scheme[20, 6] enables a locally adaptive
wavelet transform. Based on this, [9] proposed an edge adap-
tive lifting structure. [8] use an interpolation-based direction-
adaptive DWT on directional lifting. There are also some
adaptive schemes proposed in recent years. [17] suitably ad-
just the transform based on spatial segmentation. ADR [11]
use a curve detector to adaptively deals with line and curve
information. These adaptive methods take the strength of
different transform. However, The idea behind it is a scheme
that uses spatial segmentation and selects proper transform
for different regions of the image rather than an adaptive
transform itself.

This paper contributes a novel nonlinear transform for 2D
signals. Contradict from previous ideas that expanding many
subbands to enhance the limited orientational selectivity, we
use nonlinearity to achieve direction selectivity. This indi-
cates that the transform is no longer a tight frame. However,
similar property remains and it still guarantees perfect recon-
struction. The proposed decomposition method has a concise
two subbands structure: one subband for lowpass and another
for anisotropic features, such as edges in images. Besides,
this method is rotation invariance. This property provides sta-
bility concerning rotation, which is a much more robust and
valuable property than the orientational selectivity.

3. METHOD

3.1. Overview

Throughout paper we denote by z = (z1, z2) ∈ C2 the two-
dimensional variable in the z-plane. Define H(z) and G(z) as
the z-transform of the two dimensional lowpass and highpass
filters, h and g, respectively. We write our filter banks as,{

H(z) = L(z)

G(z) = G1(z) + iG2(z)
(1)

Where L(z) is a traditional 2D wavelet lowpass filter. G(z)
is a complex highpass filter, whose real and imaginary parts



typically represent two orthogonal gradients. One of the parts,
such as G1(z), directly represents the edge information of the
image. This allows us to express meaningful edge informa-
tion of the natural image. Based on the description above, the
highpass filter should have the following form,

G1(z) = Re{D(z)e−iθ(x)}

G2(z) = Re{D(z)e−i(θ(x)−π
2
)}

D(z) = D1(z) + iD2(z)

(2)

Where θ(x) is a (non-rigorous) attempt to indicate that the
phase of the output of the filter D(z) is further modified lo-
cally (dependence on x). In the complex plane, together with
the ”phase change” term e−iθ, G(z) can be regarded as a local
“projection” of D(z) on two orthogonal directions: θ(x) and
θ(x)− π

2 . θ(x) various according to the position of the pixel
x ∈ R2 and represent a direction along the edge of the nature
image. D(z) is designed to be a Wirtinger gradient filter.

By designing the highpass complex filter D(z), we can
make the G(z) channel represent edge information. And by
assigning the value of θ(x) locally related to the content of
the natural image, we can create a rotation invariant subband.
As for a standard DWT decomposition, the multiresolution
2D filters are given by

Hl(z) = H(z2
l−1

)Hl−1(z) =
∏l−1

k=0H(z2
k

)

Gl(z) = G(z2
l−1

)Hl−1(z) = G(z2
l−1

)
∏l−2

k=0H(z2
k

)

l = 1, ..., N

(3)

Where l is the scale index. The signal is iteratively decom-
posed on the lowpass analysis channel, which gives a redun-
dant signal representation.

3.2. Design of D(z) and PR condition

To perfectly reconstruct a 2D signal with a synthesis filter-
bank that mirrors the analysis (tight-frame, so as to guarantee
the identity between errors in the transformed domain, and in
the image domain), the analysis filter bank needs to be de-
signed under the constraint that H(z) and G(z) are power
complementary. This perfect reconstruction condition is writ-
ten as follows,

H(z)H(z−1) +
2∑

i=1

Gi(z)Gi(z
−1) = C (4)

Where C is a constant. Rewrite Eq. 4 in matrix form, we can
define Pθ(z),M(z) ∈ R2x2 as below,[

G1(z
−1) G2(z

−1)
−G2(z) G1(z)

