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Abstract— Biometrics is a growing field, which permits iden-
tification of individuals by means of unique physical features.
Electroencephalography (EEG)-based biometrics utilizes the
small intra-personal differences and large inter-personal differ-
ences between individuals’ brainwave patterns. In the past, such
methods have used features derived from manually-designed
procedures for this purpose. Another possibility is to use con-
volutional neural networks (CNN) to automatically extract an
individual’s best and most unique neural features and conduct
classification, using EEG data derived from both Resting State
with Open Eyes (REO) and Resting State with Closed Eyes
(REC). Results indicate that this CNN-based joint-optimized
EEG-based Biometric System yields a high degree of accuracy
of identification (88%) for 10-class classification. Furthermore,
rich inter-personal difference can be found using a very low
frequency band (0-2Hz). Additionally, results suggest that the
temporal portions over which subjects can be individualized is
less than 200 ms.

I. INTRODUCTION

Biometrics is a method used to identify individuals for
purposes of surveillance or security. It utilizes specific
and unique individual human characteristics, scanning
and ”matching” these characteristics against a database to
provide positive identification. Common and widespread
applications of biometrics include fingerprints, retinal
scans, and voice or facial recognition [1]. These methods
are utilized by various organizations including police
departments, banks, and other secure facilities (such as
high-security government installations), and provide varying
degrees of accuracy and precision. In the modern era,
however, some unique and modern methods of biometrics
may become necessary. One possible method is to use
electroencephalography (EEG), which identifies unique
electrical brainwave patterns non-invasively measured along
the scalp.

EEG possesses many special properties that would make
it useful in this context, such as a high time resolution
which opens a window to see the dynamics of the brain [2].
Previous studies have observed that EEG provides important
information about differences between individuals, as
pertains to the anatomical and functional traits of their
brains [3]. An individual person’s EEG, furthermore, is
both stable and specific [4]. That is to say, EEG provides
small intra-personal differentiation and large inter-personal
differentiation, which is why it is ideal for biometrics.
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With the right application, this technology can provide a
kind of ”brain fingerprint”, impossible to fake or replicate,
thus ensuring the highest level of biometric security [5].
Furthermore, the EEG might be adapted to detect high
levels of distress in the subject, ensuring a higher level of
security where necessary (removing the possibility of access
to the secure area in the case of, e.g., a hostage situation).

EEG-based biometric systems can be basically organized
into two different states: task-related state and resting state.
In this paper we are interested in using resting state EEG.
There are two reasons for this. First, evidence indicates that
electrical activities’ resting state organizes and coordinates
neuronal functions [6]. Second, certain tasks cannot be
performed by certain group of people, e.g., Attention Deficit
Disorder (ADD) or handicapped patients. Resting state
EEG includes Resting-state EEG with open eyes (REO) and
Resting-state EEG with closed eyes (REC). In this paper,
we will consider both conditions.

The common procedure of EEG-based biometrics involves
data collection, preprocessing feature extraction, and pattern
recognition [7]. However, resting state EEG lacks a task-
related feature, thus making it difficult to manually design
the best feature to extract. In this paper, we use convolutional
neural networks (CNN) for the purpose of automatically
extracting features and conducting classification [8].The
whole procedure is then joint-optimized based on gradient
descent.

The paper is organized as follows: The first part consists
of an introduction to biometrics. The second part gives
a general overview of EEG-Based Biometrics, including
the criteria, the underlying basis, and the framework. The
third part, ”Materials and Methods”, describes the subjects
and the experiment, as well as the topology of the CNN.
Finally, the results, discussion and conclusion are detailed
in Sections 4 and 5.

II. EEG-BASED BIOMETRICS
A. Criteria of Biometric Systems

Biometric systems must fit several criteria, as follows:
Universality (presence of the identifying feature in every
user accessing the system); Uniqueness (distinctiveness of
the identifying feature among all users); Collectability (data
can be collected rapidly); Stability (the identifying feature is
consistent); etc. [9].



Fig. 1. Two subjects’ three 10-Hz spectrum-topographies under REO
and REC conditions. This illustrates small intra-personal differences and
large inter-personal differences. Each spectrum-topography is analyzed in
10-second duration.

