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ABSTRACT

This paper consider the problem of relaxing the spatial coverage re-
quirement on the mechanical rotation in the direction finding (DF)
approach based on the received power measurements from single
antenna pointing to different directions. Under incomplete spatial
coverage, we show that the least square (LS) solution used to trans-
form the problem into its spectral form is no longer accurate due to
its ill-conditioned system matrix. To overcome this, we propose an
approach based on spatial remodeling of the spatial power measure-
ments such that its spatial periodicity can be adjusted according to
the spatial coverage. The approach also incorporates the Tikhonov
regularization in calculating the LS solution based on the new sys-
tem matrix. Upon arriving at the new spectral form, the Cadzow-
annihilating filter method can then be used to estimate the direction-
of-arrival. Both simulation and experimental results are presented to
show the efficacy of the proposed method.

Index Terms— direction-of-arrival, single antenna direction
finding, annihilating filter, Cadzow denoising.

1. INTRODUCTION

Unlike antenna array based multiple channel direction finding (DF),
single antenna DF requires less stringent receiver implementation
requirements [1–3]. Besides using only one receiver [4], single an-
tenna DF is free from the calibration issue as well as the trade-off
between the inter-element spacing and resolution [5]. Traditional
single antenna DF relies solely on the directivity of the receiving
antenna to locate the direction-of-arrival (DOA) of the transmitting
source. In single-source transmitting case, the DOA is estimated as
the direction at which the received power is the strongest. When ex-
tended to multiple-source transmitting case, its ability to resolve two
closely-separated sources is limited by the antenna beamwidth.

This resolution limitation can be overcome by formulating the
problem as spatial sampling of multiple Diracs whose locations are
the DOAs and the rotating antenna pattern serves as the sampling
kernel [6–8]. This formulation allows the received power to be sim-
plified in a similar Fourier series form and the DOAs can then be
estimated from its Fourier series coefficients.

The Fourier series expansion exploits the fact that the spatial
power profile is a 2π-periodic function of the rotating angle. This in
itself imposes the requirement for the rotating antenna to cover the
full range of 2π rotation. In practice, it may be difficult if not impos-
sible to meet this requirement given the limited degree-of-freedom of
the rotating antenna or its physical constraints. From another point-
of-view, if there exists some pre-defined range of angles in which
the transmitters are located, it becomes impractical to rotate the an-
tenna out of this range. This motivates us to address the single an-

tenna power measurements based DF problem with incomplete spa-
tial coverage.

The approach taken to address the problem is based on spatial
remodeling of the Fourier series expansion. This involves redefin-
ing the spatial periodicity based on the limited spatial coverage. As
the new spatial periodicity is less than 2π, we show that the spatial
power profile is now expressed as a function of the truncated an-
tenna pattern. This truncation will introduce discrepancy between
the spatial power measurements and its new model. This discrep-
ancy causes over-fitting in the least squares (LS) solution for estimat-
ing the Fourier series coefficients, leading to instable and inaccurate
DOA estimation. To prevent this, we incorporate the Tikhonov regu-
larization to the LS solution and utilize the earlier proposed Cadzow
denoising with annihilating filter method to estimate the DOA.

2. BACKGROUND AND SIGNAL MODEL

Consider a single directional antenna receiving the transmission
from K stationary emitters while pointing to the direction θ̃. In
the multipath-free propagation, the received signal at the antenna
is: x(t, θ̃) =

∑K
k=1 g(θ̃ − θk)sk(t), where g(θ̃ − θk) denotes the

antenna attenuation for the signal impinging from θk while the an-
tenna pointing to θ̃. sk(t) is the received signal waveform from k-th
emitters, which includes the antenna effect and the propagation path
loss. Assuming that the K signals are uncorrelated, the received
signal power over a duration T can be well approximated by

p(θ̃) =
1

T

∫
T

|x(t, θ̃)|2dt ≈
K∑

k=1

|g(θ̃ − θk)|2︸ ︷︷ ︸
a(θ̃−θk)

pk (1)

where pk = 1
T

∫
T
|sk(t)|2dt. This approximation is valid under the

assumption that the cross term is negligible.
The antenna pattern a(θ) is a 2π-periodic non-negative func-

tion: a(θ) = a(θ + 2π), 0 < a(θ) ≤ 1, ∀θ; and its bandlimited
characteristics allow us to express in the Fourier series form:

a(θ) =
M∑

m=−M

amejmθ
(2)

As a result, we can further simplify (1) and obtain the similar Fourier
series expression form as

p(θ̃) =

M∑
m=−M

am

∑K

k=1
pke−jmθk︸ ︷︷ ︸

ym(θ)

ejmθ̃
(3)

where amym(θ) is the Fourier series coefficients.
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If the rotating angle θ̃ can be taken from a uniform grid, the
spectral analysis form ym(θ) can be calculated from the discrete

