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The point-spread function (PSF) plays a fundamental role in fluorescence microscopy. A realistic and accu-
rately calculated PSF model can significantly improve the performance in 3D deconvolution microscopy
and also the localization accuracy in single-molecule microscopy. In this work, we propose a fast and
accurate approximation of the Gibson-Lanni model, which has been shown to represent the PSF suit-
ably under a variety of imaging conditions. We express the Kirchhoff’s integral in this model as a linear
combination of rescaled Bessel functions, thus providing an integral-free way for the calculation. The ex-
plicit approximation error in terms of parameters is given numerically. Experiments demonstrate that the
proposed approach results in a significantly smaller computational time compared with current state-of-
the-art techniques to achieve the same accuracy. This approach can also be extended to other microscopy
PSF models. © 2017 Optical Society of America

OCIS codes: (180.2520) Fluorescence microscopy; (180.6900) Three-dimensional microscopy.
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1. INTRODUCTION

Fluorescence microscopy is widely used in biological research
to analyze 3D structures of living cells and tissues. The point-
spread function (PSF) of a microscope describes the response
of this imaging system to a point source or object. An accurate
PSF is highly desirable in deconvolution microscopy because
of its critical influence on the restoration quality. Several works
have focused on using more accurate PSF models in wide-field
microscopy [1–3] or confocal microscopy [4, 5] in order to im-
prove the resolution of the images. We focus on the 3D wide
field fluorescence microscopy which is the general setting of
a live cell imaging. In this case, the PSF is axially asymmetric
and depth variant. The asymmetry results from the mismatch
between the refractive indices of the immersion medium and of
the specimen. The depth-dependence results from optical path
difference between the ideal and real conditions, which depends
on the depth of the object location [6].

In addition, the PSF model has also a major influence on
single molecule localization microscopy [7–10]. Despite the
widespread approximation of the PSF by a Gaussian, it has
been argued that a more realistic model can significantly im-
prove the localization accuracy [9, 11–13]. While a 2D PSF can
be reasonably well approximated by a Gaussian kernel, no Gaus-
sian can accurately represent a complete 3D PSF in fluorescence
microscopy [14]. Indeed, the Gaussian model provides a good

approximation to the 3D PSF only within a limited spatial range
near the focus. The trade-off between using simple Gaussian and
realistic models is computational complexity versus accuracy.

Methods to estimate the realistic PSF can be classified into
two categories, namely experimental and analytical. The ex-
perimental PSF reflects the imaging conditions and thus con-
tains both the intrinsic and extrinsic aberrations [1]. Some
works [15, 16] are trying to retrieve PSFs at various depths from
a large number of measured PSFs using a method described by
Hanser et al. [17]. This approach, however, has difficulties to
image sub-resolution beads with low signal-to-noise ratio, thus
needs to average several measurements. Moreover, the imag-
ing conditions of experimental PSFs are different from those in
actual imaging. The alternative would be to use an analytical
model of the PSF, that takes into account the physical aberrations
of the acquisition system.

The literature on PSF modeling in wide field microscopy is ex-
tensive, but the most popular one is the Gibson-Lanni model [6].
This model is based on the Kirchhoff’s diffraction integral and
a calculation of the optical path difference (OPD) between de-
sign and experimental conditions. It accounts for coverslips
and other interfaces between the specimen and the objective.
Compared to vectorial-based models [18, 19], the Gibson-Lanni
model is simpler and has the advantage of depending only on
the standard parameters of the objective and the optical prop-
erties of the specimen. It has been shown to be very useful
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for deconvolution microscopy [2, 20–23] and also for particle
localization [8, 12, 24, 25].

The main limitation of the Gibson-Lanni PSF model, however,
is computational. Accurate computation of the Kirchhoff’s inte-
gral for all 3D pixels is CPU intensive. Apart from applications
in single molecule localization microscopy, a fast PSF computa-
tion is necessary in 3D deconvolution microscopy. Most of the
high performance deconvolution algorithms rely on repeated
estimation of the PSF model [2, 26–29]. In the case of depth
dependent deconvolution [2, 30, 31], multiple PSFs varying as
a function of depth have to be used. After pre-computing the
model PSFs at various depths, Arigovindan et al. [31] proposed
an efficient method based on principal component analysis for
the depth-varying representations. Hence, an improved model
PSF calculation method is likely to result in a significant im-
provement in the deconvolution process. Current state-of-the-art
techniques [12, 32] adopt a so-called progressive manner with
the Simpson rule to calculate the integral. However, achieving
adequate accuracy is still time-consuming.

