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Abstract — Respiratory and cardiac motion can cause 

artifacts in magnetic resonance imaging of the body trunk 

if patients cannot hold their breath or triggered 

acquisitions are not practical. Retrospective correction 

strategies usually cope with motion by fast imaging 

sequences with integrated motion tracking under 

free­movement conditions. These acquisitions perform sub-

Nyquist sampling and retrospectively bin the data into the 

respective motion states, yielding subsampled and motion-

resolved k-space data. The motion-resolved k-spaces are 

linked to each other by non-rigid deformation fields. The 

accurate estimation of such motion is thus an important 

task in the successful correction of respiratory and cardiac 

motion. Usually this problem is formulated in image space 

via diffusion, parametric-spline or optical flow methods. 

Image-based registration can be however impaired by 

aliasing artifacts or by estimation from low-resolution 

images. Subsequently, any motion-corrected 

reconstruction can be biased by errors in the deformation 

fields. In this work, we propose a novel deep-learning based 

motion-corrected 4D (3D spatial + time) image 

reconstruction which combines a non-rigid registration 

network and a (3+1)D reconstruction network. Non-rigid 

motion is estimated directly in k-space based on an optical 

flow idea and incorporated into the reconstruction network. 

The proposed method is evaluated on in-vivo 4D motion-

resolved magnetic resonance images of patients with 

suspected liver or lung metastases and healthy subjects.  

I. INTRODUCTION 

In clinical diagnostics, magnetic resonance imaging (MRI) is a 

valuable and versatile tool. Its capability of assessing anatomy 

and functional processes within the human body in a non-

invasive manner makes it an essential imaging modality. 

However, MRI is prone to a number of artifacts which can 

deteriorate image quality significantly. Due to its long 

acquisition time, motion is one of the major extrinsic factors 

influencing image quality. Motion patterns can be categorized 

into rigid motion (global translations or rotations of stiff 

structures) which arises from movements of whole body parts 

and non-rigid motion (local deformations of tissues) which 

mainly occurs in the thorax and abdominal region caused by 

physiological motion. Nevertheless, other body parts can be 

affected as well. Patient and physiological motion induces 

aliasing along the phase‐encoding direction and/or blurring of 

the image content (depending on the imaging trajectory). 

Motion visualization, estimation and correction are thus 

important tasks when processing MRI data. Fast and accurate 

motion estimation is required to enable prospective or 

retrospective motion correction techniques which can be 

applied to for example image guided interventions [1], cardiac 

assessment [2] or magnetic resonance (MR)-based motion 

correction of PET data [3, 4]. Several prospective and 

retrospective motion correction methods have been developed 

which include fast imaging sequences [5, 6], tracking of motion 

by sensors (MR navigators [7-12], cameras [13], respiratory 

belts or electrocardiogram [14]), application of motion-robust 

acquisition schemes [15], prospectively corrected acquisitions 

[16] and motion-resolved imaging [17-20]. 

One can thereby differentiate between the correction of rigid 

motion (e.g. head motion) and non-rigid periodic motion such 

(e.g. respiratory motion). Rigid motions can be tracked by MRI 

or other external sensors, directly modelled in k-space as linear 

phase drifts and incorporated into the acquisition (prospective 

correction) or reconstruction (retrospective correction) 

schemes. Non-rigid motion on the other hand is more 

challenging as it involves local deformations in image space 

which are related to changes in k-space (acquisition space) in a 

non-trivial way. Correction of non-rigid motion usually 

involves two steps: image reconstruction and image 

registration which will be explained in the following. 

Data acquisition for these applications are usually accelerated 

by Parallel Imaging or Compressed Sensing yielding sub-

Nyquist sampled (in the following denoted as subsampled) k-

space data. In order to reconstruct aliasing-free images these 

methods rely on reconstruction schemes that for example 

incorporate sparsity or low-rank constraints to solve the ill-

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

976978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020



posed problem [6, 21]. Fixed sparsity assumptions in 

Compressed Sensing are often too restrictive and incapable of 

fully modelling spatio-temporal dynamics. Careful fine-tuning 

between regularization and data consistency is required and 

especially in highly subsampled cases residual aliasing may 

remain in the image or over-regularization can occur leading to 

staircasing or blurring artifacts which affect the image 

registration. 

