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ABSTRACT:
In this paper, we present a gridless algorithm to recover an attenuated acoustic field without knowing the range

information of the source. This algorithm provides the joint estimation of horizontal wavenumbers, mode amplitudes,

and acoustic attenuation. The key idea is to approximate the acoustic field in range as a finite sum of damped

sinusoids, for which the sinusoidal parameters convey the ocean information of interest (e.g., wavenumber,

attenuation, etc.). Using an efficient finite rate of innovation algorithm, an accurate recovery of the attenuated acoustic

field can be achieved, even if the measurement noise is correlated and the range of the source is unknown. Moreover,

the proposed method is able to perform joint recovery of multiple sensor data, which leads to a more robust field

reconstruction. The data used here are acquired from a vertical line array at different depths measuring a moving

source at several ranges. We demonstrate the performance of the proposed algorithm both in synthetic simulations and

real shallow water evaluation cell experiment 1996 data. VC 2022 Acoustical Society of America.
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I. INTRODUCTION

In a shallow water environment, normal mode theory

has been widely used to describe the propagation character-

istics of underwater sound,1 providing a sparse representa-

tion of the acoustic field.2–4 The information of interest,

such as horizontal wavenumbers, are encoded in the spatial

distribution of the attenuated acoustic field, which plays an

important role in a wide variety of ocean applications, such

as localization,5–7 geoacoustic inversion,8,9 time reversal

mirror,10,11 tomography,12,13 etc. Accurate and robust recov-

ery of the acoustic field, including the estimation of horizon-

tal wavenumbers, mode amplitudes, and propagation

attenuations, is at the heart of underwater acoustics.

In this study, a gridless algorithm is proposed to recover

an attenuated acoustic field without knowing the range of

the source. The key idea is to approximate the attenuated

acoustic field (in range) as a finite sum of damped sinusoids

in which the information of interest is encrypted. An effi-

cient high-resolution sparse algorithm, the finite rate of

innovation (FRI) algorithm,14,15 is used to accurately

retrieve the damped sinusoidal parameters (complex wave-

numbers plus amplitudes). The data used in this paper are

acquired from a moving source at several ranges and

recorded by a vertical line array (VLA) at different depths.

By approximating the acoustic field as a finite sum of

damped sinusoids, we achieve acoustic field reconstruction

via a parametric model fitting, for which its parameters are

inextricably linked to wavenumber estimation. In other

words, wavenumber estimation is a classical and important

topic in underwater acoustic applications. It has been thor-

oughly studied in two experimental settings, including hori-

zontal line arrays (HLAs) and fixed source settings2,16 or

VLAs4,17 and mobile source settings.3 Usually, the problem

is formulated as a spatial spectral estimation, which leads to

several well-known algorithms, such as spatial Fourier

and Hankel transform.16,18 They obtain the wavenumber

spectrum by integrating the acoustic pressure over range.

However, a large range aperture (i.e., a very long HLA or

synthetic aperture) is needed to guarantee the resolution of

adjacent wavenumbers, which is infeasible in practice.

In the past few decades, many high-resolution methods

have been proposed to estimate wavenumbers. Among them,

Prony’s method,19 autoregressive spectral estimators,20,21 and

subspace-based methods22,23 are the most common. Although

these standard high-resolution techniques can improve the

spatial resolution effectively, strict assumptions on the mea-

surement noise are still required, e.g., additive white

Gaussian noise. These assumptions are not in line with the

reality, leading to inaccurate acoustic field reconstruction.

Taking advantage of the sparsity of the propagating modes,

the conventional compressed sensing (L2-CS) is proposed to

handle wavenumber estimation in underwater acoustics and has

attained good performance in practical applications.2 However,

the conventional L2-CS method approximates a continuous

parameter space with a finite discretized grid. Hence, inaccuracy
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occurs when the parameters are not on the grid.24–26 To address

this issue, the Atomic-CS method is developed to estimate the

parameters in continuous domain by solving a semi-definite pro-

gramming problem. It overcomes basis mismatch and shows its

superior performance.3,27,28

Although these high-resolution techniques mentioned

above have achieved great success, there are still unresolved

issues in practice. Most wavenumber estimation methods rely

on the range information of the source to handle the transmis-

sion loss (TL), e.g., cylindrical spreading.2,3,6,18,21,22,29,30

They are not robust enough in the absence of the source range

knowledge (see Fig. 1). Moreover, the computational cost of

most high-resolution algorithms [e.g., L2-CS, atomic-CS,

estimating signal parameter via rotational invariance tech-

nique (ESPRIT), multiple signal classification (MUSIC)]

scales with the number of range samples and sensors, which

is time-consuming in practical applications.14,15

As for the complex wavenumber/frequency estimation,

our postulate is that any sum of damped sinusoids that fits our

data within a predefined mean square error (MSE) is a valid

solution to our problem, i.e., we do not aim to minimize the

MSE between the recovered field and measurements. In other

words, we do not assume any statistical model about noise,

but only ensure that the reconstruction MSE is within the

noise variance (i.e., “MSE budget”). Moreover, this MSE cri-

terion also provides a robust way to determine the order of

the model: the smallest number of sinusoids for which this

sum of damped sinusoids is a valid solution.

