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Single-frame off-axis holographic reconstruction is promising for quantitative phase imaging. However,
reconstruction accuracy and contrast are degraded by noise, frequency spectrum overlap of the interfer-
ogram, severe phase distortion, etc. In this work, we propose an iterative single-frame complex wave
retrieval that is based on an explicit model of the object and reference waves. We also develop a novel
phase restoration algorithm which does not resort to phase unwrapping. Both simulation and real exper-
iments demonstrate higher accuracy and robustness compared to the state-of-the-art methods, both for
the complex wave estimation, and the phase reconstruction. Importantly, the allowed bandwidth for the
object wave is significantly improved in realistic experimental conditions (similar amplitude for the ob-
ject and reference waves), which makes it attractive for large field-of-view and high-resolution imaging
applications. © 2022 Optica Publishing Group
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1. INTRODUCTION1

Holography, pioneered by Dennis Gabor [1], is a well-2

established interferometric technique whereby a complex-3

valued object wave, especially its phase, is reconstructed from4

the image of its interferences with a reference beam [2, 3], named5

interferogram. Benefiting from being label-free, non-invasive,6

and fast, it has found a wide range of applications in metrology7

[4], Fourier ptychographic microscopy [5], quantitative phase8

microscopy [6, 7], optical diffraction tomography [8], etc. De-9

spite the development of increasingly sophisticated reconstruc-10

tion algorithms, noise degradation and restrictive reconstruc-11

tion hypotheses (e.g., bandwidth limitations) are obstacles to12

high-resolution phase estimation. For instance, an extra interfer-13

ogram from an object-free region usually needs to be acquired14

for calibration purpose [9, 10]. As cells tend to assemble in close15

proximity during growth, it is often difficult to capture adequate16

calibration images. This outlines the advantage of single-frame17

acquisitions which, additionally, increase the image throughput18

significantly, without apparent loss of quality [11, 12]. Limita-19

tions on the frequency overlap of the main constituents of an20

interferogram, uncontrolled phase distortion, etc. also restrict21

the development of multiplex, high-resolution and large filed-of-22

view (FOV) off-axis based quantitative phase imaging [12, 13].23

In this paper, we address the reconstruction of an off-axis24

digital hologram (DH) from a single-frame acquisition. The25

most standard reconstruction method, the Fourier filtering ap-26

proach [14, 15], is the benchmark of linear methods. It discards27

the information contained in the 0th order and in the mirror28

object frequency bands of an interferogram (i.e., the −1st order),29

by applying a windowed filter. Hence, a good separation of30

the frequency bands involved is required, so as to ensure a re-31

construction of good quality, in particular of the phase of the32

object complex wave [15]. In contrast, non-linear methods do33

not suppress the information contained in the 0th and ±1st or-34

der bands; instead, they are able to exploit it, even in situations35

where frequency bands overlap. This is exemplified in temporal36

phase-shifting methods [16, 17], which require three or more37

interferograms to be captured sequentially and a precise control38

of the spatial frequency of the reference wave. Nowadays, with39

the advances of coded devices, a couple of interference patterns40

can be encoded in only a single acquisition [13, 18], albeit with41

some resolution loss. This is an example of local image recon-42

struction (pixels are retrieved from the same neighborhood in43

the interferograms), as opposed to global image reconstruction44

(often based on frequency band assumptions). Other non-linear45

methods are summarized below:
46

• Liebling’s method [19]: local, resolution inversely related47

to window size (used to reduce noise);48

• Seelamantula’s log method [20, 21]: global, quadrant sup-49

port assumption for object wave;50

• Kim’s method [22]: local, exploits a similar idea as51

Liebling’s method (constancy of the object wave in a small52

neighborhood), loss of resolution;53

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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Fig. 1. (a) Schematic of a transparent off-axis geometry DH and (b)
flowchart of the phase retrieval process. BS1&BS2: beam splitters; MO:
microscope objective; TL: tube lens.