After reconstruction, non-rigid motion fields can be estimated 

in image space from reconstructed images by solving a 

registration problem. A particular interest and challenge lies in 

the derivation of reliable 3D motion fields which capture the 

spatio-temporal non-rigid deformations, such as respiratory or 

cardiac movement. The non-rigid motion estimation problem 

can be formulated in image space using diffusion-based [22], 

parametric spline-based [23] or optical flow-based methods 

[24].  

Instead of performing these two steps sequentially, motion-

compensated image reconstruction schemes [25-31] integrate 

both motion field estimation and motion correction into the 

reconstruction process. These methods require reliable motion-

resolved images from which the motion fields can be estimated. 

Motion field estimation can be controlled or supported by 

external motion surrogate signals [25, 26], initial motion field 

estimates [27, 28], from motion-aliased images [30] or low-

frequency image contents [31]. Moreover, spatio-temporal 

redundancies can be exploited to achieve an aliasing-free 

image [32-38]. While these methods have been proven to be 

more robust against registration errors, they can require a 

significantly increased computational demand and/or 

achievable imaging acceleration is limited. 

In case of highly subsampled data, aliasing artifacts in the 

reconstructed images can impair the registration process as 

reconstruction errors can propagate into the image registration 

and/or low-resolution images do not provide sufficient 

information for accurate registration. Moreover, higher 

subsampling leads to a challenging ill-posed reconstruction for 

which inherent spatio-temporal redundancies need to be better 

exploited. It would be desirable to carry out an aliasing-free 

registration in k-space directly from accelerated acquisitions to 

avoid any of these problems.  

Recently deep-learning based reconstruction methods have 

gained attention to solve non-linear and underdetermined 

optimizations efficiently [39-42]. Proposed methods range 

from derivations of classical optimizations (e.g. ADMM-Net) 

[43], over cascaded convolutional networks [44-46], UNet-

based convolutional networks [47] and recurrent neural 

networks [48] to generative adversarial network-based 

denoising (e.g. DAGAN) [49, 50], manifold learning [51], 

variational neural networks [52-54] and generalized PI 

reconstructions [55-57]. Network inputs thereby differ from 

single-coil 2D image [44-46] and/or k-space [43, 44, 51] to 

multi-coil 2D image [50, 53, 58, 59], 2D k-space [46, 47, 55-

57, 60] or low-resolution 3D k-space [61] and were studied for 

static imaging [41, 43, 44, 46, 47, 49-54, 58], i.e. no temporal 

dynamics, or for 2D dynamic imaging [45, 48, 59], i.e. 2D + 

time such as 2D cardiac CINE, with complex-valued data 

handled as separate channels [45, 47, 52, 54, 59] or networks 

[58]. Recently, works investigated the possibility to combine 

reconstruction networks with image-based registrations [62, 

63]. 

In this work, we propose a novel motion-corrected 4D (3D 

spatial + time) reconstruction network that exploits spatio-

temporal redundancies by a sequence of 3D spatial and 1D 

temporal convolutions, in the following denoted as (3+1)D. 

Additionally, motion deformations are considered in the 

reconstruction which are obtained from a non-rigid registration 

network to enhance data-consistent information sharing among 

motion states. Non-rigid registration is directly formulated in 

k-space based on optical flow equations and the obtained 

motion fields are incorporated into a motion-corrected image 

reconstruction network. We will first describe the basic 

concepts on the image-based 3D non-rigid registration, denoted 

as Local All-Pass (LAP) which we have presented previously 

[4, 64, 65]. We then illustrate its extension to k-space based 3D 

non-rigid registration [66]. We propose a deep-learning based 

(3+1)D motion-corrected reconstruction network that 

incorporates the estimated motion fields. The proposed method 

is compared against an image-based registration and motion-

corrected iterative SENSE reconstruction [27]. We investigate 

the proposed approach in 36 patients with suspected liver or 

lung metastases and 20 healthy subjects for retrospectively 

subsampled data of 3D motion-resolved MR imaging. 

II. MATERIAL AND METHODS 

The proposed deep-learning architecture is depicted in Fig. 

