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ABSTRACT

The 3D point-spread function (PSF) plays a fundamental role in
wide-field fluorescence microscopy. An accurate PSF estimation can
significantly improve the performance of deconvolution algorithms.
In this work, we propose a calibration-free method to obtain the PSF
directly from the image obtained. Specifically, we first parametrize
the spherically aberrated PSF as a linear combination of few basis
functions. The coefficients of these basis functions are then obtained
iteratively by minimizing a novel criterion, which is derived from the
mixed Poisson-Gaussian noise statistics. Experiments demonstrate
that the proposed approach results in highly accurate PSF estima-
tions.

Index Terms— point-spread function, wide-field microscopy,
parametric PSF estimation, 3D deconvolution microscopy

1. INTRODUCTION

Three-dimensional (3D) wide-field fluorescence microscopy is
widely used to analyze the structures of living biological speci-
mens. Different from the confocal laser scanning microscopy, which
scans the sample point-by-point, a stack of 2D images recorded
from different focus planes along the optical axis is collected to
represent the 3D information. While wide-field microscopy has
the advantage of fast acquisition and low light exposure, which is
suitable for live cell imaging, the acquired images are often blurred
because of out-of-focus contributions [1,2]. This is especially true
when imaging thicker samples (those thicker than about 15 to 30
pm). Image deconvolution provides a computational technique to
mitigate this distortion by using information describing how the
microscope produces the image and reassigns the out-of-focus light
to the points of origin [3-5].

The point spread function (PSF), which represents the impulse
response of this imaging system to a point source or object, is essen-
tial for an accurate image deconvolution. In wide-field microscope,
one of the main characteristics of the PSF is spherical aberration. It
is caused by refractive-index mismatch between the immersion and
specimen layers. One direct way for obtaining a 3D PSF is to image
a point-like fluorescence bead, of a size smaller than the resolution of
the system. However, such experimental PSFs involve noise and the
imaging conditions of bead measurements are different from those
in actual imaging.

The alternative would be to use an analytical model of the PSF,
which takes into account the physical aberrations of the acquisition
system [1,6,7]. The Gibson-Lanni model [6, 8,9] is one of the most
widely used PSF models for wide-field microscopy. It is based on
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Kirchhoff’s integral formula, and generates a 3D PSF by substituting
several optical parameters. Although the model-based PSF is noise-
free, it is still not practical since some of the necessary parameters
such as the refractive index of the specimen are difficult to obtain or
might change due to heating of live samples during the course of the
experiments.

It is thus preferable to estimate the PSF directly from the mea-
surements. An accurate estimation can significantly improve the de-
convolution performance, and is also beneficial to calibrate a mi-
croscope. Most algorithms bypass this problem by simultaneously
estimating the PSF and the object, based on prior hypotheses on
them [10-15]. Alternatively, we can perform the estimation of the
PSF and the object separately. This way allows to carry out any high-
quality non-blind deconvolution to obtain the original object [16,17].

In this work, the 3D microscopy PSF is parametrized as a linear
combination of few basis functions. These basis functions are also
derived from Kirchhoff’s integral formula, thus automatically satisfy
all the constraints imposed by the model. With an efficient algo-
rithm, the PSF is obtained by minimizing a novel criterion. This cri-
terion, the “blur-SPURE” (Stein-Poisson Unbiased Risk Estimate),
is based on the mixed Poisson-Gaussian noise statistics [ 18] and ex-
tended from the blur-SURE [16] and blur-PURE criteria [17]. The
paper is organized as follows: Section 2 introduces our approxima-
tion model for the PSF in the wide-field microscopy; we then de-
scribe the blur-SPURE criterion and present our algorithms for the
PSF estimation in Section 3. Finally we present experimental results
in Section 4 to illustrate the effectiveness of the proposed approach.

2. MICROSCOPY PSF APPROXIMATION

One of the advantages of the Gibson-Lanni model is that it can pre-
dict the non-symmetric patterns in the axial direction, which reflects
the spherical aberration and often appears in realistic imaging con-
ditions [6,9]. This model is based on a calculation of the optical
path difference (OPD) between experimental conditions and the de-
sign conditions of the objective. However, the Gibson-Lanni model
depends on a large number of non-linear parameters, which renders
it inadequate for a global optimization approach.