]
︸ ︷︷ ︸

[
G1(z) −G2(z

−1)
G2(z) G1(z

−1)

]
︸ ︷︷ ︸

Pθ(z
−1)T Pθ(z)

=

[
C −H(z−1)H(z) 0

0 C −H(z−1)H(z)

]
︸ ︷︷ ︸

M(z)

(5)

Decompose Pθ(z
−1), we then have Pθ(z

−1) = RθP (z−1),
where

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, P (z) =

[
D1(z) −D2(z

−1)
D2(z) D1(z

−1)

]
(6)

Since Rθ(z
−1)TRθ(z) = I , combine this with Eq. 5, we

have
M(z) = Pθ(z

−1)TPθ(z)

= P (z−1)T (Rθ(z
−1)TRθ(z))P (z)

= P (z−1)TP (z)

(7)

This indicate that filters only needs to meet following condi-
tion to satisfy Eq. 4,

H(z)H(z−1) +

2∑
i=1

Di(z)Di(z
−1) = C (8)

Observe that θ cancels out in this condition, so the value
can be set locally arbitrarily from pixel to pixel. Hence D(z)
can be designed independently of θ, in agreement with this
condition.

To design the D(z), we start our analysis from the 2D
separable wavelet. Let A(zi) and B(zi) be the lowpass and
highpass wavelet filter in one dimension separately. Define
U(xi) = A(zi)A(z−1

i ) and V (xi) = B(zi)B(z−1
i ), where

xi = zi + z−1
i . Then from the PR condition of A(zi), B(zi)

in 2D, we have

C =
∑

M,N∈{U,V }M(x1)N(x2)

= U(x1)U(x2) + V (x1)(U(x2) +
1

2
V (x2))

+ V (x2)(U(x1) +
1

2
V (x1))

(9)

Compare Eq.9 with Eq. 8, we can design lowpass filter as
H(z) = A(z1)A(z2), and design D(z) by Factorize follow-
ing equation,

D1(z)D1(z
−1) = V (x1)(U(x2) +

1

2
V (x2))

D2(z)D2(z
−1) = V (x2)(U(x1) +

1

2
V (x1))

(10)

Theoretically, A(zi) and B(zi) can be any type of wavelet,
such as Haar, Daubechies, Symlet, etc. Here we use the Haar
wavelet as an example. Writing D(z) in following form,

D1(z1, z2) = B(z1)Q(z2)

D2(z1, z2) = D1(z2, z1)
(11)

Where B(zi) = 1 − z−1
i is a highpass filter that acts as a

gradient. And Q(zi) = a + bz−1
i is a lowpass filter with two

variables to solve. D1 and D2 are gradients that perpendicular
to each other, together formulate the Wirtinger gradient (D =
∂f
∂z1

+ i ∂f
∂z2

) on the complex plane. After simplifications, we
find

(2 + x1)(2 + x2) + (2− x1)((a
2 + b2)+

2abx2) + (2− x2)((a
2 + b2) + 2abx1) = C

(12)



for arbitrary values of x1 and x2. The values of a, b, c that en-
sure this identity are given by a = 1+ 1√

2
, b = 1− 1√

2
, C =

16. This result means that taking any position of the image as
the origin of z-transform, we can assign an arbitrary value
of θ, and use D(z) as before to formulate G(z). Then, the
analysis and synthesis meet the conditions of perfect recon-
struction.

3.3. Design of θ(x) and orientation selection

For natural images with noise, the structure signal is usually
continuous, or at least continuous along one direction for the
edge part. Therefore, for 2D highpass subbands, locally de-
composing images along the edge direction can maximize the
distinction between signal and noise.