• Baek’s Kramers–Kronig method [23]: global, object wave54

with (possibly large) circular frequency support.55

• Total variation-based compressive sensing (CS) [24]: global,56

discards zeroth order (high-pass pre-filtering), ideal for57

piecewise-constant images.58

Baek’s method is basically a more robust version of Seelaman-59

tula’s log method, thanks to different filtering options (in par-60

ticular extra low-pass filtering). CS has been applied to in-61

line [25, 26] and off-axis [24, 27, 28] holographic reconstruction.62

Its quality of reconstruction highly depends on the regulariza-63

tion parameter which balances the data fidelity and regulariza-64

tion. And apart from Liebling’s approach, an extra acquisition of65

the intensity of the reference wave is needed in order to retrieve66

the object wave. In addition, most of them assume that the refer-67

ence wave has a larger intensity than the object wave. Rotation-68

covariant operators like the Hilbert spiral or the Riesz transforms69

can be also used to recover the phase of the complex wave (phase70

demodulation) [29–33], but these approaches require that the71

zeroth order of the hologram be removed completely (e.g., by72

filtering) which, again, may be difficult to achieve if the intensity73

of the object wave is not small compared to the reference wave.74

Also to be more complete, we should mention iterative meth-75

ods such as Fienup’s [34] and Gerchberg-Saxton’s [35] methods76

which are designed to retrieve the phase of complex-valued77

images from in-line intensity measurements (reference and ob-78

ject waves are on the same axis) or equivalent Fourier mag-79

nitude [36, 37] , but we will not consider them in this paper80

because they have not been used in off-axis context. As a sign81

of the times, Deep learning approaches have also been used for82

holographic reconstruction [38–40], but they inevitably require83

large training data, and may eventually be less reliable in diverse84

experimental configurations of camera and light source.85

Once the complex object wave has been reconstructed, per-86

forming quantitative phase analysis requires phase restoration as87

well. This is particularly so in applications like high-resolution88

phase imaging of cells where magnification factors are high. This89

is a challenge for single-frame methods because they cannot eas-90

ily separate the intrinsic distortion of the reference wave and91

other optical distortions. High-order phase distortions (such92

as tilt, coma, astigmatism, spherical aberration) appear natu-93

rally [41, 42] in optical systems with high numerical aperture94

(NA) and transverse magnification. Compensation by only ad-95

justing the lens is likely to be insufficient, thus calling for a96

more computational approach. Conventionally, phase restora-97

tion involves not only phase unwrapping but also numerical98

fitting procedures [42, 43]. Artifacts can easily be induced in99

the phase unwrapping process, as a consequence of fast phase100

variations, noise, and other singularities, mentioned in [44]. Cur-101

rent approaches based on optimized phase unwrapping [45] and102

aberration compensation [46] usually have a significant compu-103

tational cost.104

In order to address the various issues that we have identified105

so far, we propose a complete solution for single-frame phase106

estimation, made of a complex wave retrieval algorithm and a107

phase restoration algorithm.108

First, we devise a linear model to represent the reference109

and object waves, thereby over-determining the original under-110

determined complex wave retrieval problem—hence, bypassing111

the need to regularize. Based on this model, we minimize an112

interferogram-fitting criterion which enjoys an efficient itera-113

tive implementation. We also give an idea of the convergence114

behaviour of this algorithm for a wide variety of the main pa-115

rameters, notably when the frequency band of the object wave116

has a large overlap with the other frequency orders present in117

the interferogram, and when the reference wave has a smaller118

amplitude than the object wave. We even show that it is possible119

to reconstruct accurately the object wave when its frequency120

band occupies half of the sampling band of the interferogram,121

i.e., the maximum theoretically possible. These results suggest122

that our method is able to achieve high-resolution, large FOV,123

and multiplexing in quantitative phase imaging.124

Second, we develop a fast, highly accurate and robust phase125

restoration algorithm that is able to fit accurately a wrapped126

phase image, without using any unwrapping intermediates.127

2. METHOD128

A. Complex Wave Retrieval Algorithm129

The interference between an object wave UO(r) and a reference130

wave UR(r) at the camera plane is the general setting that results131

in an interferogram I(r) in traditional DH microscopy:132

I(r) =
∣∣UO(r) + UR(r)

∣∣2
= |UO(r)|2 + |UR(r)|2︸ ︷︷ ︸

0th Order

+U∗O(r)UR(r)︸ ︷︷ ︸
−1st Order

+UO(r)U∗R(r)︸ ︷︷ ︸
+1st Order

(1)

where r = (x, y) is a two-dimensional vector which may take val-133

ues over a range D (i.e., the extent of the camera CCD). The ref-134

erence wave is typically of the form UR(r) = AR(r)ejkTr where135

AR(r) ∈ C and k ∈ R2 are its spatially-varying amplitude and136

spatial frequency, respectively. The slight tilt angle between137

reference and object waves ensures the frequency separation of138

these orders (see Fig. 1).139

The main idea of the algorithm is based on the observation140

that, if the phase φ(r) of UO(r) + UR(r) is known, the problem141

is essentially a linear problem: extract UO(r) and UR(r) from142

I(r)eiφ(r), which can be achieved by assuming that UO(r) and143

UR(r) do not share the same spatial frequency band. Hence, a144

key ingredient is the estimation of φ(r).145

Optimization Criterion We focus on the minimization of the146

(non-convex) criterion147

F{UO, AR} = ∑
r∈D

(√
I(r)−

∣∣UO(r) + AR(r)ejkTr∣∣)2
, (2)

over UO(r) and AR(r), under the constraints (visualization in148

Fig. 2):149

• UO(r) is band-limited in some domain BO (lowpass, large150

support);151

• AR(r) is band-limited in some domain BR (lowpass, small152

support);153
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• The frequency supports of UO(r) and AR(r)ejkTr do not154

overlap; i.e., BO ∩ {k + BR} = ∅.155

Note that by choosing the size of these frequency domains156

small enough, we transform the under-determined reconstruc-157

tion problem into an over-determined one. And in practical158

implementation (digital hologram, discrete frequencies), it is159

more “natural” to assume that UO(r)e−jkTr is band-limited in160

{−k + BO}, than to assume that UO(r) is band-limited in BO.

BO

k + BR

π

π

frequency band
of the object wave

frequency band
of the reference wave

Fig. 2. Depiction of the frequency bands of the object wave (BO) and
the reference wave (BR): BR, shown larger than reality here, is typ-
ically discretized as a 3 × 3 block of DFT coefficients.The vector k
denotes the central frequency of the reference wave AR(r)ejkTr.