Fourier transform (DFT) of p(θ̃). In the practical scenario where

θ̃ is random, ym(θ) can be solved in a more general form as the
least square (LS) solution to the following linear system of equa-
tions p = Ay(θ) + n, where p = [p(θ̃1), · · · , p(θ̃L)]T , the matrix
A is a L × (2M + 1) matrix with its (l, m)-th element given by

Al,m
def
= amejmθ̃l , the vector y(θ) is a 2M + 1 vector whose el-

ements are ym(θ) with m = {−M,−M + 1, · · · , M}, and n is
the additive noise component. If the linear system is overdetermined
(L ≥ (2M + 1)), we can use the LS solution to compute for y(θ):
ŷ(θ) = (AHA)−1AHp, where the superscript H denotes the ma-
trix conjugate transpose operation. It is worth mentioning that the
LS solution converges to the DFT operation when θ̃l is located at
uniform grid as AHA will form a diagonal matrix, thus reducing
the computational complexity.

In the case where the spatial coverage of the antenna is incom-
plete, the accuracy of the LS solution degrades because the linear
system becomes ill-conditioned [9]. In this paper, we aim to over-
come this problem so that the proposed single antenna power mea-
surements based DF can be applied to a more general case. To be
exact, we propose the extension of single antenna power measure-
ments based DF for the case where the antenna spatial coverage is
constrained within a presumed angular range [θ̃a, θ̃b] in which the
emitters are located. Briefly, given L measurements of the spatial
power p(θ̃l) at directions θ̃l, our goal is to estimate the DOA of the

K emitters θk under the condition that (θ̃l, θk) ∈ Sθ where Sθ de-
notes the angular range defined as

Sθ = {θ ∈ R | θ̃a ≥ θ ≥ θ̃b, θ̃b − θ̃a < 2π} (4)

3. PROPOSED APPROACH

3.1. Redefining Spatial Periodicity

Let τ
def
= θ̃b − θ̃a denote the new spatial periodicity defined based

on the presumed angular range or the range between the left-most
and right-most of the antenna pointing directions. Now the antenna
pattern function a(θ) can be remodeled as a periodic function of τ ,
thus allows us to express it in its new Fourier series expansion

ă(θ) =

Mt∑
m=−Mt

ămejm(2π/τ)θ
(5)

where θ ∈ [θ̃a, θ̃b]. This approximation is made by truncating
the initial 2π-periodic antenna pattern function a(θ) at −τ/2 on
the left and at τ/2 on the right, as well as enforcing the period-
icity at τ : ă(θ) = ă(θ + τ). This implies that the approxima-
tion requires that the truncation error is assumed to be negligible∫ −τ/2

−π
a(θ)e−jmθdθ =

∫ π

τ/2
a(θ)e−jmθdθ ≈ 0.

Observe that the new Fourier series expansion in (5) is a scaled
version of the initial Fourier series expansion by a factor of 2π/τ .
Therefore from the duality property of the Fourier series, the new an-
tenna bandwidth (2Mt + 1) is inversely proportional to the stretch-
ing factor 2π/τ and the new antenna bandwidth can be calculated as
Mt ≈ �τM/2π�, where �·� denotes the ceiling operation.

Subsequently, we can deduce the new Fourier series expansion
for the spatial power measurement p̆(θ) by substituting (5) into the
initial spatial power measurement in (1) as follows

p̆(θ̃) =

Mt∑
m=−Mt

ăm

∑K

k=1
pke−jm(2π/τ)θk︸ ︷︷ ︸

y̆m(θ)

ejm(2π/τ)θ̃
(6)

where ămy̆m(θ) denote its Fourier series coefficients.

Notice that the new spatial power profile expression in (6) can be
seen as the scale version of the original spatial power profile expres-
sion in (3). This means that we can conveniently calculate y̆m(θ)

from the incomplete spatial power measurement p(θ̃), provided that

p(θ̃) is a good approximation of p̆(θ̃): p ≈ Ăy̆(θ) + n. The LS
solution of y̆(θ) = [y̆−Mt(θ), · · · , y̆Mt(θ)]T is

̂̆y(θ) = (ĂHĂ)−1ĂHp (7)

where Ă is the new L× (2Mt + 1) system matrix with its (l, m)-th

element given by Ăl,m
def
= ămejm(2π/τ)θ̃l . Notice that the new sys-

tem matrix is no longer ill-conditioned because of the scaling factor
2π/τ and the vector y̆(θ) has a lower dimension as compared to its
initial representation y(θ) because Mt < M .