Compared with the existing high-resolution methods,

the proposed method does not require a priori range of the

source to compensate for the cylindrical spreading, instead,

using the damping factor to approximate the TL (caused by

the cylindrical spreading, absorption of medium, and absorp-

tion at the interface). In this case, the attenuated acoustic field

can be approximated as a finite sum of damped sinusoids—a

parametric model (i.e., wavenumbers, mode amplitudes, and

damping factors). By fitting the measurements with the para-

metric model, we show that our algorithm works accurately

on challenging acoustic field recovery in both simulations

and real SWellEx-96 data regardless of model mismatch (see

Secs. IV and V). Moreover, our algorithm is very efficient, in

that it is able to process large amounts of data within a short

time (see Sec. IV A 4).

II. PROBLEM FORMULATION USING FRI

A. Signal model

The normal mode theory is widely used for low-

frequency sound propagation in shallow water. Given a sin-

gle frequency f0 point source at depth zs in a range-

independent ocean waveguide environment, the pressure is

received by a sensor at depth zr and range r. The acoustic

field can be expressed by a sum of M propagative modes

sðr; zrÞ ¼ A0

XM

m¼1

/mðzsÞ/mðzrÞ
ejkr;mrffiffiffiffiffiffiffiffiffiffi

kr;mr
p ; (1)

where A0 ¼ S0ð f0Þejp=4=
ffiffiffiffiffiffi
8p
p

qðzsÞ and M is the number of

propagative modes. kr;m and /m are horizontal wavenumber

and mode depth function of m-th mode. The quantity S0ð f0Þ

FIG. 1. (Color online) Acoustic field

reconstruction from single-sensor

noisy measurements (colored noise,

SNR¼ –10 dB) without knowing range

of the source. In contrast to FRI, stan-

dard high-resolution wavenumber esti-

mation techniques like L2-CS are not

robust enough to achieve an accurate

recovery in practice. The energy of sig-

nal noise increases rapidly with range. In

this figure, we plot the range of source

for ease of performance evaluation.
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denotes the source spectrum at frequency f0 and qðzsÞ is the

water density at depth zs.

Given an L-element VLA at depths z0, z1,…, zL�1, the

sound pressure at each sensor is measured over a constant

time interval with ranges r0, r1,…, rN�1. Note that the pres-

sure is uniformly sampled with sampling interval Dr, i.e.,

rn ¼ r0 þ nDr. With known range of the source r0, the

above is a classical wavenumber estimation problem, and

some standard high-resolution methods, e.g., L2-CS2 and

Atomic-CS,3 rely on the range of the source to compute the

contribution of the attenuation (i.e., cylindrical spreading

1=
ffiffiffiffi
rn
p

). However, these methods are not robust enough in

the absence of the range of the source r (see Fig. 1).

In practice, when r0 is large enough, the pressure of the

l-th sensor can be approximated accurately as a finite sum of

damped sinusoids (FRI signal), and it can be rewritten by

sn;l ¼ A0

XM

m¼1

/mðzsÞ/mðzr;lÞ
ejkr;mrnffiffiffiffiffiffiffiffiffiffiffi

kr;mrn

p
’
XM

m¼1

cm;le
ð�amþjxmÞn;

n ¼ 0; 1;…;N � 1 and l ¼ 0; 1;…; L� 1; (2)

where FRI amplitude cm;l ¼ A0/mðzsÞ/mðzr;lÞejhmðr0Þ=
ffiffiffiffiffiffiffiffi
kr;m

p
is proportional to the amplitude of m-th mode of l-th sensor.

hmðr0Þ is the phase term associated with r. FRI frequency

xm ¼ kr;mDr is proportional to the horizontal wavenumber.

am represents the damping factor to compensate for the

cylindrical spreading. Notably, the exponential attenuation

e�amr is used to approximate the cylindrical spreading 1=
ffiffi
r
p

in Eq. (2). This makes it possible to recover the acoustic

field using the robust FRI algorithm without knowing the

range of the source r (i.e., r0 is unknown). By approximating

the acoustic field as a finite sum of damped sinusoids, we

achieve acoustic field reconstruction via a parametric model

fitting. We highlight again, in this paper, what is known to

us is only the spatial sampling interval Dr, in the absence of

the range of source r.