1. The network consists of two sub-networks: A non-rigid 

registration network which provides the motion fields and a 

(3+1)D reconstruction network which includes the estimated 

motion in the data consistency block to reconstruct an aliasing-

free and motion-corrected image. Subsampled and motion-

resolved k-spaces 𝜈 ∈ ℂ𝑁𝑥𝑁𝑦𝑁𝑧𝑁𝑡𝑁𝐶ℎ serve as input from which 

3D non-rigid deformation fields 𝑢 ∈ ℝ𝑁𝑥𝑁𝑦𝑁𝑧𝑁𝑡×3 are 

estimated. 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 reflect the 3D spatial dimensions, 𝑁𝑡 

the temporal direction and 𝑁𝐶ℎ the channels of the multi-coil 

MR receiver. The coil sensitivity map 𝑆 ∈ ℂ𝑁×𝑁  with 𝑁 =
𝑁𝑥𝑁𝑦𝑁𝑧𝑁𝐶ℎ is derived from the k-space 𝜈 . The SENSE 

combined subsampled 4D image 𝜌𝑢 ∈ ℂ𝑁𝑥𝑁𝑦𝑁𝑧𝑁𝑡  is 

reconstructed to an aliasing-free and motion-corrected image 

𝜌 ∈ ℂ𝑁𝑥𝑁𝑦𝑁𝑧𝑁𝑡 for each motion state.  

A. In-vivo 4D MR acquisition 

Motion-resolved k-space data was obtained on a cohort of 36 

patients (60 ± 9 years, 20 female) with suspected liver or lung 

metastases and 20 healthy subjects (31 ± 4 years, 9 female) [4]. 

The study was approved by the local ethics committee and all 

subjects gave written consent. 

A 3D T1 weighted spoiled gradient echo sequence was 

acquired in coronal orientation with a variable-density Poisson 

Disc subsampling [67] for an acquisition time of 90 seconds 

(prospectively subsampled) and 300 seconds (reference). The 

remaining imaging parameters were TE = 1.23ms, TR = 

2.60ms, bandwidth = 890Hz/px and a flip angle of 7°. A matrix 
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size of 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 256 x 256 x 144 (RO x PE x 3D ⇔ HF 

x LR x AP) was acquired covering a field-of-view of 500 x 500 

x 360 mm3. A 2D MR self-navigation signal (256 x 8 x 1, RO 

x PE x 3D) was acquired each 200 ms serving as gating signal. 

MR data were retrospectively gated into 𝑁𝑡 = 8 respiratory 

gates, ranging from end-expiratory to end-inspiratory position, 

with a Gaussian view-sharing amongst neighbouring gates. An 

average acceleration factor per motion gate of ~14x 

(prospectively subsampled) and ~4x (reference) was obtained. 

The coil sensitivity map was obtained from the time-averaged 

fully sampled calibration center region by ESPIRIT [68] with 

virtual coil compression to a common size of 𝑁𝐶ℎ = 8.  

Training data for the registration network was generated by an 

iterative SENSE reconstruction [69] of the reference data 

followed by LAP registration [64, 65] to retrieve the target 

deformation field 𝑢target. End-expiratory target images 𝜌target 

for the reconstruction network were obtained from a motion-

corrected iterative SENSE reconstruction of the reference data 

[27]. Overall, 50 subjects (33 patients and 17 healthy subjects) 

were used for training and 6 subjects (3 patients and 3 healthy 

subjects) were used in testing. For training, the reference data 

was used while for testing the prospectively subsampled data 

was taken. 

B. Non-rigid registration in k-space 

The key idea of LAP is that any non-rigid deformation can be 

regarded as local rigid displacements. These displacements can 

be modeled as local all-pass filter operations. Under the 

assumption of local brightness consistency, the optical flow 

equation of a rigid displacement can be equivalently stated in 

Fourier space 

𝜌𝑟(𝑥) = 𝜌𝑚(𝑥 − 𝑢)  ⟺  𝜈𝑟(𝑘) ≃ 𝜈𝑚(𝑘)𝑒−𝑗𝑢𝑇𝑘 (1) 

for deforming a moving image 𝜌𝑚 to a reference image 𝜌𝑟 via 

a deformation field 𝑢(𝑥) at position 𝑥 = [𝑥, 𝑦, 𝑧]𝑇, with 𝜈𝑟(𝑘) 