B. The Base for EEG-Based Biometrics

The base for EEG-Based Biometrics is based on two
things: the small intra-personal differences (differences
within an individual’s brain) and large inter-personal dif-
ferences (differences between one individual’s brain and
another’s). As an illustration of this, Fig.1 shows three 10-Hz
spectrum-topographies taken from two subjects under REO
and REC conditions. Each of the six spectrum-topographies
is analyzed for duration of 10 seconds. From this graph we
can see that, under the REO condition, the distribution of
the spectrum-topography at a certain frequency is relatively
stable over time in individual subjects. However, between the
two subjects there is distinction. Under the REC condition,
both subjects have large amplitude of energy around the
occipital region at 10Hz. However, we can still see the pattern
of each subject is stable, while between subjects they are
different. This figure is only for illustration. For resting state
EEG, we will avoid designing hand-craft features in favor of
automatic extraction and classification by the system.

C. The Framework of EEG Based Biometric Systems

The framework of the commonly-used EEG-based Bio-
metric Systems and the framework of the CNN-based joint-
optimized EEG-based Biometric Systems which we propose
are shown in Fig.2. Instead of manually designing the feature,
we let the CNN extract the most discriminant feature though
the optimization and propagation steps.

III. METHODS AND MATERIALS

A. Data Set

In this study, EEG signals came from a publicly available
dataset [10], [11] . EEG recordings were originally acquired
using the 64-channel BCI2000 system with a sampling rate
of 160 Hz. Our analysis was performed on 10 subjects under
both REO and REC conditions using 55 seconds for each
single condition in time. The 55-second dataset was divided
into 55 1-second sub-datasets; 50 of these sub-datasets were
used for training the networks and 5 of them for testing.

Fig. 2. Common framework of the EEG-based Biometric Systems (a) and
the framework of our joint-optimized CNN-based EEG Biometric Systems
(b).

Thus, for each condition (REO, REC, and REO + REC),
there were 500 training samples and 50 testing samples in
total. Before entering the CNN, each subjects EEG signals
were normalized. The input matrix of CNN takes this form:
Nelec ∗Nt, where Nelec is the number of the electrodes (64),
and Nt is the number of time points for each sample, which
is Nt = Time ∗ sampling rate. In our case, Nt is 160.

B. Convolutional Neural Network (CNN)

CNN is a neural network which consists of a multilayer
perceptron (MLP), and which possesses a special topology
containing multiple hidden layers. It is used for feature
extraction and classification, and takes its inspiration from
biological systems, in which cells are sensitive to a small
sub-region of the input space. Its most successful early
application has been for recognition of speech and hand-
written characters. Raw information is preserved as input
without pre-processing procedures, apart from scaling and
centering the input vector. This models advantages are most
apparent when the input data contains inner structure (i.e., for
images), permitting discovery of invariant features. However,
the networks topology setting is empirical and requires
repeated validation [12]. In 2011, Cecotti et.al. used CNN on
EEG data for P300 detection with the application of brain-
computer interface, and obtained a high degree of accuracy
[13].

C. Network Topology

Our CNN models topology is shown in Fig.3. It
accomplishes the tasks of both feature extraction and
classification. This CNN has five layers, including two
convolutional layers, two pooling layers and one fully
connected layer [14]:
- The input data matrix has a structure of 64 ∗ 160 (as
described above). The convolutional layer convolves this
input data matrix via six 5 ∗ 5 filters and outputs the filtered
data map. (The structures of these filters are learned by
back propagation during the training procedure.)
- The filtered data maps are then entered into the average-
pooling layer, which divides the input-filtered data maps
into sets of 2 ∗ 2 rectangles. For each of these sub-regions,
the average-pooling layer outputs the average value. The
filtered data maps are then down-sampled and feature maps



Fig. 3. The topology of five-layer CNN.

are obtained. During this step the computational complexity
for upper layers is reduced.
- The second convolutional layer uses the feature maps as
input data. Through this and the second average-pooling
layer, the first two steps are repeated. As a result, the
features become more abstract and the computational
complexity is further reduced.
- Finally, the features obtained by the second average-
pooling layer are transferred to the fully connected layer.
Ultimate classification is based on these features. Softmax
function is used as the activation function. The objective
function is mean squared error (MSE).

