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ABSTRACT
We address the problem of denoising images corrupted by
multiplicative noise. The noise is assumed to follow a Gamma
distribution. Compared with additive noise distortion, the ef-
fect of multiplicative noise on the visual quality of images
is quite severe. We consider the mean-square error (MSE)
cost function and derive an expression for an unbiased esti-
mate of the MSE. The resulting multiplicative noise unbiased
risk estimator is referred to as MURE. The denoising opera-
tion is performed in the wavelet domain by considering the
image-domain MURE. The parameters of the denoising func-
tion (typically, a shrinkage of wavelet coefficients) are op-
timized for by minimizing MURE. We show that MURE is
accurate and close to the oracle MSE. This makes MURE-
based image denoising reliable and on par with oracle-MSE-
based estimates. Analogous to the other popular risk esti-
mation approaches developed for additive, Poisson, and chi-
squared noise degradations, the proposed approach does not
assume any prior on the underlying noise-free image. We re-
port denoising results for various noise levels and show that
the quality of denoising obtained is on par with the oracle re-
sult and better than that obtained using some state-of-the-art
denoisers.

Index Terms— multiplicative noise, unbiased risk esti-
mation, Gamma distribution, speckle noise.

1. INTRODUCTION

In imaging modalities such as ultrasound imaging, synthetic
aperture RADAR, SONAR, laser Doppler imaging, the image
is reconstructed by a coherent demodulation of the incident
electromagnetic or acoustic waves. The noise in these imag-
ing modalities is neither additive nor Gaussian. The complex
wavefield incident on each resolution cell of the imaging de-
vice consists of a real part (in-phase component) and an imag-
inary part (the quadrature-phase component) corresponding to
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each scatterer on the object. Assuming a large number of ran-
domly distributed scatterers, the net complex wavefield can be
modeled as comprising of Gaussian distributed real and imag-
inary parts with zero mean and identical variances. The net
magnitude follows a Rayleigh distribution and the intensity
(or magnitude-squared measurement) follows an exponential
distribution. The measurement can be expressed as the prod-
uct of a reflectance function (the clean underlying image) and
an exponential random variable of unit mean, which is the
noise. The image thus measured has a granular appearance,
which is referred to as speckle. For an excellent article on the
properties of speckle, we refer the reader to the seminal arti-
cles by Goodman [1,2]. The goal in denoising such images is
to estimate the reflectance function from the noisy measure-
ment. The signal-to-noise ratio (SNR) of an image corrupted
by exponentially distributed multiplicative noise is unity (that
is, 0 dB). In order to increase the SNR, one often considers
multiple acquisitions of the same object to average out the
effect of noise. Effectively, the reflectance function remains
invariant across acquisitions and the noise keeps changing.
Consequently, the averaged multi-look measurement is effec-
tively equivalent to the reflectance image multiplied by the
average of many independent and exponentially distributed
random variables, which turns out to be a Gamma distribu-
tion. In this generic case, the measured image is expressed
as the product of an unknown reflectance image multiplied by
a Gamma distributed random variable. The SNR in this case
increases to k, which is the number of looks/measurements.

1.1. Prior art

Some early work on adaptive algorithms for the restoration
of images corrupted with speckle was reported by Kuan et
al. [3], Lee [4], Frost et al. [5], Lopes et al. [6]. Recently,
many approaches have been developed within a variational
framework. The image is often assumed to be piecewise-
smooth and a Bayesian framework is used to impose the prior.
Approaches based on Markov random field priors were re-
ported by Bioucas-Dias [7] and Oliver and Quegan [8]. To-
tal variation (TV) regularization approaches for multiplicative
noise suppression were proposed by Rudin et al. [11], Aubert



and Aujol [9], Huang et al. [10], Shi and Osher [12], [13]. The
TV approach adapts locally to the underlying image structure
and results in piecewise-smooth estimates of the reflectance
function. The variational and maximum a posteriori formula-
tions give rise to non-convex data fidelity costs, which pose
difficulties from an optimization perspective. An analysis of
various data fidelity terms for the multiplicative noise model
was given by Steidl and Teuber [14]. They also showed that
considering the logarithm of the reflectance is also the most
suitable formalism under multiplicative noise and TV reg-
ularization. The logarithm of the reflectance function was
also considered by many authors, for example [10, 15, 16].
Bioucas-Dias and Figueredo [16] proposed a variable split-
ting method to solve the denoising problem. They use the
alternating direction method of multipliers (ADMM) to solve
the resulting constrained optimization problem.