We propose to approximate the microscopy PSF by a linear com-
bination of basis functions. For each basis function, the key idea is
to simplify the OPD (corresponding to the phase) by a parametrized

function fi;(p, z;m) = zy/n7 — p* + ny/n3 — p?, where z is the
axial coordinate of the focal plane, and p is the normalized radius in
the focal plane. The (n;,n;) are akin to refractive indices, and their
values are fixed once for all. The parameter 7 is an indication of the
focus position zj, but they are not necessarily to be equal in quan-
tity. More specifically, the PSF h is written as a linear combination



of basis functions as
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¢ = {ci,j,1,7 = 1,2} are the coefficients of basis functions, n;, n;
take values in {1.35,1.45} which are empirically determined, A is
a constant complex amplitude, & = 27 /X is the wave number, r =
|lr|| and Jo denotes the Bessel function of the first kind of order
zero. Each basis function h; ;(r;n) is computed efficiently using a
fast approach based on Bessel series approximation in [9].

For the proposed parametrization, when the wavelength A and
NA are provided (which is usually the case), only the focus position
1 and 4 linear coefficients c have to be determined. The degrees of
freedom is greatly reduced compared with the original Gibson-Lanni
model.

Note that the linear approximation in (1) is different from the
approaches in Markham et al. [11] and Soulez et al. [13], where the
phase term of the original model is approximated by a linear combi-
nation of several (typically larger than 6) polynomials (either power
or Zernike polynomials). The corresponding coefficients are thus
highly non-linear and more difficult to estimate accurately since they
are involved in an integral. The proposed parametrization is also dis-
tinct from the approach in [12], where the basis functions are learned
from a training set of PSFs with different focus positions.

3. PSF ESTIMATION ALGORITHM

3.1. Image formation model

The wide-field fluorescence microscope can be modeled as a linear
shift-invariant system, due to the incoherent nature of the emitted
fluorescence light [3,4]. The noise degradation is considered to be
mixed Poisson-Gaussian as in [18]; i.e.,

y:aP(H(;)X) + N(0,0%1), )

where y € RY denotes the distorted observation of the unknown
3D true original image x € R, N = N, x N, x N, is the
size of the measurement. The scalar « represents the gain of the
measurement device, which controls the noise during the acquisi-
tion. Ho € RV is a block-circulant matrix, which implements
a discrete convolution with the PSF h'. T denotes the identity ma-
trix, P(-) and N (-, -) represent the effect of the Poisson noise and
the additive Gaussian noise (variance ¢?), respectively. The val-
ues of o and o% can be estimated by a robust linear regression per-
formed on a collection of local estimates of the sample mean and
variance [18,19].

Based on the image acquisition model in (2), the objective of this
work is to estimate the PSF A (namely Hjy) directly from the mea-
surement y. This is a well-known difficult inverse problem since
both the original image x and the PSF are unknown. However, the
PSF parametrization in Section 2 greatly reduces the degrees of free-
dom.

'We do not consider space-varying PSFs in this paper.

3.2. Blur-SPURE as an optimization criterion

The PSF estimation, with respect to finding a set of coefficients
in (1), can be done by minimizing the expected mean squared er-
ror (MSE) between the blurred image Hox and a linear processing
of the measurement y [16, 17]. This oracle criterion (knowing Hox)
is named as blur-MSE. More specifically, our strategy consists in
minimizing blur-MSE = + &{||Un,.y — Hox|*}, over H and p,
-1

where Un,, = HHT (HTH + MP) and p is some positive
scalar estimated by line search.

The matrix Ug,, corresponds to a filter whose frequency re-
sponse can be thought as a kind of band-indicator since it marks a
certain frequency band as 0 or 1 with a narrow transition between the
two values. P is an approximation of the power density spectrum of
the origin image x. It is often expressed by the discrete Laplacian
operator (||lw||* = w2 + w; + v w?), where 7 is the ratio between
lateral and axial resolutions. It can be proven that for all Uy, ,,, the
solution H minimizing the blur-MSE is related to the true matrix
Hy, through HHT = HOHOT. Note that this means that the PSF
will be retrieved up to a shift, which is not a big issue since a shift
does not induce any distortion.