We parametrize the edge model in natural images as the
derivative of an elongated Gaussian function noted as h with
two shaping parameters a and b, where a ≪ b.

h(x, y) =
−2x

πa2b
exp (−x2

a2
− y2

b2
) (13)

We then utilize the Fourier-Argand representation [23] to rep-
resent this function in a steerable way. Eq.13 can then be
written as the sum of a series of basis functions Hk,

h(x, y) =
∑
k∈Z

hk(|x+ iy|)( x+ iy

|x+ iy| )
k =

∑
k∈Z

Hk(x+ iy) (14)

where hk is the Fourier series decomposition of h,

hk(r) =
1

2π

∫ 2π

0

h(r cos θ, r sin θ)e−ikθdθ (15)

Let the z-transform of the input image be F (z), the output
after the filter is then F l(z) = F (z)

∏l−1
k=0H(z2

k

) We then
define the max Fourier-Argand orientation in l level decom-
position of the input image f as

θ(x) = argmax
α∈[0,2π)

N∑
n=1

(Z−1{F l(z)} ∗Hk)e
−ina (16)

The angle θ is then a robust direction to indicate the local
edge orientation.

4. FRAMEWORK OF MC SURE-LET DENOISING

A noisy image is usually modeled as y = x + b, where x is
the clean image and b ∼ N (0, σ) is a Gaussian noise image
with statistically independent pixels of variance σ2. Several
levels of wavelet decomposition on the noisy image provide
subbands that can then be processed. We write the whole pro-
cess for one subband as

Fk(y) = g−1
k (Θk(gk(y))) (17)

where Θk is a thresholding function, e.g., Θk(w(x)) =

w(x) · (1− exp(−(w(x)
3σk

))8). where σk is the estimated noise
variance of the subband. After filtering, we use the inverse

(a)

(b)

Fig. 1: Visualization of the subbands of the proposed method,
with(a) and without(b) the Fourier-Argand orientation selec-
tion.

filter to get the response of the subband. The final denoising
result and its matrix form can be written as

F(y) =
∑
k

akFk(y) = Fa (18)

Where ak is the coefficient of the linear combination of sub-
bands. The expected error between the final result and the
clean image can be minimized by optimizing the coefficients
in a. The optimization target follows [3] is,

SURE =
1

N
||y − F(y)||2 − σ2 +

2σ2

N
divy{F(y)} (19)

Using the Monte-Carlo method[14] to estimate the diver-
gence term, we know that divy{F(y)} ≈ 1

ϵN ñT (F(y + ϵñ)−
F(y)). Where N is the number of pixels of the image. Since
F(y) = Fa, we have,

SURE ≈ 1

N
||yT y − 2aT FT y + aT FT Fa||2 − σ2

+
2σ2

ϵN2
ñT (F(y + ϵñ)− F(y))

(20)

This quadratic function can then minimized by calculating
∇aSURE = 0, leading to

a = (FT F)−1(FT y − σ2

ϵN
ñT (F(y + ϵñ)− F(y))) (21)

Note that this form does not require the wavelet transforma-
tion in F(y) to satisfy the linearity, so with the Monte-Carlo
technique, we can easily apply FA-CWT in the SURE-LET
framework.

5. ANALYSIS AND EXPERIMENTS

We visually plot the wavelet responses of the first level, shown
in Fig.1. The upper two figures (a) show the channel’s real
and imaginary parts using the proposed transform. The lower
two figures (b) are the real and imaginary parts after using the
Wirtinger gradient filter D(z).



Fig. 2: (a) Proposed method can retain more signals when
the same threshold is used. (b) Proposed method stays stable
with different rotation degrees, whereas conventional wavelet
oscillates.

5.1. Compactness property

From Fig.1, we can intuitively observe that signals can be
gathered on the real part of the subband more compactly
with fewer filters, while noises still evenly distributed in each
channel. Therefore, our filter can concentrate signals enery
in fewer pixels. We verify This property by using different
thresholds T for each subband of the clean image and use
PSNR to measure in what degree subbands decays. The
result is shown in Fig.2 (a).