In this work, we propose a fast and accurate approximation
to the Gibson-Lanni PSF model by expressing the integral as a
linear combination of rescaled Bessel functions. This approach
is significantly more efficient computationally than current state-
of-the-art techniques. In addition, using this Bessel series ap-
proximation amounts to replacing most of physical parameters
by mathematical parameters. This may provide new insight into
the automatic estimation or fitting of the PSF directly from the
measurements.

The paper is organized as follows. In Section 2, we describe
the Gibson-Lanni model and our computational approach based
on the Bessel function. The discussions of the approximation
error and computation time are also given. We then present our
experimental results in Section 3 and conclude with a summary
in Section 4.

2. 3D PSF COMPUTATION IN FLUORESCENCE MI-
CROSCOPY

A. The Gibson-Lanni model
A particular challenge in the PSF modeling of a microscope is
the lack of detailed information about the exact design condition
of the objective lenses. The parameters that are usually known
include the optical characteristics of the objective (for example
the numerical aperture) and the experimental conditions (i.e. re-
fractive indices of the specimen and of the immersion medium,
working distance etc). Thus it is desirable to obtain a general
formulation of the PSF that is based on these known parameters.
PSF modeling has been addressed diversely in the literature.
Vectorial approaches that relay on Maxwell’s equations directly,
such as the Richards-Wolf model [18], the Török-Varga model
[19] and Hell et al. [33], provide a rigorous treatment of diffrac-
tion in microscopes. On the other hand, scalar approaches use
the diffraction theory of light [6, 34]. The most popular model
is Gibson-Lanni’s [6]. One of the its advantages is that it can
predict the non-symmetric patterns in the axial direction, which
is due to refractive index mismatch among different layers. In
contrast to vectorial models which require the evaluation of
three integrals per point, scalar models involve only one in-
tegral per point and thus, are computationally less expensive.
Haeberlé [35] showed that the vectorial model can also be com-
bined with the ease of use of the Gibson-Lanni scalar approach,
which has the advantage of introducing explicitly the known or
sample-dependent parameters [32].
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Fig. 1. Optical paths in the Gibson-Lanni model in the de-
sign condition (dashed line) and in the experimental con-
dition (solid line). The optical path difference is given by
OPD = [ABCD] − [PQRS]. n = (ni, n∗i , ng, n∗g, ns) and
t = (ti, t∗i , tg, t∗g, ts) represent the refractive indices and the
thickness values of individual layers respectively. zp is the ax-
ial location of the point-source in the specimen relative to the
cover slip. O is the origin of the coordinate system. See [6] for
details.

The Gibson-Lanni model relies on the assumption that all
observed aberrations are generated by factors external to the
objective, and thus originate in the combination of three layers
(specimen, coverslip and immersion medium). These aberra-
tions can be characterized by the optical path difference (OPD)
between a ray in a design system and one in the experimen-
tal condition, as illustrated in Fig. 1. The OPD is given by
OPD = [ABCD]− [PQRS], where [ABCD] is the path of a ray
from a point source in a nondesign system when the object lies
at a depth zp and [PQRS] is the corresponding ray in the design
system, where the point-source object is located immerdiately
below the coverslip. See Fig. 1 and [6] for details.

Taking account into the law of refraction, the OPD is [6]:

OPD(ρ, z; zp, p) = (z + t∗i )
√

n2
i − (NAρ)2

+ zp

√
n2

s − (NAρ)2 − t∗i
√
(n∗i )

2 − (NAρ)2

+ tg

√
n2

g − (NAρ)2 − t∗g
√
(n∗g)2 − (NAρ)2,

(1)

where ρ is the normalized radius in the focal plane, z is the
axial coordinate of the focal plane, zp is the axial location of
the point-source in the specimen layer relative to the cover slip
and p = (NA, n, t) is a parameter vector containing the physical
parameters of the optical system: NA is the numerical aperture,
n = (ni, n∗i , ng, n∗g, ns) represents the refractive indices and t =
(ti, t∗i , tg, t∗g, ts) is the thickness values of individual layers.