161

The wave vector k can be estimated in the Fourier domain162

of the interferogram by locating the maximum of +1st order, for163

instance. The assumption that UO(r) is low-pass is supported164

by the fact that, due to the limited aperture NA = ni sin θ of a165

microscope objective, the spectrum of the object wave is typically166

limited by a cutoff frequency 2πNA/λ, where ni, θ and λ are167

the refractive index of the surrounding medium, the maximal168

half-angle of light that enters or exits the objective, and the169

wavelength of the light in the free space, respectively [23, 47].170

MM Optimization Algorithm To find a solution of this opti-171

mization problem, we build an iterative algorithm using172

a Majorization-Minimization (MM) approach [48] (see ap-173

plication to in-line holography [37, 49]): at iteration m,174

the optimization criterion F{UO, AR} is “majorized” (i.e.,175

upper-bounded) by a simpler criterion (i.e., that can be176

minimized easily) F (m){UO, AR}, and which also satisfies177

F{U(m)
O , A(m)

R } = F (m){U(m)
O , A(m)

R }. Then, the minimization178

of F (m){UO, AR} over UO(r) and AR(r), under the band-179

limitation constraint on UO, provides the updated values180

U(m+1)
O (r) and A(m+1)

R (r): see Fig. 3 for an illustration.
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Fig. 3. Visual depiction of the Majorization-Minimization (MM) strat-
egy for minimizing the functional F .

181

Compared to a gradient descent approach, the MM strategy182

similarly guarantees that the criterion decreases at each iteration,183

but without the need for adjusting a step size. Moreover, non-184

smooth criteria like Eq. (2) can be used. Like gradient descent,185

an MM algorithm usually converges to a local optimum (with186

general assumptions [48]), but this solution is quite good in prac-187

tice (we do not attempt to prove that it is the global minimum of188

our functional F , though). We use the majorizer189

F (m){UO, AR} = ∑
r∈D

∣∣∣√I(r) ejφ(m)(r) −
(
UO(r) + AR(r)ejkTr)∣∣∣2,

(3)
where φ(m)(r) = arg

{
U(m)

O (r) + A(m)
R (r)ejkTr}, and which obvi-

ously satisfies the MM requirements

F{UO, AR} ≤ F (m){UO, AR},

F{U(m)
O , A(m)

R } = F (m){U(m)
O , A(m)

R },

thanks to the triangular inequality (
∣∣|a| − |b|∣∣ ≤ |a− b|), and to190

the definition of φ(m). Given that the majorizing criterion Eq. (3)191

is quadratic in function of UO(r) and AR(r), its minimization192

results in the orthogonal projection of
√

I(r) ejφ(m)(r) onto the193

space of functions of frequency support limited to BO (for UO)194

and BR (for AR), equivalent to filtering in the frequency band195

considered—-“band-limitation”. More specifically, the phase196

φ(m)(r) is updated following the steps of Algorithm 1 (visualiza-197

tion in Fig. 6).198

Algorithm 1. Complex Wave Retrieval Algorithm

Input: Interferogram I(r)
Output: Object wave UO(r), reference wave AR(r)ejkTr

1: initialize the total phase φ(0)(r).
2: for m = 1 to M doa

3: band-limitation of UR: compute A(m+1)
R (r) by filtering√

I(r) ejφ(m)(r) in the band {k + BR};
4: band-limitation of UO: compute U(m+1)

O (r) by filtering√
I(r) ejφ(m)(r) in the band BO;

5: total phase update: compute the total phase φ(m+1)(r)
from the argument of U(m+1)

O (r) + A(m+1)
R ejkTr.

6: end for
a M is typically equal to 10.

The iterations can be stopped either when the reconstructed
interferogram

I(m)(r) =
∣∣U(m)

O (r) + A(m)
R (r)ejkTr∣∣2

is close enough to the true interferogram I(r), or when changes199

to I(m)(r) are negligible, or simply after a fixed number of itera-200

tions. The evaluation metrics that we use to compare two images201

I1(r) and I2(r) (typically, the ground-truth complex wave, and202

its reconstruction by our algorithm), is the Peak Signal-to-Noise203

Ratio (PSNR), which is defined according to204

PSNR(I1, I2) = 10 log10

(
N maxr |I1(r)|2

∑r |I1(r)− I2(r)|2

)
dB, (4)

where N denotes the number of pixels of these images. The205

advantages of this approach are:206

1. Overlap of 0th and ±1st orders is possible, in contrast with207

the traditional Fourier method.208

2. Single-frame acquisition: in contrast to other state-of-the-209

art methods, no extra acquisition of an object-free interfero-210

gram or of the reference wave is needed.211
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3. Resolution is potentially as large as about 1/
√