1.2. This paper

We deploy the mean-square error (MSE) cost and develop an
unbiased risk estimator of the MSE, which we shall refer to
as the multiplicative noise unbiased risk estimator (MURE).
The risk estimation approach resulted in robust denoising per-
formance in the case of additive Gaussian noise [17], Poisson
noise encountered in microscopy and other low-light imag-
ing applications [18], and chi-squared noise encountered in
magnetic resonance imaging applications [19]. We develop
MURE analogously but taking into account the aspects that
are unique to the multiplicative noise scenario. We consider
denoising using undecimated filterbank transforms and op-
timize for the subband regression coefficients by optimizing
MURE. We show that the MURE-optimal performance is
close to the oracle MSE performance.

2. PROBLEM FORMULATION

We consider the problem setting in the generic case of
Gamma distributed multiplicative noise. The image is rep-
resented in the vectorized form with each element expressed
as yi = xi wi, for i = 1, 2, · · · , N , where yi denotes the ith

element of the vector y. The vector y is the noisy version of
the original unknown image x ∈ R+N . The noise vector is
given as w = [w1, w2, · · · , wN ] ∈ R+N , with ith element

wi following the distribution q(wi) =
ab

Γ(b)
wb−1

i exp−wia,

where a and
1

b
are the scale and shape parameters, respec-

tively. q(wi) has mean E [q(wi)] = a/b, and variance

σ2
w = E

{
[q(wi)− E(q(wi))]

2

}
=

a

b2
. For the k-look ac-

quisition scenario, we have a = b = k. Let f : R+N → R+N

be the denoising function that yields an estimate of the re-
flectance function: x̂ = f(y). The goal is to optimize the
denoising function such that the mean-square error (MSE) =

1
N E
{
‖x̂ − x‖2

}
is minimized. The key contribution of this

paper is to develop such an unbiased estimate, which would
serve as a surrogate to the MSE.

3. MULTIPLICATIVE NOISE UNBIASED RISK
ESTIMATOR (MURE)

Before proceeding with the development of the risk estimator,
we introduce the following notation.

Notation. Given a 1-D function f , we defineM by the fol-
lowing operator

Mf(y) = k

∫ 1

0

f(sy)sk−1 ds.

For a multivariate function f(y) = f(y1, y2, . . . , yN ), we in-
troduce the operator Mi, which applies the operator M
to the ith component of f(y) only. This notation is ex-
tended straightforwardly to multivariate vector functions
f(y) = [f1(y), f2(y), . . . , fN (y)]T according to

Mf(y) = [M1f1(y),M2f2(y), . . . ,MNfN (y)]T. (1)

Lemma 1. Consider a 1-D function f such that E {|f(y)|}
is finite. If y = xw where w is a multiplicative Gamma dis-
tributed random variable, with mean 1 and variance 1/k, then

E {xf(y)} = E {yMf(y)} , (2)

where the expectations are taken over the realizations of w.

Proof. Letting y = wx, we have

E {yMf(y)} =

∫ ∞
0

kwx dw

∫ 1

0

f(swx)q(w)sk−1 ds

= kx

∫ 1

0

sk−1
∫ ∞
0

wf(swx)q(w) dw ds

= kx

∫ 1

0

sk−1
∫ ∞
0

w

s2
f(wx)q

(w
s

)
dw ds

= kx

∫ ∞
0

f(wx)

∫ 1

0

wk

s2
kk

Γ(k)
e−kw/s dsdw

= kx

∫ ∞
0

f(wx)
kkwk

Γ(k)

[
e−kw/s

kw

]1
0+

dw

= x

∫ ∞
0

f(wx)
kkwk−1

Γ(k)
e−kw dw

= x

∫ ∞
0

f(wx)q(w) dw = E {xf(y)} .

(3)

The hypothesis E {|f(y)|} < ∞ was used to validate the in-
tegration sign exchanges, and the limit at 0+.

Using Lemma 1, we derive an expression for the unbiased
estimate of the risk as follows:



Theorem 1. An unbiased estimate of the MSE (or risk) is
given by the expression

MURE(f) =
1

N

(
k

k + 1
‖y‖2 + ‖f(y)‖2 − 2yTMf(y)

)
.

(4)

Proof. Since ‖f(y) − x‖2 = ‖x‖2 + ‖f(y)‖2 − 2xTf(y)
we need to find two functions of y alone that are unbiased
estimates of ‖x‖2 and xTf(y).