In fact, the damping factor am contains the contributions

of all factors that cause acoustic field attenuation (e.g., the

cylindrical spreading, absorption of the medium, absorption

at the interface, etc). Note that xm and am denote the wave-

number and damping factor of the m-th sinusoid, which are

common to all sensors. However, the amplitudes cm;l of

these damped sinusoids are expected to vary across all

sensors.

In Eq. (2), it provides a parametric sparse representation,

which makes it possible to accurately recover the acoustic

field when the range r is unknown. As suggested by Eq. (2),

this problem can be formulated as a high-resolution multi-

sensor (complex) wavenumber estimation, which has been

thoroughly studied.3,28,31 However, these high-resolution

techniques are not robust enough to retrieve the model

parameters due to correlated noise corruption, signal distor-

tion and model mismatch (see Fig. 1). For this reason, we use

an FRI (sparse) approximation approach instead. By fitting

the acoustic data in the sparse domain, we will see that accu-

rate retrieval of the information encoded within the acoustic

data are possible, despite the strong noise corruption.

B. FRI approximation

FRI approximation consists, first, in transforming the

damped sinusoidal signal (i.e., acoustic field) into a sparse

signal. More specifically, by computing the discrete Fourier

transform (DFT) of a sum of M damped sinusoids, we get a

sum of Dirichlet sinc kernels, which finally can be expressed

in the form of a ratio of two polynomials in d ¼ e�jð2pn=NÞ

(Ref. 14),

ŝn;l ¼
XN�1

n0¼0

sn0;le
�j 2pn0n=Nð Þ

¼
XN�1

n0¼0

XM

m¼1

cm;le
ð�amþjxmÞn0e�j 2pn0n=Nð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sum of geometric progression

¼
XM

m¼1

cm;l
1� eN �amþjxmð Þ

1� ze �amþjxmð Þ

¼ PM�1;lðdÞ
QMðdÞ

; (3)

where the numerator, PM�1;lðdÞ, and the denominator,

QMðdÞ, are polynomials of degree M – 1 and M, respectively.

The parameters xm and am, common to all the sensors, are

uniquely determined by a unique polynomial QMðdÞ,
whereas the different amplitudes of each sensor result in dif-

ferent PM�1;lðdÞ; l ¼ 0;…; L� 1.

As a result, in noisy conditions, the sparse reconstruc-

tion of multi-sensor damped sinusoids can be formulated as

the following least-square fitting problem according to

Parseval’s identity:

min
QM ;PM�1;l

XL�1

l¼0

XN�1

n¼0

����ŝn;l �
PM�1;l e�j2pn=Nð Þ

QM e�j2pn=Nð Þ

����2: (4)

Once the denominator QM and numerator PM are

retrieved, the wavenumber xm and damping factor am are

given by

xm ¼ Real j log dmð Þð Þ;
am ¼ Real log dmð Þð Þ; (5)

where dm denotes the m-th zeros of QM. The amplitude cm;l

can be calculated by

cm;l ¼ �
Nz�1

m Pm�1;l zmð Þ
1� z�N

m

� �
Q0M zmð Þ

: (6)

However, the minimization in Eq. (4) is a non-convex

problem, and difficult to solve directly. In order to find a

good approximation of the solution of Eq. (4), we choose
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the linear iterative strategy14,32 to make the MSE in Eq. (4)

decrease fast,

min
Q
ðiÞ
M ;P

ðiÞ
M�1;l

XL�1

l¼0

XN�1

n¼0

Q
ðiÞ
M ðe�j2pn=NÞŝn;l � P

ðiÞ
M�1;lðe�j2pn=NÞ

Q
ði�1Þ
M ðe�j2pn=NÞ

�����
�����
2

subject to

ð2p

0

Q
ð0Þ
M ðe

�jhÞQðiÞM ðe�jhÞdh ¼ 2p; (7)

where Qi
M and Pi

M denote the results of the i-th iteration. Q0
M

is the initialization. The candidates for denominator QM are

obtained by solving iteratively for i ¼ 1 � � � imax.Ð 2p
0

Q
ð0Þ
M ðe

�jhÞQðiÞM ðe�jhÞdh ¼ 2p denotes the linear constraint

to attain an unique solution to Eq. (7). We construct ade-

quate candidates and pick the one for which the MSE

between the recovered field and measurements is the

smallest.

As soon as the fitting error is less than a predefined

MSE budget, the approximate solution obtained is suffi-

ciently accurate in practice. We reinitialize Q
ð0Þ
M and repeat

the process, if no iterates gives a fitting error smaller than

the MSE budget after the maximum number of iterations

(¼ imax) has been reached. In fact, FRI performs exact

model-fitting in a domain where the signal is sparse, i.e., the

signal energy is highly concentrated that provides stronger

robustness against noise corruption. The detailed algorithm

implementation is shown in Sec. III.