2 the reso-212

lution of the interferogram, significantly higher than any213

other methods.214

4. Automatic adaptation to a spatially-varying reference wave.215

We now give more details regarding these points in the subsec-216

tion below.217

Discussion218

Computational Efficiency The typical computational cost of one219

iteration is mostly due to the three 2D FFT that are required220

in the calculation. This cost is roughly proportional to N ln N,221

which means that, with a fixed number of iterations, the al-222

gorithm scales roughly like the number of pixels, at least for223

images of size 128× 128 up to 1024× 1024. Empirically, the224

whole optimization procedure does not require more than about225

10 iterations—about 0.2 seconds on a standard laptop computer226

for a 512× 512 image—before providing a good practical ap-227

proximation of the solution; i.e., PSNR ≥ 25 dB (see below the228

paragraph “Key Parameters” and simulations in Fig. 5).229

Phase Indeterminacy Obviously, if UO(r) and UR(r) mini-230

mize Eq. (2) under our band-limitation constraints, then231

UO(r)eiθ and UR(r)eiθ are also solutions, for an arbitrary con-232

stant phase θ ∈ (−π, π]. This phase indeterminacy still holds233

approximately (i.e., numerically) for a slowly varying phase234

θ(r) because UO(r)eiθ(r) and UR(r)eiθ(r) have roughly the same235

bandwidth as UO(r) and UR(r): the “effective” bandwidth of236

eiθ(r) is small.237

For this reason, the slowly varying phase of AR(r) cannot238

be retrieved accurately within the scope of this algorithm. To239

mitigate this issue, we reduce the number of degrees of freedom240

used to describe AR(r) by assuming that AR(r) is real-valued,241

an extra linear constraint which amounts to taking the real part242

of the result of step (3). The slow phase variation of AR(r) can243

later be estimated directly on the retrieved UO(r) by using the244

phase restoration algorithm of Subsection B.245

Key Parameters Since the criterion Eq. (2) is likely to have246

(many) local minima, the MM optimization approach that we247

proposed may only converge towards a suboptimal solution,248

depending how close our initialization is to the global minimum.249

Intuitively, it is the bandwidth BO of the object, the frequency250

k of the reference wave, and the amplitude of object wave rel-251

ative to the reference wave that are the most influential. More252

specifically, we focus on the following simplified parameters253

• Object/Reference amplitude ratio:254

O/R =
∑r |UO(r)|
∑r |UR(r)|

. (5)

This parameter is often assumed to be small in advanced255

complex wave reconstruction algorithms, conflicting with256

experimental settings where a value close to 1 is known to257

provide maximal SNR and fringe contrast [50, 51]. We do258

not have such an assumption here.259

• Modulus of the frequency of the reference wave: d = ‖k‖ =260 √
k2

x + k2
y where k = (kx, ky) ∈ (−π, π]2.261

• Frequency band of the object wave: BO is assumed to be262

a disk centered at the frequency zero with radius ρ (see263

Fig. 2), which can be estimated from the cutoff frequency of264

the microscope objective [3, 23, 47]. The larger the value of265

ρ, the higher the resolution achieved.266

• Frequency band of the reference wave: BR is assumed to be
small (see Fig. 2) and typically reduces here to a 3× 3 block
of DFT coefficients after discretization (N1, N2 = number of
lines/columns of the digital image):

AR(x, y) =
1

N1N2
∑

u1=−1,0,1
u2=−1,0,1

ÂR(u1, u2)e
2iπ
(

u1 x
N1

+
u2y
N2

)
• Numerical overlap (NO): a quantification of the overlap267

between the zeroth order and the twin Fourier bands of an268

interferogram (visualization in Fig. 4)269

NO =
1
2

(3ρ

d
− 1
)
=


< 0, no overlap
∈ [0, 1), partial overlap
≥ 1, full overlap

(6)

ρρ
Twin subbands

d
2ρρ

Zeroth order

NO    0 0    NO    1 1    NO

No overlap Partial overlap Full overlap

Fig. 4. Visual depiction of the main bandwidth parameters, and their
combination into a “Numerical Overlap” (NO).

Assuming that the interferogram is spatially sampled at a fre-270

quency large enough so that the object and twin frequency bands271

are not aliased, means that ρ + max(|kx|, |ky|) ≤ π. Then, given272

that the interferogram is made of real-valued numbers whereas273

the object wave is made of complex-valued numbers, we cannot274

expect to reconstruct unambiguously the object wave if the sur-275

face of its bandwidth, πρ2, is larger than half the surface of the276

Nyquist rectangle, (2π)2: this implies that ρ should be smaller277

than
√

2π.

Fig. 5. Reconstruction accuracy of the algorithm (left, 10 iterations,
right 1000 iterations) for 100,000 random realizations of the complex
wave image, and of the parameters ρ (object bandwidth), k (reference
frequency), NO (Numerical Overlap), and O/R (Object/Reference am-
plitude ratio): NO and O/R alone are sufficient to predict the accuracy
of our algorithm.

278

An extensive simulation (100,000 random tests) involving279

all possible O/R values in [0.1, 2], ρ ≤
√

2π, k = (kx, ky) ∈280

[−π, π]2 and NO ∈ [−0.5, 3.7] on i.i.d. white noise images (fil-281

tered in the bandwidth BO) shows that the reconstruction PSNR282

is essentially predicted by a combination of NO and O/R; i.e.,283

accuracy is not dependent on the actual size of the bandwidth284

of the object wave.285

This simulation also suggests that our algorithm converges to286

the exact solution (PSNR ≥ 250 dB) for a wide range of choices287
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+

Fig. 6. Flow chart of the complex wave retrieval algorithm (red/blue: iterated/non-iterated parts).