IV. RESULTS AND DISCUSSION

A. The Accuracy of the Full Data Set

The classification results are shown in Table I. Accuracy
rate is the percentage of test set samples that are correctly
classified by the CNN. Of the individuals whose data were
input, the highest rate of identification accuracy was derived
from REO data. Generally, REO data yielded a higher rate of
accuracy than REC data. There was no significant difference
among these three dataset about accuracy. The accuracy
reached by REO+REC data shows that it is possible to use
REO and REC data in tandem; integration of this data might
suggest the CNN can find the underline structure of the data.

B. The Accuracy of the Filtered Data Set

Additionally, the REO and REC datasets were filtered into
different frequency bands to evaluate which frequency band
is important for identification. The REO and REC datasets
were filtered in the following ways (classification results
shown in Table II):

The frequency bands started from a very low range (0-2
Hz) and become progressively wider, ultimately reaching 0-
80Hz. The CNN trained by the narrow-band EEG data would
be used for the initial setup of the wide-band data’s network.
The purpose was to avoid the two networks falling into differ-
ent local minimums. Generally speaking, as the upper limit
of the frequency band went wider, the accuracy increased.
Another important point which should be noted is that the
very low-frequency band (0-2Hz) is highly informative.

TABLE I
(10-CLASS) INDIVIDUAL IDENTIFICATION USING RESTING STATE EEG

UNDER DIFFERENT CONDITIONS

Individual Identification (10-class)

REO REC REO+REC

Accuracy 88% 86% 82%

TABLE II
(10-CLASS) INDIVIDUAL IDENTIFICATION USING BAND-PASS FILTERED

RESTING STATE EEG UNDER DIFFERENT CONDITIONS

REO REC

0Hz-2Hz 68% 64%

0Hz-4Hz 72% 64%

0Hz-6Hz 72% 70%

0Hz-8Hz 74% 72%

0Hz-10Hz 74% 74%

0Hz-20Hz 78% 76%

0Hz-30Hz 82% 78%

0Hz-40Hz 84% 80%

0Hz-50Hz 84% 82%

0Hz-60Hz 84% 86%

0Hz-70Hz 88% 86%

0Hz-80Hz 88% 86%

C. The Accuracy of the Divided Temporal-Structure Data Set

Before, we used a 1-s time period as the time base to do the
identification, and obtained good classification results. In this
section, we would like to find the minimum temporal length
of EEG signal which is still able to preserve the identification
information.

We divided each 1-s REO EEG signal into various smaller
portions (from 6.25ms-1000ms) and then performed random
permutations. Because the sampling rate is 160, the minimum
length is 6.25ms. Using this procedure, the temporal structure
of the original EEG signal is damaged to varying degrees.
The classification results are shown in Table III. From
the table we can see that, as the duration of divided 1-s
EEG portions became longer, the accuracy increased. At the
point that we maintained a 62.5ms temporal structure, the
classification accuracy already reached 76%. The results may
suggest that the temporal portions over which subjects can
be individualized is less than 200 ms.

TABLE III
(10-CLASS) INDIVIDUAL IDENTIFICATION USING DIVIDED

TEMPORAL-STRUCTURE DATA SET

6.25ms 12.5ms 25ms 50ms 62.5ms

REO 34% 44% 54% 64% 76%

100ms 200ms 500ms 800ms 1000ms

REO 78% 88% 88% 88% 88%

malan
Highlight

malan
Highlight



V. CONCLUSIONS

The proposed method, based on resting state EEG
using CNN, may represent an appropriate technique to
develop EEG-based biometric systems which supply good
classification performance. In the future, this CNN-based
system should be tested on a larger group of subjects,
providing further confirmation of the robustness and real-
world applicability of the system.

This form of biometrics, in addition to providing a higher
level of security, would have other useful applications, e.g., in
the case of a disabled individual unable to use fingerprints,
retinal scans, or other such methods. This could have far-
reaching applications to various fields, particularly those of
security and law enforcement.
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