and 𝜈𝑚(𝑘)  being the k-spaces entries of the moving and 

reference image at location 𝑘 = [𝑘𝑥, 𝑘𝑦, 𝑘𝑧]
𝑇
. The linear phase 

ramp can be regarded as an all-pass filter ℎ̂(𝑘, 𝑥) =

𝑒−𝑗𝑢𝑇(𝑥)𝑘 = �̂�(𝑘)/�̂�(−𝑘) that can be split into a forward �̂�(𝑘) 

and backward filter �̂�(−𝑘) with 𝑝(𝑥) ∈ ℝ which is all-pass by 

design [70]. Global non-rigid deformation is then modelled as 

local rigid displacements and hence the problem of non-rigid 

image registration is transformed to estimating the appropriate 

local all-pass filter for different 𝑥  in a cubic window 𝒲 . 

Selecting an optimal filter basis 𝑝𝑛 that fulfills diffeomorphic 

and smooth flow (e.g. Gaussian), allows to conclude the 

registration formulation in image domain 

 
Fig.1: Proposed motion-compensated 4D reconstruction network which consists of two sub-networks: A non-rigid registration 

network directly operating on motion-resolved k-spaces and a reconstruction network employing 3D spatial and 1D temporal 

convolutions to exploit spatio-temporal redundancies. The estimated deformation fields are incorporated in the data consistency 

blocks. A coil-weighted zero-filled image 𝜌𝑢 is inputted together with the auto-calibrated coil sensitivity maps 𝑆, the k-space 𝜈 and 

the deformation fields 𝑈 to reconstruct a motion-corrected image 𝜌 for each motion state. During training, target images from a 

separate reference acquisition and target deformation fields derived via Local All-Pass are used to minimize the mean squared error 

(MSE) and end-point error (EPE), respectively. 
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min
{𝑐𝑛}

∑ 𝒟 [𝒲(𝑥) ⋅ (𝑝(𝑥) ∗ 𝜌𝑚(𝑥)) , 𝒲(𝑥)

𝑥∈𝒲

⋅ (𝑝(−𝑥) ∗ 𝜌𝑟(𝑥))]   

s. t.  𝑝(𝑥) = 𝑝0(𝑥) + ∑ 𝑐𝑛𝑝𝑛(𝑥)

𝑁

𝑛=1

    ∀𝑥 ∈ ℝ3 

(2) 

 

for which at each image position 𝑥  the 𝑁  optimal filter 

coefficients 𝑐𝑛  are estimated [71] by minimizing the 

dissimilarity 𝒟  (e.g. mean-squared-error, MSE) between 𝜌𝑚 

and 𝜌𝑟.  

In order to carry out the operations in the Fourier domain (i.e. 

k-space), we need to consider the local windowing 𝒲  

 

𝜌𝑊(𝑥) = 𝒲(𝑥) ⋅ 𝜌(𝑥) ⟺  𝜈𝑊(𝑘) = 𝛵(𝑘) ∗ 𝜈(𝑘) (3) 

 

which corresponds in k-space to the convolution by a phase-

modulated (for various 𝑥  positions) tapering function 𝛵(𝑘) . 

Transforming (2) in Fourier domain  

min
{𝑐𝑛}

∑ 𝒟 (𝛵(𝑘) ∗ (�̂�(𝑘)𝜈(𝑘)) ,  𝛵(𝑘)

𝑘∈ℝ3

∗ (�̂�(−𝑘) 𝜈(𝑘)))   

s. t.  �̂�(𝑘) = �̂�0(𝑘) + ∑ 𝑐𝑛�̂�𝑛(𝑘)

𝑁

𝑛=1

  ∀𝑘 ∈ ℝ3  

(4) 

yields the non-rigid k-space registration based on optical-flow. 

The deformation field 𝑢 in the image domain can be directly 

derived from the all-pass filter  
 

𝑢 = 𝑗
𝜕 𝑙𝑛 ℎ̂(𝑘)

𝜕𝑘
|

𝑘=0

 

⇔ 𝑢 = 2 [
∑ 𝑥𝑝(𝑥)𝑥

∑ 𝑝(𝑥)𝑥
,
∑ 𝑦𝑝(𝑥)𝑥

∑ 𝑝(𝑥)𝑥
,
∑ 𝑧𝑝(𝑥)𝑥

∑ 𝑝(𝑥)𝑥
]

𝑇

. 