of NO and O/R, in particular when NO ≤ 1 together with288

O/R ≤ 0.6. For most practical values of interest, moreover, the289

PSNR results obtained are compatible with a reasonably accurate290

reconstruction (i.e., PSNR ≥ 25 dB), and this with as few as 10291

iterations. Note also that the theoretically maximum resolution292

ρ ≈
√

2π can be achieved with good accuracy when, e.g., the293

object/reference ratio is between 0.2 and 0.7.294

B. Phase Restoration Algorithm295

After complex wave retrieval, unwanted distorted phase (usu-296

ally > 2π) inevitably appears and degrades the contrast. It297

originates partially from the intrinsic phase distortion of the298

reference wave, from an inaccurate estimation of the reference299

frequency, but also from a mismatch between refractive indices300

of coverslips, surrounding medium, etc. Non-linear polynomial301

phase distortion, in particular, is more common in practical high302

transverse magnification optical system [41].303

Conventionally, phase distortion is compensated in two steps:304

phase unwrapping, followed by another processing like poly-305

nomial fitting [11, 52], PCA [53, 54], or CNN-[55]. The most306

standard consists in performing least-squares polynomial fitting307

(Zernike or Chebyshev bases) [42, 43] over a large object-free308

zone that is identified manually. As mentioned earlier, errors309

are likely to be introduced in the phase unwrapping process310

because of noise, or phase discontinuity. To mitigate this issue,311

we are proposing here a method to estimate the phase distortion312

in one step; i.e., without resorting to phase unwrapping. As a313

bonus, we do not need to specify the object-free fitting region.314

In a nutshell, our method consists in identifying iteratively315

a “reliable” subset of the phase map (typically, of 8-connected316

values [56] that are sufficiently close to each other, making it317

likely that they are within the same wrapping interval), then fit-318

ting only these phase values with a spatial polynomial [43], then319

extrapolating the phase distortion outside the fitting range—320

thereby avoiding the unwrapping process. The polynomial321

phase map obtained is finally subtracted to the wrapped phase322

map (modulo 2π). How close should the (absolute) phase dif-323

ferences within the connected region be? Less than π, so as to324

ensure that adding or removing 2π to a phase value always re-325

sults in a larger phase difference. Here, we choose phase values326

in (−π/2, π/2).327

Not only is this approach very robust to noise and other in-328

accuracies, but it is also computationally quite simple, despite329

being iterative. More specifically, a 2D Chebyshev polynomial330

estimate φ
(m)
d (r) of the distortion of the phase of UO(r) at itera-331

tion m is obtained by iterating the following steps (see Fig. 7):332

• Find the largest 8-connected set of points, C (Mat-333

lab function bwareafilt), for which the values of334

φ(r) = arg
{

UO(r)e−jφ(m)
d (r)} are inside the interval335

(−π/2, π/2);336

• Least-square fit the values of φ(r) only for r ∈ C, with a spa-337

tial polynomial expressed on a 2D Chebyshev polynomial338

basis→ δφ
(m)
d (r);339

• Update φ
(m+1)
d (r) = φ

(m)
d (r) + δφ

(m)
d (r).340

The initial distortion estimate is φ
(0)
d (r) = 0. We stop the itera-341

tions when the maximal value of |δφ(m)(r)| is smaller than 10−2
342

which typically happens in just a few iterations.343
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wrapped phase
of UO(r)e−jφ(m)(r)

largest 8-connected
phase values ∈

(
−π

2 , π
2
) polynomial fit δφ(m)(r) of

the connected phase values

wrapped phase of UO(r)

+

polynomial phase φ(m+1)(r)

∫
+

restored phase

+ −

−
+

Fig. 7. Flow chart of the phase restoration algorithm (red/blue:
iterated/non-iterated parts). The “

∫
” block denotes a summation

over all previous iterates. See supplement 1 for a pdf-animated visual-
ization.

3. NUMERICAL EXPERIMENTS344

For the sake of simplicity, we test the two algorithms presented345

in this paper separately. First, we demonstrate the superior qual-346

ity achieved by our complex wave retrieval algorithm (CWR)347

in a comprehensive PSNR comparative study for a large range348

of the parameters O/R, NO, and ρ, in function of the PSNR of349

the noise added to the interferogram. Then, we demonstrate350

the efficiency of our phase restoration algorithm (low compu-351

tation cost, high quality, simplicity) on a specific example. All352

the experiments performed in this paper are carried out using353

MATLAB R2018b (MathWorks Inc., Natick, Massachusetts, USA)354

on a desktop computer (Intel Core i7-7700K CPU, 4.2 GHz, 32355

GB RAM). The code will be made available at the time of publi-356

cation.357

A. Complex Wave Reconstruction358

Additive white Gaussian noise (AWGN) is added to the in-359

terferogram that encodes an object wave made of a synthetic360

“Spoke” phase image (512× 512 pixels, large phase range:361

[−0.2, 2.7] radian). For comparison purposes, Baek’s algo-362

rithm [23] 1, the standard FT approach and a recent total363

variation-based compressive sensing (CS) method [24] are cho-364

sen. However, in order to retrieve the object wave, it is necessary365

to estimate the reference wave, which is done in Baek’s algo-366

rithm by a second measurement, whereas the other two methods367

choose to ignore this issue. We thus re-normalize (least-square368

fit of a complex-valued factor with the ground-truth) the re-369

sults of all the algorithms to make it possible to evaluate their370

reconstruction PSNR.371

We use Baek’s code according to the author’s suggestions to372

obtain the best results. We have implemented the CS algorithm373

following the author’s suggestion in a private email (i.e., use the374

FISTA code provided by A. Beck 2, to ensure an equivalently375

efficient implementation), and set the parameters according to376

his paper, with the exception of the regularization parameter377

which we optimize for each image (visual quality).378

The experimental reconstruction results from more than 3000379

tests, varying the numerical overlap NO, the object bandwidth380

ρ, and the noise PSNR are visualized in Fig. 8. We do not381

compare with the CS method here because it is too slow and382

moreover, requires manual tuning for ideal results. When the383

frequency bands of the zeroth order and the twin images are384

well-separated (NO ≤ 0), all CWR methods achieve acceptable385

accuracy (PSNR> 20 dB, depending on the input noise level) as386

1code released by the author: https://opticapublishing.figshare.com/articles/
journal_contribution/3712889_pdf/7423859