5.2. Rotation invariance property

Rotation invariance is a property that is often overlooked.
A similar property is shift-invariance, in which people usu-
ally use cycle-spinning or dual-tree method to achieve this
property[2]. In contrast, the similar property but on rotation is
rarely investigated. Since we decompose highpass subbands
along edge direction, rotate image will only result in a rota-
tion of subbands, while illuminate stays still. (See Fig. 1(a)).

We test this property as follow: Get the subbands of the
rotated image wα(x) We then calculate the changes in signal
energy as Eα = ⟨wα(x),wα(x)⟩

1
N

∑
θ⟨wθ(x),wθ(x)⟩

− 1. Results in Fig.2(b)
show that the proposed method stays stable with various an-
gles, while wavelet results oscillates.

5.3. Comparison with other transforms

We compare our method, the Fourier-Argand Wavelet Trans-
form (FA-CWT), with other wavelet transforms, i.e., Undeci-
mated Discrete Wavelet Transform (UDWT), Dual-tree com-
plex wavelet transform (DTCWT)[16] and Non-subsampled
shearlet transform (NSST)[12]. Each transform uses the same
pipeline described as following: (1). Decompose noisy im-
age by the transform. (2). Threshold each subband by nσ,
where n is selected to optimize the performance. (3). Recon-
struct the image from the denoised subbands. The results are

Table 1: Comparison between different transforms. Our
method achieves competitive results (in PSNR/dB) with the
use of fewer subbands. R and C means the subbands are real
or complex type.

Methods (Number of subbands)

data σ / PSNR
UDWT
(12 R)

DTCWT
(24 C)

NSST
(40 R)

FA-CWT
(4 C)

boat

25 / 20.32 28.25 27.22 27.59 28.31
50 / 14.62 23.9 24.02 24.87 25.33
75 / 11.75 21.41 22.03 22.76 23.34

100 / 10.13 19.83 20.67 21.11 21.74
150 / 8.45 17.89 18.83 18.9 19.55

man

25 / 20.28 28.37 27.25 27.83 28.62
50 / 14.68 24.21 24.47 25.29 25.91
75 / 11.84 21.67 22.43 23.14 23.86

100 / 10.19 19.97 20.91 21.33 22.06
150 / 8.47 17.83 18.81 18.83 19.53

Table 2: Results using FA-CWT in SURE-LET (PSNR/dB)

Methods #bands σ
25 50 75 100 150

SURE-LET 12 R 20.26 14.63 11.80 10.16 8.46
18 R 29.23 24.64 21.96 20.20 18.05

SURE-LET
with FA-CWT

3 C 30.25 25.84 23.04 21.07 18.60
4 C 29.83 26.48 23.93 21.91 19.27

shown in Tab.1. We constrained each method to four levels
to make methods comparable. The proposed method repre-
sents the high-frequency information only by 4 complex sub-
bands, while others need 12/24/40 real or complex subbands.
Meanwhile, our method brings significant improvements, es-
pecially in high noise levels.

5.4. Application of FA-CWT for SURE-LET denoising

We use FA-CWT as the transform in the SURE-LET denois-
ing framework; i.e., we use Stein’s Unbiased Risk Estimate
(SURE) as the criterion to estimate the optimal coefficients of
the denoising process. Since FA-CWT is a non-linear trans-
form, we have to rely on the Monte-Carlo method to estimate
the SURE. We compare results on lena with and without FA-
CWT. The results in Fig.2 show that replacing the wavelet
transform with FA-CWT improves the denoising performance
significantly, while requiring much fewer subbands.

6. CONCLUSION

This paper proposed a steerable wavelet transform that can
adaptively decompose images based on edge features. The
method achieves rotation-invariance properties in a more con-
cise way. We apply it to denoising to show its efficiency. In
the future, we will explore it in other image processing tasks,
such as image super-resolution, deconvolution, edge enhance-
ment.
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