(5) 

C. Non-rigid registration network 

In order to deal with motion of varying strength, a multi-

resolution approach is usually applied in which the size of 𝒲, 

respectively the half filter support  �̂�, is decreased, i.e. coarse-

to-fine estimation. However, for the k-space based version, 

summation is required over all 𝑘  positions and for shifted 

tapering supports. Hence, for carrying out a registration over 

the complete spectral support requires 2 ⋅ (𝑘𝑥 ⋅ 𝑘𝑦 ⋅ 𝑘𝑧)
2
 

convolutions at each iteration which can be very demanding. 

For example for a typical image size of 𝑘𝑥 = 𝑘𝑦 = 256, 𝑘𝑧 =

144  would require 178 ⋅ 1012  convolutions per multi-

resolution level. We seek to simplify these operations by 

learning an appropriate registration network that can carry out 

these filter operations. The tapering function 𝑇 operating on the 

k-space can be approximated by the computationally more 

efficient method of cropping in image space and providing the 

network with patches of k-spaces. As illustrated in Fig. 1, real 

and imaginary part of the moving and reference k-space are 

inputted and passed through a succession of 3x3 convolutional 

filters with dyadic increase in kernel size and leaky ReLU 

activation function. In the last layer a fully connected 

regression is performed on the average pooled feature map to 

estimate the in-plane deformations �̂�1, �̂�21 at the given central 

location from the input patch. To obtain a 3D deformation field 

�̂�, the registration is also performed on an orthogonal direction, 

yielding �̂�22, �̂�3 and merged with the previous run to �̂�𝑥 =
�̂�1, �̂�𝑦 = 0.5(�̂�21 + �̂�22), �̂�𝑧 = �̂�3 . The whole non-rigid 

deformation field �̂� is obtained by estimating the deformations 

�̂�𝑥, �̂�𝑦, �̂�𝑧  at all voxel locations. This principle follows the idea 

of approximating a global non-rigid flow by locally rigid 

deformations.  

The network is trained in a supervised manner on pairs of 

moving and reference k-space inputs with the corresponding 

target motion field 𝑢 derived from the LAP [64, 65]. Flows are 

augmented by smoothing, translating, rotating and shearing. In 

total 15000 training samples were generated which resulted 

after tapering in ~150 million training samples. The squared 

end-point error (sEPE) 
 

sEPE = 𝐿Reg = ∑(𝑢target,𝑖 − �̂�𝑖)
2

𝑖

 (6) 

 

was employed as the training loss. The network resulted in ~25 

million trainable parameters and was trained by an Adam 

optimizer [72] (learning rate 2.5 ⋅ 10−4  with learning rate 

scheduler, batch size 64) over 150k iterations on a Nvidia V-

100 GPU.  

D. Motion-corrected image reconstruction 

The network reflects an unrolled ADMM algorithm with 

cascaded (3+1)D UNets and intermittent data consistency 

blocks. The network operates on multi-coil complex-valued 4D 

(3D + time) data. It introduces a series of 3D spatial and 1D 

temporal complex-valued convolutional filters. The input to the 

network is the complex-valued subsampled image 𝜌 which was 

reconstructed with a coil-weighted zero-filling, as well as the 

acquired k-space 𝜈, the sampling mask 𝜙, the coil sensitivity 

map 𝑆 and the motion fields �̂� from the registration network 

restacked into the sparse matrix 𝑈 ∈ ℝ𝑁×𝑁.  