2https://sites.google.com/site/amirbeck314/software

can be seen in Fig. 8 (left), with the FT leading the pack when the387

noise PSNR is larger than 30 dB. When NO>0, however, our com-388

plex wave retrieval algorithm exhibits the highest reconstruction389

accuracy, irrespective of the noise level. The reconstruction accu-390

racy of FT decreases rapidly to about 5 dB, in fact. If we focus on391

the object bandwidth and fix NO = 0.7, instead, our algorithm392

outperforms the others significantly (median PSNR difference393

between our method and Baek’s is about 1.8 dB) as evidenced394

by Fig. 8 (right).395

The real part of a typical result is shown in Fig. 9 (CS regu-396

larization parameter set to 10 as suggested in [24]). Our CWR397

algorithm achieves significantly better reconstruction quality398

than other methods. In particular, Gibbs and fringe-like artifacts399

can be identified in Baek’s algorithm—likely as a consequence400

of zero-padding and unsuccessful suppression of the zeroth or-401

der. The poor quality of the Fourier method is due to the large402

overlap between the twin images and the zeroth order. The CS403

method seems to achieve a better resolution than Baek’s (proba-404

bly due to the piecewise-constant nature of the images), but at405

the expense of a significantly higher computational cost.406

Fig. 8. Better overall performance of our complex wave retrieval al-
gorithm (10 iterations), compared to the standard Fourier approach
(FT) and Baek’s algorithm [23], under various noise levels. Left: the
numerical overlap varies in [−0.5, 1.5], but the object bandwidth ρ is
set to

√
2π/5; right: ρ varies in [

√
2π/10,

√
2π/1.5], but numerical

overlap (NO) is set to 0.7 (amplitude ratio O/R = 0.7).

B. Phase Restoration407

In general, it is phase discontinuities and noise that make phase408

restoration challenging. To evaluate our algorithm in such condi-409

tions, we have chosen a USAF phase target (512×512 pixels) with410

a large range of values (∈ [−0.31, 2.54] radians) and sharp edges.411

For comparison purposes, the standard unwrap-and-fit phase412

restoration strategy is evaluated with two open source phase un-413

wrapping algorithms PUMA3 (Phase Unwrapping MAx-flow)414

[58], and TIE4 (Transport of Intensity Equation) [57].415

Our observation is that, when the USAF phase image is dis-416

torted by a 2D polynomial of degree 4, further corrupted by ad-417

ditive white Gaussian noise of various intensities, our algorithm418

and the unwrap-and-fit methods have a similar performance,419

but that ours is significantly faster: the computation bottleneck420

is, of course, the unwrapping algorithm, which our method does421

not use. However, when the “noise” is not random and contains422

high frequencies (from, e.g., the concentric fringes that arise423

from isolated point scatterers, like impurities or dust particles),424

a significant difference in quality appears, as shown in Fig. 10.425

Also note that our method does not need to identify an object-426

free region to calculate the quadratic distortion, contrary to the427

unwrap-and-fit approaches.428

3http://www.lx.it.pt/~bioucas/code.htm
4https://ww2.mathworks.cn/matlabcentral/fileexchange/

68493-robust-2d-phase-unwrapping-algorithm

https://opticapublishing.figshare.com/articles/journal_contribution/3712889_pdf/7423859
https://opticapublishing.figshare.com/articles/journal_contribution/3712889_pdf/7423859
https://sites.google.com/site/amirbeck314/software
http://www.lx.it.pt/~bioucas/code.htm
https://ww2.mathworks.cn/matlabcentral/fileexchange/68493-robust-2d-phase-unwrapping-algorithm
https://ww2.mathworks.cn/matlabcentral/fileexchange/68493-robust-2d-phase-unwrapping-algorithm
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Synthetic interferogram Ground-truth This paper
with noise in PSNR: 30 dB PSNR: 24.9 dB

Time: 0.25s (5 iterations)

Baek’s paper [23] FT method CS method [24]
PSNR: 19.3 dB PSNR: 6.8 dB PSNR: 18.3 dB

Time: 0.30s Time: 0.03s Time: 165s

Fig. 9. Higher quality of our Complex Wave Retrieval algorithm in simulated noisy conditions (O/R = 0.7, NO = 1.3, ρ =
√

2π/3, kx = ky). To
ensure fairness of the comparison, the reconstructed images (real-part only) are shown with the same intensity scale.

Synthetic wrapped phase Ground-truth phase This paper Unwrap [57] Unwrap [58]
PSNR: 31.0 dB PSNR: 9.2 dB PSNR: 8.6 dB

Time: 0.25s (5 iterations) Time: 6.9s Time: 6.5s

Fig. 10. Direct polynomial fitting (central image) of the raw “wrapped” phase is not only much faster than an unwrap-and-fit strategy (the two
rightmost images), but can also be significantly more accurate for images that have non-random high frequencies like the phase image in the left-
most column. Here, a polynomial of degree 4 is used to fit the distortion.