• First, xTf(y) = x1f1(y) + x2f2(y) + · · ·xNfN (y):
From Lemma 1, we have that

E {xifi(y)} = E {yiMif(y)} , (5)

which shows that

E {xTf(y)} = E {y1M1f(y)}+ E {y2M2f(y)}
+ · · · E {yNMNf(y)}

= E {yTMf(y)}

and so that yTMf(y) is an unbiased estimate of
xTf(y).

• Second, ‖x‖2 = x21 + x22 + · · ·x2N : looking at the ith

component of y, yi = xiwi, we have that E
{
y2i
}

=

x2i E
{
w2

i

}
= x2i

(
1 + 1/k

)
. Hence,

x2i =
k

k + 1
E
{
y2i
}
, and finally‖x‖2 =

k

k + 1
‖y‖2.

(6)

Therefore, the unbiased estimate of MSE is

MURE(f) =
1

N

(
k

k + 1
‖y‖2 + ‖f(y)‖2 − 2yTMf(y)

)
(7)

4. MURE-OPTIMIZED DENOISING USING
UNDECIMATED FILTERBANK TRANSFORMS

We perform transform-domain denoising of the image by
considering the image-domain MURE. The denoising func-
tion f is essentially specified as a combination of the analysis
filters, transform-domain shrinkage, and the synthesis filters.
Consider a J-band undecimated fiterbank transform with the
analysis filters {G̃j(z

−1), j = 1, 2, · · · , J} and synthesis
filters {Gj(z

−1), j = 1, 2, · · · , J} (typically finite-impulse
response filters). In matrix form, we express the analysis part
as a huge matrix D = [DT

1 ,D
T
2 ,D

T
3 , · · · ,DT

J ] (D stands
for multiband decomposition) and the reconstruction part as
another matrix R = [R1,R2,R3, · · · ,RJ ] (R stands for
reconstruction). Each of the constituent matrices Dj or Rj is
an M ×M circulant matrix. The analysis and synthesis fil-
terbanks form a perfect reconstruction pair, that is, RD = I,

where I denotes the JM × JM identity matrix. Further,
each submatrix is specified as Dj =

[
djm,`

]
1≤m,`≤M

,Rj =[
rjm,`

]
1≤m,`≤M

, where djm,` =
∑
n∈Z

g̃j [` − m + nM ] and

rjm,` =
∑
n∈Z

gj [` − m + nM ], forj = 1, 2, · · · , J. The anal-

ysis filterbank takes a vector input and generates a collec-
tion of vectors. The denoising operations are performed
on the vectors and the synthesis block takes the collec-
tion of vectors and generates a vector. The overall de-
noising operation may be represented in a generic form as
x̂ = f(y) = RθDy. Corresponding to the input y (which
is the vectorized noisy image), let the output of the anal-
ysis filterbank be

[
w1,w2, · · · ,wJ ,

]
, Stating explicitly,

wj =
[
wj

m

]
1≤m≤M , where wj

m =

N∑
`=1

djm,`y`. Consider-

ing the shrinkage parameters αj for each subband, we write
the pth pixel estimate in the jth subband as x̂j

p = f j` (y) =∑M
m=1 r

j
p,m aj w

j
m =

∑M
m=1 r

j
p,m aj

∑M
`=1 d

j
m,`y`. In this

paper, we shall consider only point-wise wavelet shrinkage
mainly to illustrate the power of MURE. In a journal version,
we shall consider a linear expansion of thresholds (LET) ap-
proach akin to that in [17–19]. The overall subband-adaptive
transform-domain estimator is f(y) =

∑J
j=1 ajf

j(y), where
f j(y) = [f j1 (y)f j2 (y) · · · f jM (y)]T. The term ‖f(y)‖2 in
(7) can be expressed in the quadratic form aTMa, where
a = [a1, a2, · · · , aJ ]T and M = f`f

T
` , where, in turn,

f` = [f1` (y), f2` (y), · · · , fJ` (y)]T. Next, we focus our at-
tention on computing the term yTMf(y). Considering the
Mf(y) term in (1), we compute

M`f`(y) = k

J∑
j=1

aj

∫ 1

0

f j` (y1, y2, · · · , y`−1,

sy`, y`+1, · · · , yN )sk−1ds,

which upon simplification becomes

M`f`(y) =

J∑
j=1

aj

M∑
m=1

rj`,mα
j
m

(
wj

m −
djm,`

k + 1
y`

)
. (8)