The unconstrained MR reconstruction problem is given by 

 

arg min
𝜌

ℛ(𝜌; Θ) + 𝜆‖𝜙𝐹𝑆𝑈𝜌 −  𝜈‖2
2   (7) 

 

where 𝐹 ∈ ℂ𝑁×𝑁 denotes the discrete Fourier transform, ‖⋅‖2 

is the ℓ2  norm and 𝜆 > 0  is the data consistency weighting 
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parameter. The regularizer ℛ(𝜌; Θ)  is expressed by the 

reconstruction network 

 

ℛ(𝜌; Θ) = ‖𝜌 − 𝑓Rec(𝜌𝑢; Θ)‖2
2 (8) 

 

mapping the undersampled image 𝜌𝑢 to the aliasing-free output 

image 𝜌  via the feedforward path. The regularizer thus 

minimizes the complex-valued voxel-wise mean-squared error 

(MSE). Combining (7) and (8) yields a closed-form solution 

[73] of the unrolled proximal gradient for the reconstructed k-

space 

𝜈𝑘+1 = {
𝐹𝑓Rec(𝜌𝑘; Θ),      𝜙𝑛 = 0

1

1+𝜆
(𝐹𝑓Rec(𝜌𝑘; Θ) + 𝜆𝐹𝑈𝐻𝑆𝐻𝐹𝐻𝜙𝜈),     𝜙𝑛 = 1

  , 

∀𝑛 ∈ [1, 𝑁] 

(9) 

after stage/iteration 𝑘  for all voxels and time points  which 

defines consequently the data consistency layer between the 

sparsity-learning (3+1)D UNet blocks. 

The (3+1)D UNet has four encoding and decoding stages 

which consist of complex-valued spatial convolutional layers 

of size 3x3x3x1 (𝑘𝑥 × 𝑘𝑦 × 𝑘𝑧 × 𝑡) followed by a temporal 

convolution of size 1x1x1x2 and complex ReLU activation. A 

complex convolution is performed. A dyadic increase in 

channel size is selected between stages. Residual paths within 

stages and between encoder/decoder stages improve 

convergence. In the encoder branch the last convolutional layer 

per stage uses a stride of 2 for downsampling between stages 

while transposed convolutions are performed in the decoder 

side for upsampling.  

For six cascaded (3+1)D UNets, the overall network results 

in ~5.8 million trainable parameters. It is trained in a 

supervised manner on retrospectively subsampling the 

reference data with randomly selected acceleration factors in 

the range of 3x to 30x. Each training sample is further 

perturbed with randomly augmented flows (see previous 

section) yielding in total ~6 million training samples. A 

complex-valued  

MSE = 𝐿Rec =
1

2
‖[Re(𝜌),  Im(𝜌)]𝑇

− [Re(𝜌target),  Im(𝜌target)]
𝑇

‖
2

2

 

(10) 

is used as training loss to yield close agreement to the target 

image 𝜌target  in a mean-squared error sense. The loss is  

optimized by Adam [72] (learning rate 10-4, batch size  16) and 

fixed data consistency parameter 𝜆 = 10−3 on a Nvidia V-100 

GPU for 40 epochs.  

E. Evaluation and Experiments  

The proposed motion-corrected reconstruction framework was 

evaluated on prospectively subsampled data in 6 subjects. 

Motion fields were estimated from subsampled k-space data 

(~14x accelerated) with the registration network and included 

into the (3+1)D reconstruction network. For comparison, two 

image-based 3D registrations using the image-based LAP 

(denoted as imageLAP) [4, 64, 65] and NiftyReg [74] were 

combined with a motion-corrected iterative SENSE 

reconstruction [27]. Registrations of these methods were 

performed on initial iterative SENSE reconstructed images. 

Comparative methods were run on an Intel Xeon E5-2697 CPU. 

The end-point error EPE = ‖𝑢 − 𝑢target‖
2
 and end-angulation 

error EAE = arg(𝑢, 𝑢target)  between the estimated motion 

field 𝑢 of the subsampled acquisition was compared with the 

target motion field 𝑢target obtained from an image-based LAP 

registration of the reference acquisition. Structural similarity 

index (SSIM) [75] and normalized root MSE (NRMSE) =

1/𝑁 √MSE  were calculated between the motion-corrected 

image 𝜌 and the end-expiratory target 𝜌target of the reference 

scan. All quantitative results are reported as mean ± one 

standard deviation over all voxel positions and test subjects. 