4. REAL EXPERIMENTS429

We first consider the interferograms of the “USAF” and “Spoke”430

phase targets. The height of the patterns seen in these targets is431

known to be 350 nm, which allows us to compare image recon-432

struction methods visually and quantitatively. We then consider433

the interferogram of a tobacco BY-2 plant cell. Note that, in order434

to be able to compare the performance of our algorithm with435

Baek’s method, we also had to acquire a reference wave intensity436

image of each imaged sample: these extra interferograms were437

not used by our algorithm, though.438

A. Complex Wave Retrieval439

In order to ensure that the object wave is frequency limited440

within a band of radius π/2, the interferometric system depicted441

in Fig. 1(a) was designed with the following parameters [23, 47]:442

laser of wavelength λ = 0.532 µm, microscope objective NA =443

0.8, camera pixel size = 3.45 µm, and system magnification444

≈ 21.2. In order to test the reconstruction under full overlap of445

the interferogram, the reference wave frequency was changed446

by altering the tilt angle between the reference wave and the447

object wave. This was done with the help a real-time GUI which448

monitors the frequency spectrum of the interferogram.449

Figure 11 shows the phase reconstructed from the 2048× 2048450

USAF interferogram (FOV = 0.33× 0.33 mm2) under full over-451

lap (NO = 1.7). For the CS method [24], the regularization pa-452

rameter is tuned to 10−4 in Figs. 11 and 13. Here, the reference453

wave exhibits a slowly varying amplitude, which we account for454

by assuming that its discrete spatial frequency band, BR (see Sec-455

tion A), is a 3× 3 square—9 complex-valued Fourier coefficients.456

After CWR, the phase is unwrapped (PUMA algorithm [58])457

and then, a 2D polynomial fit of degree 4 is performed to undo458

the global distortion of the phase image. Note that we do not459

use our phase restoration algorithm here, because we want to460

compare only the quality of the complex wave retrieval between461

different algorithms. However, see supplement 1 for the results462

with our own (much faster: below 15 seconds) phase restoration463

algorithm.464
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Interferogram
This paper Baek’s method [23] CS method [24]

Fourier transform
CPU time: 7.4 s CPU time: 4.7 s CPU time: 2708 s

W
rapped

phase

CPU time: 970 s CPU time: 7288 s CPU time: 1019 s

R
estored

phase

Fig. 11. Wrapped phase (top row) obtained via different complex wave retrieval methods, and restored phase (bottom row) using PUMA un-
wrap [58] + degree-4 polynomial fit. Note the fringe-like artifacts in Baek’s results, and their absence in the other two methods: these high-frequency
artifacts are the likely cause of a significantly longer phase unwrapping time. The standard deviation of the phase in object-free areas (excluding
obvious outliers) is about 0.24 radians (≈ 39 nm height value) for our algorithm, 0.35 radians (≈ 57 nm height value) for Baek’s algorithm and
0.20 radians (≈ 33 nm height value) for the CS method. Scale bar indicates 20 µm.

As shown in Fig. 11, our algorithm achieves the best reso-465

lution compared to the other methods (zoom). On the other466

hand, CS exhibits a slightly smaller phase fluctuation. Particu-467

larly noticeable in Baek’s result are strong fringe artifacts that468

are already present in the wrapped phase, then in the restored469

phase; also note the large fluctuations of the height (about 57 nm,470

calculated by Eq. (1a) defined in Ref. [10]) along the red line. A471

calculation of the standard deviation of the phase in empty zones472

(excluding unwrap-related saturation errors) shows that these473

fluctuations are significantly larger in Baek’s result (0.35 radians474

versus 0.24 radians in ours, and 0.20 radians in CS).These arti-475

facts (their high-frequency) are likely the reason why the un-476

wrapping algorithm used for phase restoration require so much477

more computation time for Baek’s wrapped phase. Note again478

the very high computational cost of the CS method, which makes479

optimal tuning of the regularization parameter almost unfeasible480

in practice (required more than one day in this example).481

B. Phase Restoration482

We validate our restoration algorithm using a physical “spoke”483

phase target with a pattern height of 350 nm, and compare484

with unwrap-and-fit algorithms that use the PUMA [58] and485

TIE [57] unwrapping algorithms. In details, an interferogram486

of the “spoke” target is acquired (2048× 2048 pixels, NO = 1.3,487

O/R = 0.7 and ρ = π/2) and the complex object wave is re-488

trieved using our CWR algorithm. As previously, 9 Fourier489

coefficients are used to parameterize the amplitude of the ref-490

erence wave. It is the (wrapped) phase of the complex image491

obtained that is input to the phase restoration algorithms. Em-492

pirically, a 2D polynomial of degree no less than 5 is able to493

approximate reasonably well the phase distortion observed.494

As can be seen in Fig. 12, our restoration provides a phase495

image that is visually on par with that from the PUMA unwrap-496

and-fit method, but also is significantly better than that from497

the TIE unwrap-and-fit method, especially in the image center498

where the phase varies fast. The height values along the red499

dashed line (low frequency variations) for all approaches match500

well the ground-truth height (350 nm). Even more significantly,501

our phase restoration algorithm requires but a small fraction of502

the computation time of the two other algorithms.503

C. Complex Imaging of Biological Cells504

Finally, we show that we can image biological cells by applying505

our complex wave retrieval and phase restoration. In details, we506

acquire the interferogram of tobacco BY-2 cells using a camera507

with larger pixel size (4.8 µm) than the previous experiments,508

in such a way as to ensure that the object wave has a large509

bandwidth: ρ ≈ 2.1, according to cutoff frequency formula510

Eq. (13) in Ref. [47]. This and the angle between the object511

with reference waves also lead to a large numerical overlap:512

NO = 1.73.513

As previously, our complex wave retrieval algorithm uses 9514

Fourier coefficients to parameterize the variations of amplitude515

of the reference wave. We also observe that a 2D polynomial516

of degree 3 is sufficient to approximate well the global phase517

distortion of the complex object wave. We show in Fig. 13 the518

phase reconstruction obtained using different algorithms. It519

should be noted that, because the final phase variation of the520

object is larger than 2π, a further unwrapping may be needed521

after our restoration. However, we also show the result (bottom-522

left image in Fig. 13) without this last step to demonstrate the523

already high quality of the result obtained and a near perfect524

correction of the global phase distortion.525
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degree-5 polynomial fit of the phase distortion︷ ︸︸ ︷