To build the matrix Ă for solving y̆m(θ) in (7), we need to find
the unknown coefficients ăm. To calculate this parameter, we can
use the LS regression technique to fit the Fourier series expansion
in (5) through the discretized antenna pattern a(θq) where −τ/2 ≤
θq ≤ τ/2. That is, the coefficients ăm in the vector form c

def
=

[ă−Mt , ă−Mt+1, · · · , ă0, · · · , ăMt ]
T can be calculated using

c = (BHB)−1BHa (8)

where a = [a(θ1), · · · , a(θQ)]T and the Q × (2Mt + 1) matrix B

is composed of Bq,m = ejm(2π/τ)θq . It is important to note that the
regression in (8) requires that Q ≥ (2Mt + 1).

3.2. Tikhonov Regularization
Recall that the LS solution of y̆(θ) requires that p̆(θ̃l) is a good ap-

proximation of p(θ̃l). As p̆(θ̃l) is derived based on the truncated

antenna pattern model in (5) while p(θ̃l) is based on the initial 2π-

periodic function, the mismatch between p̆(θ̃l) and p(θ̃l) is due to
the truncation error. Here, we introduce Tikhonov regularization
term to the LS solution to prevent overfitting of the new spatial power
profile to the received power measurements p(θ̃l). Unlike the single
antenna DF problem with complete spatial coverage, the need for
the regularization term in the single antenna DF problem with in-
complete spatial coverage arises due to this approximation error.

While the LS solution is obtained from minimizing the sum of

square error ‖p− Ăy̆(θ)‖2
2 where ‖ · ‖2 denote �2-norm operation,

the Tikhonov regularization method introduces a regulating term to
the minimization formulation

min
y̆(θ)

‖p − Ăy̆(θ)‖2
2 + α2‖y̆(θ)‖2

2 (9)

where α is the regularization parameter. The explicit solution to the
optimization in (9) is given by

̂̆y(θ) = (ĂHĂ + α2I)−1ĂHp (10)

The choice of the regularization parameter α will determine how
loosely fitted the spatial power measurements to its model. Large α
will produce the solution that is smooth, thus de-emphasizing the
high frequency components and decreasing the solution norm ρ(α)

expressed as ρ(α)
def
= ‖̂̆y(θ)‖2 = ‖(ĂHĂ + α2I)−1ĂHp‖2. On

the other hand, when α is set near to zero, the solution will con-
verge to the LS solution and the residual norm ε(α) will be mini-

mum ε(α)
def
= ‖p − Ă̂̆y(θ)‖2 = ‖p − Ă(ĂHĂ + α2I)−1ĂH‖2.
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Hence, the good setting of α should be balanced between minimiz-
ing the solution and residual norms

αopt = arg min
α

ρ(α) + ε(α) (11)

Although there is no closed-form expression to αopt, the numerical
solution can be obtained using the L-curve method as described in

[10]. Thus, the final estimate of ̂̆y(θ) is given by (10) with the value
α calculated in (11).

Having obtained the good estimate of a typical spectral analy-
sis formulation y̆m(θ), we can now apply the Cadzow-annihilating
filter method for extracting the DOA information from the exponent

terms of ̂̆ym(θ). It is worth mentioning that since the exponent terms
in y̆m(θ) is defined as (2π/τ)θk, the relationship between the poly-
nomial roots zk of the annihilating filter coefficients and the DOA is
now given by zk = e−j(2π/τ)θk . Therefore, the DOA estimates is
calculated using

θ̂k = j(τ/2π) log zk (12)

In summary, the proposed algorithm for single antenna power
measurements based DF with the spatial coverage τ can be listed as
follows

1. Compute the new antenna pattern coefficients ăm using (8).

2. Estimate ̂̆y(α) using (10) with the regularization parameter α
computed using (11).

3. Form a Toeplitz matrix from ̂̆y and apply Cadzow denoising.
4. Compute the annihilating filter coefficients from the K + 1

eigenvectors of the denoised Toeplitz matrix.
5. Find the K polynomial roots zk from the K + 1 annihilating

filter coefficients.
6. The DOA estimates can be calculated using (12).

3.3. Cramér Rao Bound
Here, we extend the Cramér Rao Bound (CRB) derivation from [8]
and obtain a general expression for both complete and incomplete
spatial coverage. Assume that the spatial power measurements gen-
erally follow the signal model in (6) and the approximation error is
included in the additive noise, we have

CRB
−1(θ) = 2 Re

{
diag[r]HD̆HΣ̆−1

y P⊥
Q̆D̆ diag[r]

}
(13)

with the following matrices and vectors definitions: r = [p1, · · · , pK ]T ,

P⊥
Q̆

= I − Q̆
(
Q̆HQ̆

)−1

Q̆H , Q̆ = [q̆1, · · · , q̆K ]T , q̆k =

[e−jN(2π/τ)θk , · · · , 1+2σ2, · · · , ejN(2π/τ)θk ]T , D̆ = ∂
∂(2π/τ)θk

Q̆,

and Σ̆y =
(
Ă†

)
diag{[σ2

p1 , · · · , σ2
pL

]T }
(
Ă†

)H

.
(
ĂHĂ

)−1

ĂH .