III. RESULTS 

Fig.2 shows the motion-corrected reconstruction in a healthy 

subject of the proposed framework in comparison to the image-

based imageLAP and NiftyReg. The obtained motion fields are 

overlaid on the reconstructed and motion-corrected images as 

a vector field pointing from end-inspiratory (𝑁𝑡 = 8) to end-

expiratory state. Additionally, the deformation fields are 

illustrated in coronal and sagittal orientation. It can be 

appreciated that there exist a significant portion of motion in 

superior-inferior and anterior-posterior direction. The 

registration network does not estimate any motion in the image 

background whereas the image-based methods still try to match 

background pixels. This helps to minimize background 

bleeding into image content and reduces noise amplification in 

the reconstruction. Reconstruction from subsampled images 

was possible in all cases with a markedly improved visual 

image quality and sharpness of the proposed approach. For the 

imageLAP and NiftyReg, residual blurring of the diaphragm at 

the lung-liver interface was observed (pointed out by arrows). 

Visually improved reconstruction quality was obtained with 

the proposed approach. 

In Fig. 3, images of a patient with a metastasis in liver 

segment V are shown for the proposed approach in comparison 

to imageLAP and NiftyReg. The proposed approach provides 

Table 1: Quantitative analysis of end-point error (EPE) and end-

angulation error (EAE) between estimated deformation field and 

target deformation field (obtained from image-based LAP in reference 

scan) in prospectively subsampled acquisition (~14x). Structural 

similarity index (SSIM) and normalized root mean-squared error 

(NRMSE) are calculated between the motion-compensated 

reconstructed image and the end-expiratory target image of the 

reference scan. Metrics are reported as mean ± one standard deviation 

for all voxels and test subjects. Best performance is indicated in bold. 

 Proposed 

approach 

imageLAP NiftyReg 

EPE 0.17 ± 0.26 0.97 ± 1.70 1.34 ± 1.31 

EAE 7.9° ± 9.9° 35.5° ± 22.6° 40.7° ± 25.3°  

SSIM 0.96 ± 0.04 0.88 ± 0.07  0.81 ± 0.03 

NRMSE 0.005 ± 0.001 0.017 ± 0.008 0.023 ± 0.01 
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clear delineation of the liver lesion comparable to the reference 

scan. Image-based approaches suffer from residual blurring. 

Good quality images were obtained in an accelerated 

acquisition of ~90s, reducing scan time and rendering it 

clinically feasible.  

Table 1 summarizes the metrics of the quantitative analysis. 

The proposed approach outperforms both image-based 

approaches. It can be seen that any errors in the registration 

originating from residual aliasing or blurring can propagate 

into the motion-corrected reconstruction yielding a reduced 

image quality metric. Consistent and reproducible results were 

obtained with k-space based registration over the complete 

cohort.  

Training duration of the proposed method was around ~78h. 

Overall, motion-corrected reconstruction of the proposed 

method took on average ~35s (registration ~30s, reconstruction 

~5s), for imageLAP ~841s (registration ~231s, reconstruction 

~610s) and for NiftyReg ~909s (registration ~301s, 

reconstruction ~608s), yielding a 25-times faster 

reconstruction with the proposed approach. 

IV. DISCUSSION 

In this work, we proposed the combination of a deep-

learning non-rigid k-space registration network with a deep-

learning reconstruction network for motion-corrected MR 

image reconstruction. We investigate the possibility of directly 

estimating the non-rigid deformation in k-space without the 

need of a prior image reconstruction. The obtained deformation 

fields are subsequently incorporated into the motion-corrected 

reconstruction to enhance spatio-temporal information sharing. 

An unrolled ADMM algorithm is reflected in a cascade of 

(3+1)D convolutional layers with intermittent data consistency 

blocks. 

Deformation fields and motion patterns can be different in 

the reference scan and in the subsampled acquisition. Test 

subjects were selected which showed good agreement in 

 
Fig. 2: End-expiratory state of motion-corrected and reconstructed images in a healthy test subject for the proposed approach, 

image-based LAP registration with motion-corrected iterative SENSE reconstruction and NiftyReg registration with motion-

corrected iterative SENSE reconstruction. Zoomed in images of liver dome are depicted. Corresponding deformation fields are 

shown in coronal and sagittal orientation. A blue arrow points out residual motion blurring at the lung-liver interface. 
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motion patterns between reference and subsampled acquisition 