2D FFT of the Raw phase after Our phase restoration Unwrap [57] and fit Unwrap [58] and fit
interferogram complex wave retrieval CPU time: 8.6s CPU time: 546s CPU time: 237s

Fig. 12. Phase restoration from the complex wave retrieved (using the algorithm of Section A) from a real interferogram (2048× 2048 pixels, NO = 1.3,
O/R = 0.7 and ρ = π/2). In addition to visual quality, note the significantly lower computation time required by our method, compared to the
standard unwrap-and-fit algorithms. The standard deviation of the phase in object-free areas (excluding obvious outliers) is about 0.2 radians (≈32
nm height value) for the three methods. Scale bar indicates 20 µm.

Interferogram This paper Baek’s method [23] CS method [24]

CPU time: 1.8 s CPU time: 1 s CPU time: 637 s

W
rapped

phase

Restored phase by this paper Restored phase by this paper [23]+unwrap [58] + [24]+unwrap [58] +
degree-3 polynomial fit + unwrap [58] degree-3 polynomial fit degree-3 polynomial fit

CPU time: 1.8 s CPU time: 82.2 s CPU time: 271 s CPU time: 81 s

R
estored

phase

Fig. 13. Comparison of phase retrieval from an interferogram (1024×1024 pixels) of tobacco BY-2 cells with high bandwidth (ρ ≈ 2.1) and
large numerical overlap (NO = 1.73). The standard deviation of the phase in the object-free region is 0.24 radians (≈ 20 nm) in our method,
0.39 radians (≈ 33 nm) in Baek’s results, and 0.19 radians (≈ 16 nm) in the CS method. Our results exhibit noticeably fewer fringe-like artifacts
than Baek’s result, and a higher resolution than that the CS method. Note that phase unwrapping is still needed after our phase restoration (bottom,
left) because the cell-induced phase variations are beyond 2π. Scale bar indicates 20 µm.

The obvious fringe-like artifacts present in Baek’s wrapped526

phase result carry over to the unwrapped result, in contrast527

with the cleaner image produced by our algorithm and the CS528

method. This phase inaccuracy is also observed in object-free529

regions where the standard deviation in Baek’s result (0.39 ra-530

dians) is significantly larger than in ours (0.24 radians) and CS531

(0.19 radians), arguably making small cellular structures more532

difficult to observe. Again, notice the resolution loss of the CS533

method, likely traded for a better visual quality.534

5. CONCLUSION535

In this paper, we have developed a single-frame complex wave536

retrieval algorithm and an algorithm to remove a global (polyno-537

mial) phase distortion, without resorting to phase unwrapping.538

We have demonstrated extensively by numerical simulations539

and experiments that our CWR provides accurate, robust results540

in a wide range of scenarios: large object bandwidth, overlap be-541

tween twin frequency bands, amplitude ratio between object and542

reference waves. We have in particular proposed a quantitative543

measure of this overlap, the “Numerical Overlap” (NO).544

The main advantages of our complex wave retrieval algo-545

rithm are:546

1. Single-frame acquisition, no need for extra acquisition of547

object-free interferogram or reference wave intensity in con-548

trast with the current state-of-the-art [20–24]. This is partic-549

ularly useful to enable a higher throughput of quantitative550
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phase imaging.551

2. NO & 1: Significant overlap between the frequency bands552

of the twin images and the zeroth order, but also between553

the twin images themselves. This makes it possible to a554

more flexible multiplexing design, and process interfero-555

grams acquired with very diverse incidence illuminations,556

enabling implementation in Optical Diffraction Tomogra-557

phy.558

3. ρ & π/2: Significant increase of the allowed object band-559

width from, e.g., ρ = π/2 (see [23]) up to (ideally)
√

2π; i.e.,560

more than 150% increase, although we have tested experi-561

mentally only an improvement of about 80% (see Section C).562

4. O/R ∼ 1: Large range of amplitude ratios between the563

object and the reference wave (even larger than 1, see sup-564

plement 1 for details). A ratio close to 1 is known to maxi-565

mize the SNR and fringe contrast [50, 51], hence increases566

the accuracy of the recovered complex wave. Having the567

object more clearly visible in the interferogram also avoids568

ill-positioned or defocused image acquisitions.569

5. Efficient numerical implementation (use of FFT’s only) mak-570

ing the algorithm reasonably fast already, and promising571

even faster performance, due to the availability of special-572

ized FFT circuits.573

Removing phase distortions like astigmatism, coma, and574

spherical aberration is necessary when dealing with interfero-575

grams. The main advantages of our phase restoration algorithm576

is that it does not require any prior unwrapping step, making it577

significantly faster than approaches based on unwrapping, with578

no loss of quality. Moreover, due to the occasional failure of un-579

wrapping algorithms when deterministic high-frequency noise580

is present, the quality of our phase restoration algorithm may be581

significantly higher than those approaches. Note, however, that582

in the case of objects that exhibit larger phase variations than 2π,583

a further unwrapping step (albeit, reduced to the object) may be584

necessary after phase restoration.585
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