C. MSE budget criterion

In underwater acoustic applications, the measurement

noise is correlated and colored, hence a white noise assump-

tion is not realistic. Moreover, only limited noise statistics,

such as mean and variance, is available in practice, which

makes it unfeasible to develop a reliable statistical model of

the measurement noise. As a result, instead of minimizing

the MSE between the recovered field and measurements,

our postulate is that any sum of M damped sinusoids is a

valid solution to our problem as soon as the MSE criterion

MSErec;l � r2
l ; l ¼ 0;…; L� 1 (8)

is satisfied, where MSErec;l is the MSE between the l-th sen-

sor measurements and the recovered field. r2
l is the noise

margin of the l-th sensor, assumed to be known (e.g.,

obtained from pre-measurements when there is no source in

the observation area).

D. Model order

The other problem is the estimation of model order.

With the MSE budget criterion, a natural way to determine

the order of the model is to choose the smallest value of M
for which the fitting error is no larger than the MSE budget.

An efficient and fast implementation of this parsimony prin-

ciple uses a line dichotomous search that is explicitly

described in Ref. 33.

III. ALGORITHM IMPLEMENTATION

In this section, we give the detailed algorithm imple-

mentation. First, the polynomials in Eq. (3) can be expressed

in vector form,

fPM�1;lðe�j 2pn=Nð ÞÞgN�1
n¼0 ¼ UN;Mpl;

fQMðej� 2pn=Nð ÞÞgN�1
n¼0 ¼ UN;Mþ1q; (9)

where pl 2 ZM�1 and q 2 ZðMþ1Þ�1 denote the polynomial

coefficients of PM�1;lðdÞ and QMðdÞ, respectively. UN;N0

¼ ½ejð2pn0n=NÞ� is the N � N0 DFT matrix.

Now, we define ~p ¼ ½pT
0 � � � pT

L�1�
T 2 ZLM�1 by stack-

ing all the vectors pl, Ri�1 ¼ diagfUN;Mþ1qi�1g 2 ZN�N

denotes the diagonal matrix made of the vector UN;Mþ1qi�1,

and ŝl ¼ ½ŝ0;l � � � ŝN�1;l�T 2 ZN�1 is the data vector of the l-th
sensor (the raw data of each sensor are normalized by their

noise margin rl to reduce the number of iterations needed to

satisfy the MSE criterion.). Applying the linear constraint

qH
0 q ¼ 1 (q0 is randomly initialized) to ensure the unique-

ness of the solution, Eq. (7) can be rewritten in matrix form

min
qi;~p i

jjAi�1qi � Bi�1~pijj
2

s:t: qH
0 qi ¼ 1; (10)

where Ai�1 and Bi�1 are defined as

Ai�1 ¼

diag ŝ0f g
diag ŝ1f g

..

.

diag ŝL�1f g

2
666664

3
777775ðRi�1Þ�1

UN;Mþ1 2 ZNL�ðMþ1Þ;

Bi�1 ¼ IL � R�1
i�1UN;M

� �
2 ZNL�M; (11)

where IL denotes the L� L identity matrix and � denotes

the Kronecker product. Assume that qi�1 have been calcu-

lated at iteration i – 1, the minimization problem at iteration

i in Eq. (10) results in the update

qi

�~pi

" #
¼ k Ai�1;Bi�1½ �H Ai�1;Bi�1½ �
� ��1 q0

0

" #
; (12)

where k is such that qH
0 qi ¼ 1 is satisfied. In general, 5 ran-

dom initializations and imax ¼ 20 are sufficient to obtain a

solution that fits the data within the expected noise level

r2
noise. The main procedure is summarized in Algorithm 1.

IV. SIMULATION

In this section, our FRI approximation algorithm is

evaluated in various conditions. To perform these tests, the

algorithm is implemented in MATLAB 2019b on a computer

with an i7-7700 CPU and 16 G of RAM. For comparison

purposes, the L2-CS technique is implemented in a classical

form of minimizing l1-norm with l2-norm constraint2 and

Atomic-CS is implemented in a form of minimizing atomic

norm,3 using the CVX (convex) toolbox in the MATLAB
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environment. In the situation of multi-sensor acoustic mea-

surements, ESPRIT and MUSIC are usually based on the

covariance matrix.22

Note that, for atomic-CS, the wavenumbers or frequen-

cies are estimated by finding the roots of the 2ðN � 1Þ-order

polynomial on the unit circle.3,27,28 However, due to the

effect of attenuation, the ground truths (complex wavenum-

bers or frequencies) do not fall on the unit circle. Therefore,

atomic-CS is not very suitable for dealing with the damped

sinusoids in this paper. For comparison purposes, we find M
roots nearest to the unit circle as the estimated results.

In order to evaluate the algorithm performance, the

SNR of multi-sensor signal is defined as

SNR ¼ 10 log

XL�1

l¼0

jjsljj2

XL�1

l¼0

r2
l

; (13)

where sl denotes the signal samples of l-th sensor and r2
l is

the corresponding noise level.