In practice we cannot minimize the blur-MSE directly since
Hox is unknown. We then use an unbiased estimate of its expected
value, blur-SPURE (Stein-Poisson Unbiased Risk Estimate), for the
minimization. For the linear degradation model (2), we have the
following theorem (similar to [16, 17]).

Theorem 1 Consider the degradation model (2) and U an arbitrary
matrix, the random variable

«
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is an unbiased estimate of the blur-MSE; i.e., E{blur-SPURE} =
+ €{||Uy — Hox||*} , where e,, is the N-dimensional vector with
components Ok —n,k = 1,2, ..., N, and N is the number of pixels of
the image.

This criterion solely depends on the observed image y thus is com-
putable. The statistical unbiasedness with the blur-MSE and the fact
that the pixel number of the 3D image N is very large (typically,
256 x 256 x 32 = 2,097, 152) indicate that the blur-SPURE can be
used as a reliable subsitute of the blur-MSE (law of large numbers).
Note that all matrices involved are diagonalized by the discrete 2D
Fourier transformation, and so, the blur-SPURE can be efficiently
computed in the Fourier domain.

3.3. PSF estimation by band-indicator approximation

The optimization criterion, blur-SPURE, provides explicit control
over the PSF estimation problem. However, direct minimizing the
blur-SPURE cannot guarantee the optimal solution, which is mainly
because this is a highly non-convex optimization problem that has
many local minima. Instead, we propose to firstly approximate the
true band-indicator Uy, by a linear combination of basis func-
tions Uapp = Z” Ci,j Un, ;,u, where H; ;’s are constructed by
the corresponding h;,; (r; ) as described in Section 2. Thanks to the
quadratic nature of the blur-SPURE, the search for the optimal coef-
ficients ¢ = {é& ;,4,7 = 1,2} boils down to the solution of a linear
system of equations. The parameter 7 is simultaneously obtained by
line search within the thickness of the specimen.
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Fig. 1. (a) Plots of the mean RSEs under two different immersion
mediums (water and oil) over various scenarios. (b) Axial intensity
profile of typical PSFs (A = 492 nm, 2z, = 750 nm) generated by the
complete Gibson-Lanni model (the black curve) and its approxima-
tion (the dashed red curve) by (1). Note the non-symmetric pattern
caused by the refractive index mismatch.

Once U,pp has been found, finding the PSF H amounts
to solving the following unconstrained minimization problem:
nhin I[HWx — Usppl|3, where H assumes the parametric ex-

pression (1) and W = HT(HTH 4 pP)™ "
alternating optimization algorithm:

We propose an

H(k) = ||HWH(’C*1) - Uapp“%v 3

arg min
H=Zi,j ci jHi 5

where
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and H( js randomly initialized. The solution H® involves finding

the coefficients cz(-? ’s by solving a linear system of equations at each

iteration until ||[HH® — H*=D | /|H*D || < 1073,

4. EXPERIMENT AND RESULTS

The PSF estimation performance is measured in terms of the relative
squared error (RSE) [9,20] calculated as || happ — h||3/||2]|3 X 100%.
Basically, the estimation is thought to be accurate when RSE <
9% [20].

4.1. Validation of the PSF parametrization model

To validate the proposed parametrization model in (1), we gen-
erate the ground truth PSFs based on the complete Gibson-Lanni
model [6, 9] under different settings. Then the differences between
the true PSFs and the fitted PSFs by (1) are evaluated. Specifically,
we consider refractive indices ns’s of typical cellular components in
the range from 1.354 to 1.5 with a step of 0.05. The wavelength A
is in the range from 340 nm to 750 nm with a step of 10 nm, which
are frequently used in real experiments. Two different types of
immersion media (water and oil) are used. Their refractive indices
n;’s are 1.33 and 1.515 respectively. Other parameters are followed
by the setting of a 63 x magnification, 1.4 NA Andor Zyla camera.
The focus position z,, varies from —1.5 pm to 1.5 ym with a step of
0.05 pm, which covers the range of expected spherical aberrations.
There are totally 15, 372 PSFs of size 127 x 127 x 127.