The cross-term yTMf(y) in (7) is calculated as

yTMf(y) =

M∑
`=1

y`M`f`(y)

=

J∑
j=1

aj

M∑
`=1

y`

M∑
m=1

rj`,mw
j
m

− 1

k + 1

M∑
`=1

(
M∑

m=1

rj`,md
j
m,`

)
︸ ︷︷ ︸

constant

y2` , (9)
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Fig. 1. Comparison of MURE versus oracle performance.

which can be expressed in the form aT
(∑M

`=1 y`v`

)
, where

v` = [f1` , f
2
` , · · · , fJ` ]T. The optimum coefficient vector a∗ is

obtained by setting the gradient of MURE with respect to a to
zero. This results in a∗ = M−1

(∑M
`=1 y`v`

)
. The denoised

image is obtained as f∗(y) = [aTv1,a
Tv2, · · · ,aTvM ]T.

4.1. Experimental results

For the purpose of illustration, we consider the Champs im-
age of size 256 × 256 from [16] and varied the look of the
acquisition (equivalently, the SNR) progressively from 1 to
100. Denoising is performed using a four-level undecimated
Haar wavelet transform. A comparison of PSNR gains ob-
tained using MURE- and oracle-based approaches is shown
in Figure 1. We observe that the PSNR gains are significantly
higher at low input PSNR than at high input PSNR. Also, the
gains provided by the MURE approach are very close to those
obtained using the oracle method.

A comparison of the denoising performance of the MURE
technique with two benchmark techniques 1 in multiplicative
image denoising literature, namely MIDAL [16] and the tech-
nique of Aubert-Aujol (AA) [9], is shown in Table 1. The
MURE approach outperforms the AA technique by about 2
dB, and MIDAL by about 1 dB in most cases. The denoised
images corresponding to a 10-look acquisition are shown in
Figure 2. The PSNR is the highest and the execution time is
the least for the MURE approach. The oracle solution is also
shown to serve as a reference. A thorough comparison for
multiple images and using visual quality assessment metrics
will be reported in a journal version of this manuscript.

1J. Bioucas-Dias, M. A. T. Figueiredo, J. F. Aujol, and G. Aubert kindly
provided their MATLAB programs, which facilitated the comparisons.

Clean image
Noisy image

PSNR = 15.68 dB
MIDAL output

PSNR = 25.08 dB

PSNR gain = 9.40 dB

AA output
PSNR = 24.45 dB

PSNR gain = 8.77 dB

MURE denoised
PSNR = 26.79 dB

PSNR gain = 11.11 dB

Oracle denoised
PSNR = 26.81 dB

PSNR gain = 11.13 dB

Fig. 2. Comparison of denoising performance of the proposed
technique (image: Champs) with MIDAL and the technique
of Aubert-Aujol. Matlab execution times: MIDAL: 3.2 s;
AA: 64.5 s; MURE: 0.11 s; Oracle: 0.11 s.

Table 1. Comparison of PSNR improvement (in dB) for the
three techniques for various looks of acquisition (k) on the
standard Champs and Nimes images taken from [16].

Champs Nimes
k MIDAL AA MURE MIDAL AA MURE
1 16.79 14.59 17.79 8.16 5.94 9.83
3 14.47 13.28 14.57 5.69 5.22 6.88
5 12.73 11.70 13.07 4.74 4.11 5.59
7 11.17 10.34 12.20 4.28 3.09 4.83
9 10.01 9.28 11.40 3.83 2.24 4.23

5. CONCLUSIONS

We have addressed the problem of image denoising in multi-
plicative noise conditions and developed a new multiplicative
noise unbiased risk estimation (MURE) approach for denois-
ing. We developed a denoising solution in the undecimated
Haar wavelet transform domain, whose performance turned
out to be very close to that obtained using the oracle. A per-
formance comparison with two benchmark techniques in the
area showed superior denoising performance and least com-
putational complexity. The denoising function chosen is lin-
ear and the corresponding MURE was evaluated in closed-
form directly in terms of the image pixels. With nonlinear
denoising functions, the evaluation of theM operator in (1)
would not be straightforward. The overall denoising perfor-
mance is expected to be higher with nonlinear shrinkage func-
tions. This aspect, together with a detailed experimental val-
idation using visual quality assessment metrics will be re-
ported separately.
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