A. Performance analysis

1. Performance curve

In the presence of additive white Gaussian noise, the

Cram�er-Rao lower bounds (CRLB)34,35 provides the best per-

formance in statistical sense (under unbiasedness assumption).

To test the performance of multi-sensor FRI approximation, the

root mean square error (RMSE) of frequency is given by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

1

M

XM

m¼1

xm � x̂mð Þ2
 !vuut ; (14)

where xm is the ground truth, and x̂m is the estimated fre-

quency. The RMSE of the damping factor am is defined in a

similar way. For the damped sinusoid signal, the CRLBs for

the frequency x and damping factor a are given by34,35

r2
x ¼ r2

a ¼
ð1� c2Þ3ð1� c2NÞ

2Lq0 �N2c2Nð1� c2Þ2 þ c2ð1� c2NÞ2
h i ; (15)

where q0 is the SNR and c ¼ je�aj.
Figures 2(a) and 2(b) display the RMSEs of frequency

and damping factor with regard to SNR, respectively, for

the case of a single damped sinusoid sampled at 21 locations

in 10 sensors. The computed RMSE curves of our FRI

method reach the CRLBs34,35 (up to SNR ¼ �5dB), which

demonstrates its good performance. L2-CS and MUSIC can

only deal with real-valued frequencies, which cannot meet

the requirements of ocean acoustic applications. As can be

seen in Fig. 2, other techniques like ESPRIT and atomic-CS

are not sufficiently robust to retrieve complex-valued fre-

quencies from noisy data.

2. Multi-sensor enhancement

In this part, the multi-sensor enhancement of our FRI

algorithm is investigated. Figures 3(a) and 3(b) present the

ALGORITHM 1: FRI approximation algorithm.

Input: Multi-sensor measurements fsn;lgl¼0���L�1
n¼0���N�1,

1: noise level fr2
l gl¼0���L�1.

2: for loop¼ 1 to max. initializations do

3: Initialize q with a random vector q0;

4: for i¼ 1 to max. iterations do

5: Build the matrices involved in (10) with qi�1, such as Ai�1; Bi�1,

and etc;

6: Update qi and ~p i by solving (10);

7: if
XN�1

n¼0

jŝn;l �
PM�1;lðdÞ

QMðdÞ
j2 � r2

l , for all l then

8: Terminate all loops;

9: end if

10: end for

11: end for

12: q ¼ qi; ~p ¼~pi;

13: Calculate fxmgm¼1���M; famgm¼1���M and fcm;lgl¼0���L�1
m¼1���M using (5) and (6).

Output: The frequencies fxmgm¼1���M , damping factor famgm¼1���M , ampli-

tudes fcm;lgl¼0���L�1
m¼1���M , and recovered signal fsn;lgl¼0���L�1

n¼0���N�1.

FIG. 2. (Color online) Comparing the performance curve (averages over 5000 realizations) of ESPRIT, MUSIC, L2-CS, atomic-CS and FRI with CRLB. (a) RMSE

of frequency. (b) RMSE of damping factor. M¼ 1 damped sinusoid (x1 ¼ 0:75; a1 ¼ 0:02), N¼ 21 samples, and L¼ 10 sensors (additive white Gaussian noise).

FRI approaches the CRLBs up to a low SNR of�5 dB. Common techniques such as L2-CS and MUSIC, can only work with undamped data, which do not meet the

requirements of the recovery of attenuated acoustic field. Other techniques like ESPRIT and Atomic-CS are not sufficiently robust in the presence of noise.
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RMSEs of frequency and damping factor versus the number

of sensors with SNR¼ 0, 5, and 10 dB. RMSEs decrease as

the number of sensors increases, which proves that multi-

sensor samples can effectively improve the accuracy of esti-

mation. This enhancement is of great significance in practical

applications with high noise levels.

3. Robustness to input noise level

In this section, the robustness of FRI to input noise level

is also investigated. Figures 4(a) and 4(b) show the RMSEs

of frequency and damping factor versus the bias of the MSE

budget. Our FRI is robust to the inaccuracy of the input

MSE budget. Note that, when the MSE budget is not small

enough to break out of the loop, FRI runs for a fixed number

of iterations and initializations and chooses the reconstruc-

tion that yields the minimum MSE.

4. Computation time

The effects of the number of sensors and samples on

computation time for L2-CS, atomic-CS, and FRI are inves-

tigated in this part. L2-CS runs on 200 grids. As shown in

Fig. 5, the computations time of L2-CS and atomic-CS

increase rapidly with the number of samples and sensors.