Because of the hypothesis of spatial invariance in planes
perpendicular to the optical axis, the PSF is radially symmetric
and then the Gibson-Lanni model can be expressed as a function

of the coordinates r =
√
(x− xp)2 + (y− yp)2 and z, given by

[6]

PSF(r, z; zp, p) =
∣∣∣∣A
∫ 1

0
exp(iW(ρ, z; zp, p))J0 (krNAρ) ρdρ

∣∣∣∣
2

,

where the phase term W(ρ, z; zp, p) = k OPD(ρ, z; zp, p), k =
2π/λ is the wave number of the emitted light. A is a constant
complex amplitude, and J0 denotes the Bessel function of the
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Fig. 2. The flow chart of the proposed PSF calculation. The
inset cube is the obtained PSF.

first kind of order zero. Note that when imaging a source located
at the interface (zp = 0), the PSF corresponds to the standard
defocus model [34].

In practice, in order to ensure the validity of OPD (1), the
integration intervals may not always be ρ ∈ [0, 1]. We set a =
min{NA, ns, ni, n∗i , ng, n∗g}/NA, then the Gibson-Lanni model
becomes

PSF(r, z; zp, p) =
∣∣∣∣A
∫ a

0
exp(iW(ρ, z; zp, p))J0 (krNAρ) ρdρ

∣∣∣∣
2

.

(2)

B. Bessel series approximation
The accurate computation of the Gibson-Lanni model, however,
is very time consuming because the integration in the formula
(2) requires intensive numerical evaluation. This may limit ap-
plications in blind deconvolution [2, 4], PSF fitting [12] and
localization microscopy [9, 24, 25].

We propose a Bessel series approximation for the Gibson-
Lanni model. It is integration-free, and provides a fast and
accurate approximation. The main idea is based on the fact that
the integral

∫ a
0 tJ0(ut)J0(vt)dt can be explicitly computed as [36]

∫ a

0
tJ0(ut)J0(vt)dt = a

(uJ1(ua)J0(va)− vJ0(ua)J1(va)
u2 − v2

)
, (3)

when u 6= v, and
∫ a

0 tJ0(ut)J0(vt)dt = a2

2 [J1(ua)]2, if u = v.
We expand the function exp(iW(ρ, z; zp, p)) in Eq. (2) as a

linear combination of rescaled Bessel functions:

exp(iW(ρ, z; zp, p)) =
∞

∑
m=1

cm(z)J0(σm ρ), (4)

where cm(z) are complex valued coefficients (to be determined)
with respect to the depth z and σm are (known) scaling factors.
The usual values for the wavelength λ in a conventional mi-
croscope are between 340 nm and 750 nm, and the numerical
aperture is often less than 1.4 [37]. In this work, we empiri-
cally set the scaling factor as σm = NA(3m − 2)λ0/λ, where
λ0 = 436 nm. This series can be truncated and PSF(r, z; zp, p) is
approximated using the first M terms. Then the Gibson-Lanni
model in Eq. (2) is approximated by:

PSFapp(r, z; zp, p) ∼=

∣∣∣∣∣A
M

∑
m=1

cm(z)Rm(r; p)

∣∣∣∣∣

2

, (5)

where m = 1, 2, ..., M, β = k rNA and

Rm(r; p) =
σm J1(σma)J0(βa)a− βJ0(σma)J1(βa)a

σ2
m − β2

.

Through the approximation (5), the Gibson-Lanni model is now
described by two physical parameters (λ and NA), and a set of
mathematical parameters cm(z). Importantly, the term Rm(r; p)
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Fig. 3. Radial (a) and axial (b) intensity profiles (normalized)
of the calculated PSF and the ground truth, for a 1.4 NA oil im-
mersion objective, wavelength λ = 610 nm. The point-source
is located at zp = 400nm. The ground truth is generated by the
Simpson rule (the number of subintervals is set to 107). The
number of basis functions and the sampling number in the
proposed approach is set to be M = 102 and K = 103 respec-
tively. The maximum difference between them is 2.81× 10−4.

needs to be calculated only once and can then be used for all
slices of the 3D PSF (or any planes of same dimensions). Because
of the rotational symmetry of the PSF in each slice, we compute a
two times oversampled component only in one radial direction.
Then, this component is resampled to a Cartesian grid using
piecewise-linear interpolation. The flow chart of the proposed
approach is shown in Fig. 2.