Notice that, when the spatial coverage is complete or the periodicity

τ approaches 2π, the term D̆HΣ̆−1
y P⊥

Q̆
D̆ will converge to the term

DHΣ−1
y P⊥

QD defined in the CRB derivation in [8].

4. SIMULATION AND EXPERIMENTAL RESULTS
Consider a directional antenna with the antenna pattern, mathemat-
ically modeled as (2) with M = 11 and its Fourier coefficients am

completely known, as shown in Fig. 1. It is used to receive the
propagating uncorrelated signals impinging from K = 2 sources at
θk = {71.3588◦, 49.3241◦}. As many as L = 26 received power
values are calculated when the antenna is pointing at various direc-
tions from 0◦ to 130◦. The signal-to-noise ratio (SNR) for each
observations is assumed to be -5dB.

Fig. 2 shows the continuous spatial power profile and its discrete
measurements recorded from the received power at random pointing

directions. The DOA estimates are obtained by applying different
variants of the proposed algorithms as compared to the actual DOAs.
For brefity, we use the label ’P1’ and ’P2’ as the proposed method

where ̂̆y is calculated using (10) and (7), respectively. And the label

’[8]’ refers to the previously proposed method in [8] where ŷ (not ̂̆y)
is computed using the LS solution. As shown in Fig. 2, we can see
that the Tikhonov regularization plays an important role in signifi-
cantly increasing the accuracy of the estimation when the operating
SNR is relatively low.
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Fig. 1. Comparison between a typical realization of antenna pattern
a(θ) simulated according to (2) with M = 11 and its truncated and
remodeled as ă(θ) expressed in (5) with τ = 130◦.
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Fig. 2. Illustration of the continuous spatial power profile and its dis-
crete measurements in the noiseless case, with the estimated DOAs.

In the following, we consider Monte Carlo simulations with
1000 realizations with the same parameters as the previous simu-
lation over a wide range of SNR value. From the results of these
realizations, we then calculate the root-mean-square error (RMSE)
for every SNR value evaluated. Fig. 3 shows the RMSE plots
as a function of SNR. In general, the RMSE reduces as the SNR
increases. In comparison with the results obtained from applying
the method without Tikhonov (P2), the method with Tikhonov (P1)
achieves better robustness in low SNR environment. Although the
performance of both P1 and P2 converges to that of the lower bound
as SNR increases, the method P1 first converges at 0 dB SNR while
the method P2 achieves that after 5 dB SNR.

In the following, we present the experimental results using the
hardware realization of the single antenna DF system described in
[8]. The received power measurements data is recorded from the
experiments conducted at the foyer of Research Techno Plaza (RTP),
where two sources are setup to be transmitting from 242o and 286o

with respect to true north as depicted in Fig. 4.
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Fig. 3. RMSE performance plot as a function of SNR, in comparison
with the square root of CRB in (13).

As many as L = 14 received power measurements are recorded
while the antenna is rotated pointing to random directions from 120◦

to 360◦. The normalized received power measurements as a function
of the pointing directions are shown in Fig. 5. We first remodeled
the antenna pattern with the periodicity defined as τ = 240◦ and
the new Fourier coefficients are calculated using (8). Note that the
initial antenna pattern is modeled using the Fourier series expansion
with M = 8 while the new model uses only Mt = 6 coefficients.
The reduction in the antenna pattern bandwidth from (2M + 1) to
(2Mt + 1) implies that lesser power measurements L is required
to satisfy the requirement of the LS solution. In this case, the new
antenna pattern requires only 13 or more measurements.

The estimation result using the method P1 is compared with
the actual DOAs and the results obtained from applying the earlier
method in [8]. We can conclude from these results that the proposed
method helps to recover the estimation from the break down in the
case of incomplete spatial coverage measurements.

5. CONCLUSSION

In this paper, we address multiple signal DOA estimation problem
based on the received power measurements from single antenna
pointing to different directions with limited spatial coverage. Our
approach is based on redefining the periodicity of the spatial power
measurements according to its spatial coverage, so that we can ap-
proximate the vector of power measurements as a new linear matrix
equation with the system matrix that is no longer ill-conditioned.
This motivates us to propose the LS solution with regularization
that transforms the problem into a spectral analysis problem so that
the DOAs can be estimated using the Cadzow-annihilating filter
method. We demonstrated using simulations as well as experimen-
tal results the efficacy of the proposed approach. Furthermore, we
also extended the CRB derivation and show that the performance
converges to the CRB.
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