However, the computation time of our FRI is almost

unchanged. FRI requires QR decomposition of matrices

Ai�1 2 C
NL�ðMþ1Þ and Bi�1 2 C

NL�ML in Eq. (10), which

can be performed at very low cost. Note that the matrix Bi�1

is repetitive along the diagonal, so it only needs QR decom-

position of a small matrix Ri�1UN;M 2 C
N�M. Therefore,

the computation time of our FRI mainly scales with the

number of sinusoids M but varies very slowly with the num-

ber of samples and sensors, as seen in Fig. 5. This allows us

to process large amounts of real data in various real-time

applications. On the other hand, the computation cost of

standard techniques in ocean acoustics mainly depends on

the number of samples N, which makes it difficult to satisfy

the requirements of real-time applications (e.g., tracking,

localization, etc.).

B. FRI sparse approximation in underwater acoustics

As shown in Fig. 6, the simulation setting are as fol-

lows. The density qb, sound speed cb, and attenuation ab of

sea bottom are 1.6 g=cm3, 1584 m=s, and 0.2 f 0:8dB=k,

where f is frequency in kHz and k is wavelength in meters.

The depth of water is 60 m. The source emits a single-

frequency signal at a depth of 30 m. Six sensors of VLA are

at depths of 10, 20, 30, 40, 50, and 60 m. The source gradu-

ally moves away from the receiving array, and the range

FIG. 3. RMSE (averages over 10 000 realizations) for FRI reconstruction versus the number of sensors with SNR¼ 0, 5, and 10 dB. (a) RMSE of frequency.

(b) RMSE of damping factor. Note that M¼ 1 damped sinusoid, and N¼ 21 samples (additive white Gaussian noise).

FIG. 4. (Color online) RMSE (aver-

ages over 10 000 random realizations)

for FRI versus bias of the input MSE

budget. Note M¼ 2 damped sinusoids,

N¼ 21 samples, and L¼ 3 sensors

(SNR¼ 20, 15, and 10 dB).
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sampling interval of the acoustic field is Dr ¼ 2 m. The

acoustic field is simulated with KRAKEN toolbox.36 Note that,

in this paper, what is known to us is only the spatial sam-

pling interval Dr, in the absence of the range of source r. In

simulations and experiments, we plot the range of source for

ease of performance evaluation.

1. Wavenumber estimation

As for the mode wavenumber estimation, the common

methods such as Fourier transform, MUSIC, L2-CS, and

atomic-CS assume that the range of the source r is known to

compute the cylindrical spreading 1=
ffiffi
r
p

.2,3,6,18,21,22,29,30

They are not robust enough in the absence of the range of

moving source.

Here, for visualization purpose, we calculate the ensem-

ble amplitude jcmj associated with the m-th wavenumber by

the incoherent superposition of each sensor

jcmj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL�1

l¼0

jcm;lj2
vuut ; (16)

where cm;l is the amplitude associated with l-th sensor.

Figure 7(a) shows the estimation results of MUSIC,

ESPRIT, L2-CS, Atomic-CS, and FRI at the source fre-

quency of 100 Hz. The range is from 100 to 300 m with the

sampling interval of 2 m. The common methods L2-CS,

Atomic-CS, ESPRIT, and MUSIC are not able to retrieve all

the three wavenumbers and also recover non-existing wave-

numbers due to the absence of the range of the source and

colored noise. FRI, instead, can locate all wavenumbers suc-

cessfully by compensating for TL using damping factor am.

It provides accurate and robust wavenumbers estimation

with super-resolution.

In order to further verify the performance of the FRI

algorithm, we test it at different source frequencies

(50–100 Hz). Figure 7(b) shows the estimation results. Other

simulation settings are the same as Fig. 7(a). Our FRI

locates all wavenumbers accurately without knowing the

range of the source.

2. Acoustic field reconstruction

The actual marine environment is complex due to the

influence of winds, waves, tides, and currents. As a result, the

underwater acoustic field is often corrupted by a strong envi-

ronmental noise,37–40 which seriously affects the subsequent

processing.41,42 In this part, we investigate the effectiveness

of the parametric sparse representation, which approximates

the acoustic field with a finite sum of damped sinusoids and

recovers the acoustic field from the very noisy data.

As can be seen in Fig. 8, commonly used high-

resolution methods are unable to achieve an accurate

FIG. 5. (Color online) Computation time (averages over 1000 realizations) of ESPRIT, MUSIC, L2-CS, atomic-CS, and FRI versus (a) the number of sam-

ples N (the number of sensors L¼ 3) and (b) the number of sensors L (the number of samples N¼ 21). Note that M¼ 2 damped sinusoids, and SNR¼ 10 dB.

The computational cost of FRI mainly depends on the model order M, in contrast with standard techniques in ocean acoustics which scale up with the num-

ber of samples N, becoming increasingly inefficient when larger amounts of data need to be processed.