For the sake of simplicity, we omit the depth parameter z
in the following representations of the coefficients cm(z). We
use least-square fitting to determine their values. Specifically,
we sample K points of ρ uniformly in the interval [0, a] as ρk =

k
K−1 a, k = 0, ..., K− 1, and then these coefficients can be obtained
by solving the minimization problem:

ĉ = min
c
‖F− Jc‖2,

where c = [c1, c2, ..., cM]T, J = [J0(σmρk)]1≤k≤K;1≤m≤M, F =

[ f (ρ1), f (ρ2), ..., f (ρK)]
T, and f (ρ) = exp(iW(ρ, z; zp, p)). The

corresponding solution is then

ĉ = (JT J)−1 JTF.

The approximation accuracy is controlled by the number of basis
functions M and the sampling number K. Basically, larger M
and K improve the approximation accuracy but with increased
time cost. This will be discussed in the Section C. Fig. 3 shows
a typical example of the calculated PSF where M = 102 and
K = 103, compared with the ground-truth PSF. Note that the
non-symmetric pattern in the axis direction originates from a re-
fractive index mismatch among different layers. It also depends
on the defocus position zp. Aguet et al. [8] studied this aberra-
tion effect in the sub-resolution axial localization and found that
taking out-of-focus acquisitions can lead to a better precision in
the estimation.

The computational cost of the proposed approach is mainly
due to the following three aspects: 1) calculation of the basis
function Rm(r; p) in Eq. (5); 2) determination of the coefficients
cm for each depth z; and 3) the polar-to-Cartesian transformation
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Fig. 4. Scatterplot demonstrating the accuracy of Eq. (6) and
Eq. (7) regarding the approximation error (a) and the computa-
tional time (b). Each point corresponds to one PSF, generated
by varying the design parameters p = (NA, n, t), and the
approximation parameters K and M. See text for details.

from 2D components to the final 3D PSF. Typically, if the xyz di-
mensions of the PSF are each proportional to S, the computation
cost of the first two aspects grows like S2 and S, respectively,
while the cost of the interpolation step is proportional to S3. For
small PSF sizes, the time cost of the first two aspects is signifi-
cant: e.g., they account for up to 47% of the total computation
cost of a PSF of size 128× 128× 64 (when M = 102 and K = 103).
For large sizes though, the total computation cost is essentially
dominated by the interpolation step.

C. Analysis of error and computational time
We performed analysis on different settings: the wavelength λ
is in the range from 340 nm to 750 nm with a step of 50 nm; the
numerical aperture NA is from 1.0 to 1.4 with a step of 0.02; and
the refractive index of the specimen ns is from 1.3 to 1.5 with a
step of 0.05. There are totally 10080 PSFs of size 256× 256× 128.
We first generate these PSFs independently based on Simpson
rule. The number of subintervals is set to 107. This procedure is
very time consuming thus not practical, but useful to provide
a set of ground-truth PSFs. All experiments are carried out on
a iMac with a 2.7 GHz Intel Core i5, with 4 GB of RAM. The
approximation error is measured by the relative squared error
(RSE) [14], defined as

RSE :=
‖PSF− PSFapp‖2

2

‖PSF‖2
2

× 100%,

where PSFapp is the approximated PSF and PSF is the ground
truth.

Empirically, as shown in Fig. 4(a), the approximation error
RSE(M, K) with respect to the number of basis functions M and
the sampling number K when M ∈ [30, 100] and K ∈ [50, 1000]
can be well described by

RSEest(M, K) =
(

M
45

)−6.5 ( K
80

)−1.5
. (6)

Compared with the sampling number K, larger M leads to a
faster decay rate in the approximation error. The computational
time can be described as

Timeest(M, K) = 2.87× 10−4 M + 3.63× 10−5 K + 0.22, (7)

as shown in Fig. 4(b). Different computational environments
may have different expressions for Timeest. However, given an

approximation error ε, we can solve the following minimization
problem to find the optimal approximation parameters M and
K:

min
M,K

Timeest(M, K), s.t. RSEest(M, K) = ε.