to perform a quantitative analysis with minimal bias. The 

ground truth target motion field is provided by an image-based 

LAP registration of the target reference scan. Generation of 

accurate and reliable ground truth motion fields as well as their 

evaluation still remain an open challenge [76]. As the 

registration method for imageLAP and for retrieving the target 

deformation field were the same, one can expect close 

agreement in quantitative metrics. Hence, any deviation can be 

mainly attributed to residual aliasing and blurring in the 

(initially reconstructed) subsampled image. It can thus be a first 

indicator on how residual aliasing and blurring may influence 

registration performance when registration is performed in 

image space. The comparison between imageLAP and the 

registration network (proposed approach) shows thus the 

impact of performing a registration on accelerated data in 

image space and in k-space. Please refer to [66], for a 

comparison of the image-based LAP to the k-space based LAP 

registration on simulated motion flows.  

The non-rigid registration network provided accurate 

deformation fields which were in close agreement to the target 

deformation and resembled the true underlying motion. K-

space registration showed high agreement with reference 

motion. For highly accelerated acquisitions, image-based 

registration can fail whereas k-space registration still provides 

satisfactory performance. The quantitative analysis of the 

motion fields yielded good agreement in non-rigid k-space 

registration with minimal errors.  

Continuous and smooth deformations for consecutive 

motion states were obtained with k-space registration. The 

registration in k-space was less affected by background noise 

than the image-based version and deformation fields were 

concentrated to the actual image content. Static regions (e.g. 

spine) were not deformed and the largest flow occurred in liver, 

lung and spleen along head-feet direction. The network-based 

registration was less computationally demanding than the 

image-based versions. 

The reconstruction network utilized an efficient spatio-

temporal redundancy sharing with the proposed (3+1)D 

convolutional filters. In contrast to a full 4D convolution 

operation, less trainable parameters were required. Moreover, 

the estimated deformation fields were incorporated to guide 

and share samples in the data consistency as well. An unrolled 

ADMM with a one-step proximal gradient data consistency 

was formulated for multi-coil complex-valued processing to 

ensure consistency to acquired raw data. The amount of 

unrolled reconstruction stages and the regularization parameter 

were chosen empirically to provide a trade-off between 

performance and trainable parameters. The networks yield a 

motion-corrected image and the deformation fields which 

enable further analysis of the underlying motion. 

We acknowledge several limitations of this study. We 

performed a comparison against established image-based 

 
Fig. 3: End-expiratory state of motion-corrected and reconstructed images in a patient with liver metastasis. The proposed approach, 

image-based LAP registration with motion-corrected iterative SENSE reconstruction and NiftyReg registration with motion-

corrected iterative SENSE reconstruction are shown. Corresponding deformation fields are shown in coronal and sagittal 

orientation. 
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registration and motion-corrected reconstruction techniques. In 

the future, other deep learning techniques shall be compared. 

We did not yet explore the potential of a full end-to-end 

training, i.e. networks were trained independently with 

individual loss functions. We anticipate further benefits for 

jointly training the networks which will be conducted in future 

studies. A supervised training is performed for the non-rigid 

registration network which may be impaired by the image-

based registration ground-truth. In addition, a full 3D 

registration may also be beneficial. However, the obtained 

results in this study did not indicate any significant 

performance loss of the supervised pseudo 3D training scheme. 

Replacing the one-step proximal gradient data consistency by 

a conjugate gradient might enhance convergence speed. The 

proposed approach was only tested for respiratory motion in 

T1-weighted imaging of the body trunk. Future studies will 

investigate its generalizability to different imaging applications 

and sequences. A Cartesian subsampling was performed which 

results in incoherent aliasing artifacts along phase-encoding 

directions. For radial or spiral subsampling, different aliasing 

artifacts will manifest in the image and may require a retraining. 

V. CONCLUSION 

A deep-learning based motion-corrected reconstruction 

network was proposed which combines a non-rigid k-space 

registration network with a (3+1)D reconstruction network. 

Non-rigid registration in k-space is feasible and provides 

reliable deformation fields especially for highly accelerated 

imaging for which image-based registration is impaired. 

Incorporating the deformation fields into the reconstruction 

network allows for efficient utilization of spatio-temporal 

information. The proposed approach was in close agreement 

with the ground-truth and provided 4D motion-corrected 

images and deformation fields within ~35s. 
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