FIG. 6. (Color online) (a) Simulation

environment schematic diagram.

qb; cb, and ab denotes the density,

sound speed, and attenuation of sea

bottom, where f is frequency in kHz

and k is wavelength in meter. A VLA

is deployed at depths 10, 20, 30, 40,

50, and 60 m, respectively. A source

that emits a single-frequency signal

moves away from the VLA with range

sampling interval 2 m. (b) Background

sound speed profile.
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recovery of the acoustic field from the raw data due to the

absence of the range of the source and intricate noise. Here,

the range is set from 2000 to 7000 m with the sampling

interval of 2 m and the source frequency is 100 Hz. Figure 9

shows details of the FRI recovery of acoustic field. FRI

retrieves the hidden pure acoustic field from the raw data

accurately, even in high noise levels: here, the SNR of the

colored noise is �10 dB and yet the SNR of the FRI-

recovered acoustic field is 20.71 dB. The single-sensor

SNRs for raw data at depths of 10, 20, 30, 40, 50, and 60 m

are �14.13, –9.78, –9.14, –10.30, –8.16, and �10.48 dB,

respectively. After for FRI recovery, these SNRs become

16.73, 20.85, 24.84, 20.42, 21.80, and 18.64 dB, respec-

tively. Our FRI provides an efficient representation and

accurate recovery for the acoustic field.

3. Transmission loss estimation

Transmission loss (TL) describes the energy attenuation

of the acoustic field underwater and plays an important role

in sonar performance prediction.1,43,44 It is defined as

FIG. 7. (Color online) Estimation

results of MUSIC, ESPRIT, L2-CS,

atomic-CS, and FRI. The data consist of

6 sensors corrupted by colored noise

SNR¼ 15 dB. The range is from 100 to

300 m with the sampling interval of 2 m.

(a) Wavenumber estimation with source

frequency 100 Hz. (b) Wavenumber esti-

mation with source frequency

50–100 Hz. Background color represents

the DFT. “•” denotes the ground truth.

“�” denotes the estimated results by

FRI. Because the wavenumbers are

closely located, a robust high-resolution

technique is required.

FIG. 8. (Color online) Reconstruction of a simulated acoustic field at source frequency 100 Hz. The raw data consist of 6 sensors with N¼ 2500 range sam-

ples (the range is from 2000 to 7000 m with a sampling interval of 2 m). The multi-sensor SNR of the raw data are –10 dB corrupted by colored and (inter-

sensor) correlated noise. Only the raw data and the reconstructions at depth of 20 m are shown. Standard high-resolution methods in ocean acoustics are not

robust enough to recover the acoustic field due to the intricate environmental noise. The energy of signal noise increases rapidly with range.
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TL ¼ 20 log
jsð1; zrÞj
jsðr; zrÞj

	 

;

where the reference value (usually known) sð1; zrÞ is the

acoustic amplitude at r¼ 1 m.

In this part, we investigate the effectiveness of approxi-

mating TL with damping factor am. Figure 10 indicates the

TL at different depths with multi-sensor SNR ¼ �10 dB.

The simulation settings are same as Fig. 9. For the raw data,

the acoustic propagation characteristics are completely bur-

ied under strong noise and it is hard to predict the sonar per-

formance correctly. Our FRI compensates the TL well using

the damping factor am instead of assuming that the range of

the source is known. Applying the FRI approximation algo-

rithm, we retrieve the TL accurately (multi-sensor SNR ¼
19:81 dB). The raw single-sensor SNR at depths of 10, 20,

30, 40, 50, and 60 m are �14.17, –9.83, –9.12, –9.92, –8.61,

and �10.33 dB, respectively. After FRI recovery, the single-

sensor SNRs at depths of 10, 20, 30, 40, 50, and 60 m are

17.00, 19.18, 19.64, 21.53, 20.74, and 18.82 dB, respec-

tively. Thanks to the robust FRI approximation, the energy

loss of acoustic field can be accurately recovered, which is

of particular interest in sonar detection.

V. SWELLEX-96 EXPERIMENT

In this section, the performance of our FRI approxima-

tion algorithm is further validated on real acoustic data

collected from the complex shallow water environment. The

raw data are acquired from the SWellEx-96 experiment

Event S5 that was conducted near San Diego, CA in the

spring of 1996. During the experiment, from 23:15 10 May

to 00:30 11 May, two sources transmitting a unique set of

tones in depths of about 9 and 54 m were towed from south-

west to northeast. The data were collected by a 21-sensor

VLA spanning in a depth from 94.125 to 212.25 m (sam-

pling frequency ¼ 1500 Hz). In this paper, we focus on the

deeper source at a frequency of 49 Hz, with the range dis-

tance to the VLA changing from 8 to 3 km (see Fig. 11).

In practice, the signal is collected by sensors in time

domain, and the time-range transformation is necessary as

the acoustic field is characterized by the range and

depth.3,6,45 Assuming that the range between the source and

VLA is invariant in a very short time (e.g., a duration of

3 s), the time signal can be transformed into range signal.