The corresponding solution can be obtained as
{

M = 43.50 ε−1/8,

K = 1.8M.

3. EXPERIMENTAL RESULTS

A. Comparison with state-of-the-art techniques
As a typical example, we set the parameters of a microscope
as follows: NA = 1.4, λ = 610 nm, ns = n∗s = 1.33, ni = n∗i =
1.5, ng = n∗g = 1.5, t∗i = 150 µm, tg = 170 µm, tg = t∗g, the lateral
resolution ∆xy is 100 nm, the axial resolution ∆z is 250 nm and
the position of the point-source zp = 2000 nm.

We compare with two state-of-the-art techniques, psf-
Model [32] and PSFGenerator [12] for the computation of 3D
PSF in fluorescence microscopy. psfModel is available at http:
//www.francoisaguet.net/software.html and PSFGenerator is avail-
able at http://bigwww.epfl.ch/algorithms/psfgenerator. Note that
psfModel only supports odd dimensions. To evaluate the com-
putation time subject to the same approximation accuracy, we
now choose the number of basis functions M and the sampling
number K so that the resulting RSE is identical to the RSEs in
the other two techniques. Fig. 5 shows the computational time
comparison for different image sizes with psfModel and PSFGen-
erator (’Best’ option) under the same approximation accuracy. It
is found, in particular, that the proposed approach is roughly 64
times faster than psfModel and 498 times faster than PSFGen-
erator for image size 511× 511× 255. It is worth mentioning
that the proposed method is implemented using unoptimized
MATLAB code only (no mex files), which contrasts with the
C++/Java optimized code of other algorithms.

B. Speed comparison with a Gaussian
We also compared with the computation of Gaussian function,
which is commonly used in single molecule localization mi-
croscopy. Such approximation, however, discards the side-lobes
of the PSF, which are particularly important in 3D PSF mod-
elling [12, 14]. Table. 1 shows the computational time of a Gaus-
sian function and the proposed approach with different PSF
sizes. The approximation error of our approach is set to be
RSE = 0.1%. This comparison shows that the computation of a
realistic PSF requires comparable computational cost as the com-
putation of a Gaussian, facilitating its possible use in localization
microscopy.

Table 1. Comparison of computational time (sec.) with Gaus-
sian function. Memory management issues explain the dis-
crepancy between the large PSF and smaller ones.

128× 128× 64 256× 256× 128 512× 512× 256 1024× 1024× 512

Gaussian 0.015 0.130 1.011 29.627

Proposed 0.022 0.161 1.152 15.490

4. CONCLUSION

We have proposed a fast and accurate calculation method of the
Gibson-Lanni model for estimating the 3D PSF in fluorescence

http://www.francoisaguet.net/software.html
http://www.francoisaguet.net/software.html
http://bigwww.epfl.ch/algorithms/psfgenerator
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Fig. 5. Comparison of computational time with (a) psf-
Model [32] and (b) PSFGenerator [12] for a variety of image
sizes. The approximation parameters M and K in the proposed
approach are chosen to result in the same accuracy RSEs as
the other technique. Computational times have been averaged
over 10 realizations.

microscopy. The proposed approach significantly outperforms
state-of-the-art techniques. Using this new approach for estimat-
ing a realistic PSF model, is expected to improve the restoration
performance in 3D deconvolution microscopy, and also the reso-
lution in single molecule localization microscopy.

We present some preliminary results in [23] on the restora-
tion of 3D fluorescence microscopy images using the calcu-
lated PSFs by the proposed approach. The blind estimation
of the microscopy PSF and its evaluation on the restoration
accuracy will be our future works. Note that it is also pos-
sible to extend the proposed approach to other scalar-based
models, such as the Born-Wolf model [34], and even vector-
based models, such as the Richards-Wolf model [18, 32] and the
Török-Varga model [19, 35]. The source codes are available at
http://www.ee.cuhk.edu.hk/~tblu/demos.
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