Fig. 1(a) shows the mean RSEs under water and oil medias
with respect to the wavelength. The maximum value is 2.24%,
which demonstrates the effectiveness of the proposed parameteri-
zation model. Note that PSFs with longer wavelength have lower
frequency (less rings) thus relatively are more easily approximated.

- -1
((H(k—l))TH(k 1)+MP)

Table 1. RSE (%) comparison of the PSF estimation accuracy with
other approaches under different scenarios. The results have been
averaged over 5 random initializations.

focus position zp = 0nm zp = 500 nm zp = 1500 nm
a, 0’ 0.02 [ 02 002 [ 02 002 [ 02
Image Bars 256 x 256 x 128
Blind R-L 45.05 | 54.67 | 291.37 | 290.63 | 454.24 | 548.49
AIDA [21] 88.75 | 109.64 | 121.48 | 399.36 | 231.20 | 323.92
fminsearch 5.80 19.39 13.46 74.43 20.72 | 114.69
Proposed 1.26 2.98 3.52 4.80 5.26 5.77
Image Pollen 256 x 256 x 32
Blind R-L 16.73 | 35.09 16.93 63.97 38.77 | 147.70
AIDA [21] 44.65 | 45.51 | 104.79 | 106.86 | 122.32 | 160.05
fminsearch 1.45 8.12 1.67 19.59 20.76 64.64
Proposed 0.88 2.70 1.47 3.70 3.04 4.72

*Best estimation results are highlighted.

One typical example of a sample with refractive index 1.4 illumi-
nated with green light (A = 492nm) is shown in Fig. 1(b). The
non-symmetric pattern caused by the refractive index mismatch can
be well predicted by the proposed model.

4.2. Comparison with other approaches

We adapt the confocal image simulator in [22] to the wide-field
settings. Three PSFs with different focus positions (2, = 0, 500,
1500 nm respectively) are generated according to the Gibson-Lanni
model with typical values for the parameters (A = 492nm, NA=1.4,
n; = 1.33,ns = 1.4). The pixel size is 100 nm in the z-y plane and
250 nm along the z-axis. Two original images, Bars and Pollen [5],
are convolved with these PSFs. The blurred images are subsequently
contaminated by mixed Poisson-Gaussian noise with different noise
levels (corresponding to different o and o values). Typically, we
obtain a low noise image when a = 0.02,02 = 0.02 and a high
noise image when o = 0.2, 0 = 0.2.

We compare with the popular blind deconvolution methods
(the blind Richardson-Lucy algorithm [23,24] and AIDA [21]). To
demonstrate the effectiveness of the iterative algorithm in (3), the
alternative scheme using the fiminsearch in Matlab is also evaluated.
Note that all estimated PSFs are optimally shifted in the z-axis to
best match the ground-truth PSE.

Table 1 presents the RSEs between the estimated and ground-
truth PSFs over different scenarios. It can be seen that the proposed
approach generally yields significantly more accurate and consistent
PSF estimation than other methods. Two typical cases are shown in
Fig. 2. The proposed approach succeeds in estimating the spherical
aberration of the PSF. The iterative algorithm in (3) generally con-
verges within less than 50 iterations. Each iteration takes ~ 0.27s for
the Pollen image and ~1.15s for the Bars image. Note that our main
goal is to evaluate the estimated PSFs instead of the deconvolved
images: we believe that accurate PSF estimation conveys valuable
additional information about the sample and the microscope setting.

5. CONCLUSION

We proposed a 3D PSF estimation method for wide-field fluores-
cence microscopy. We characterized the PSF by a linear combination
of few basis functions, and introduced a novel criterion based on the
mixed Poisson-Gaussian noise statistics, namely blur-SPURE, for
the optimization. In conjunction with an iterative algorithm, the pro-
posed algorithm yields significantly more accurate PSF estimations
than other approaches. Future works include applying the technique
to the microscope calibration [25] and blind depth-variant image de-
convolution [24,26].
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Fig. 2. Comparison results of PSF estimations. (a) the case of 2z, = 0nm, a = 0.2, 0% = 0.2; (b) the case of zp = 1500nm, o = 0.02, o=
0.02. A = 492nm, NA = 1.4, n; = 1.33 and ns = 1.4. Locators (yellow line) indicate the location of displayed sections (z = 0). Images
have been cropped and rescaled for visualization purpose.
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