This is a reasonable assumption as the underwater sound

speed (�1500 m/s) is far larger than the speed of the source

(�2.5 m/s).

Notice that the experiment involves a moving source

with inadequate GPS data, which results in a large distortion

of acquired acoustic measurements.3,6,45 Moreover, the col-

lected data are further corrupted by the intricate noise

induced by marine environment (e.g., winds, tides/currents/

waves and instrument noise38–40) As a consequence, it is

quite challenging to recover the underlying acoustic field

from the received data.

FIG. 9. (Color online) Details of the

FRI reconstruction of the simulation

described in Fig. 8. The run-time of the

FRI algorithm is 0.3 s. Top row shows

the reconstruction at a depth of 20 m,

while the bottom row shows the recon-

struction at 40 m. Contrary to the other

high-resolution techniques, the acous-

tic field recovery provided by the FRI

approach is sufficiently accurate to

make it possible to calculate reliably

the ocean parameters. The energy of

signal noise increases rapidly with

range.
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Figure 12 shows the wavenumber estimation of FRI,

ESPRIT, MUSIC, L2-CS, and atomic-CS on the real data

(range from 8 to 3 km with an interval of 3.63 m). The refer-

ence wavenumbers are calculated by KRAKEN. Our FRI algo-

rithm successfully locates six wavenumbers around the

reference wavenumbers, despite the very intricate environ-

mental noise caused by winds, tides/currents/waves, and

instrument noise.38–40 This demonstrates the performance of

our FRI algorithm. Other high-resolution methods such as

ESPRIT, MUSIC, L2-CS, and atomic-CS locate fewer refer-

ence wavenumbers but more outliers due to the absence of

the range of the source and intricate noise.

Figures 13(a)–13(f) show the estimated mode shapes

(i.e., amplitude cm;l) by FRI from the real SWellEx-96 data.

Despite the complex noise and inaccurate environment

parameters, FRI successfully recovers the mode shapes that

FIG. 10. (Color online) Reconstruction

of the TL from simulated acoustic

data: 6 sensors corrupted by intra- and

inter-sensor correlated noise with

multi-sensor SNR ¼ � 10 dB, range

from 2000 to 7000 m with a sampling

step of 2 m. The FRI reconstruction

increases the multi-sensor SNR to

19.81 dB, for a run-time of about 0.3 s.

The TL is an important parameter for

detection applications.

FIG. 11. (Color online) Illustration of the SWellEx-96 experiment. The

towed source is moving along a trajectory (green line) at a speed of v �
2:5 m=s (	 underwater sound speed 1500 m/s). The range between the

source and VLA (•) is from 8 to 3 km. The background color indicates the

depth of water in the experimental area.

FIG. 12. (Color online) Wavenumber estimation of FRI, ESPRIT, MUSIC,

L2-CS, and atomic-CS from noisy 21-sensor VLA measurements. Without

knowing the ground truth values, reference wavenumbers are provided by

KRAKEN.
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match the reference shapes. This further verifies the effec-

tiveness of FRI in real data.

Figure 14 shows the recovered acoustic field at depths

of 212.25, 172.88, 122.25, and 111.00 m, respectively. The

recovered acoustic fields are consistent with the predictions

of ocean acoustics, as demonstrated in the wavenumber esti-

mation of Fig. 12 and mode shape reconstruction of Fig. 13.

VI. CONCLUSION

In this paper, a method based on FRI is developed to

recover an acoustic field from the VLA data, without

knowing the range of the moving source. A joint sparse

parametric model is proposed that approximates the attenu-

ated field as a sum of damped sinusoids. By fitting data with

the parametric model, our FRI achieves a robust and accu-

rate recovery of the acoustic field by compensating for TL

using the damping factor. However, other high-resolution is

not robust enough to recover the acoustic field accurately

due to the dependence on the range of the source and intri-

cate noise. Dropping the noise stochastic assumptions, we

propose the MSE criterion, which leads to an automatic and

robust determination of model order. We demonstrate the

performance of our FRI algorithm on simulations and real

FIG. 13. (Color online) Mode shape reconstruction with SWellEx-96 data. The reference shapes associated with the reference wavenumbers are calculated

by KRAKEN in Fig. 12.

FIG. 14. (Color online) Acoustic field

reconstruction from 21-sensor VLA

data. (a)–(d) show the reconstructions

at depths of 212.25, 172.88, 122.25,

and 111.00 m. In particular, the accu-

racy of this reconstruction is corrobo-

rated by the ocean acoustic prediction

shown in Figs. 12 and 13.
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acoustic data. Moreover, this algorithm can be easily

extended to more scenarios, e.g., multi-source environment,

deep ocean, and high-frequency source environment.
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