
1

Super-Resolving a Frequency Band
Ruiming Guo and Thierry Blu

This note introduces a simple formula that provides the exact frequency of a pure sinusoid from just
two samples of its Discrete-Time Fourier Transform (DTFT). Even when the signal is not a pure sinusoid,
this formula still works in a very good approximation (optimally after a single refinement), paving the
way for high-resolution frequency tracking of fastly-varying signals, or simply improving the frequency
resolution of the peaks of a Discrete Fourier Transform (DFT).

SINGLE FREQUENCY ESTIMATION

We learn (and teach!) in college that the frequency content of a signal is encrypted in its Fourier
transform, and that the main frequency modes of a sampled signal are the peaks of its DFT. We also
learn that the accuracy of these frequency values is limited by the inverse of the time range of the
signal (Heisenberg uncertainty), which correlates nicely with the inherent frequency resolution of a DFT:
2π/N , if N is the number of samples of the signal. This knowledge is so deep-rooted that it is hard
to reconcile with the fact that the frequencies of a signal made of a sum of K complex exponentials
can be recovered exactly from as few as 2K samples, using a two-century-old method due to Gaspard
de Prony. This apparent contradiction is resolved by recognizing that Heisenberg uncertainty relies on a
much weaker signal assumption (basically, that its time and frequency uncertainties are finite) than the
sum-of-exponentials model. And it is only when this model is inexact that the estimated frequencies may
be inaccurate, with their uncertainty now given by Cramér-Rao lower bound which assumes unbiased
estimators and known noise statistics. The contrast between the Fourier approach (analytic, intuitive,
but Heisenberg-limited), and Prony’s method (algebraic, black-box, but exact) has made it difficult to
envision higher frequency resolution that would rely on the DFT. Yet, given that the DFT coefficients are
just samples of a very smooth function, the DTFT, analytic considerations suggest that this function can be
approximated locally by a quadratic polynomial, leading to an estimate of its off-grid peak location: as few
as three samples around the max of the DFT already provide a very good estimate of this frequency [1],
[2].

THE TRICK

The main motivation for this note is to put forward a formula which provides the frequency value of
the maximum of the DTFT, from just two DTFT coefficients of a single-frequency signal: see detailed
setting in Box 1. Not only is this formula exact, but it is also very robust to inaccuracies of the model, as
we shall see later. More precisely, if we assume that the unknown frequency ω0 of the signal xn lies inside
an “uncertainty band” [ω1, ω2] where ω2 − ω1 is an integer multiple of 2π/N , this formula specifies how
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BOX 1 Notations
• Single-frequency signal: xn = a0e

jnω0 , n = 0, 1, . . . N − 1

• Uncertainty band: ω0 ∈ [ω1, ω2], with ω2 − ω1 = integer × 2π/N

• Discrete Time Fourier Transform (DTFT): X(ω) =
∑N−1

n=0
xne

−jnω

• Discrete Fourier Transform (DFT): X(2πk/N), where k = 0, 1, . . . , N − 1

• Peak of the DFT: k0 = argmaxk |X(2πk/N)| ; ωDFT = 2πk0/N
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Fig. 1. The frequency ω0 (blue) of a single-frequency signal is obtained from the DTFT values at the endpoints (red) of a frequency interval
known to contain ω0 (assumption: ω2 − ω1 = integer × 2π/N ). Dotted line: a full period of the DTFT X(ω) of the signal.

the amplitudes of the DTFT of xn at ω1 and ω2 should be combined so as to recover ω0 (see visualization
in Fig. 1):

ω0 =
ω1 + ω2

2
+ 2 arctan

(
tan
(ω2 − ω1

4

) |X(ω2)| − |X(ω1)|
|X(ω2)|+ |X(ω1)|

)
. (1)

A proof is provided in Box 2, requiring only elementary EEE-math knowledge. This formula becomes
even simpler when the uncertainty bandwidth is small (i.e., ω2 − ω1 ≪ π):

ω0 ≈ ω1 ×
|X(ω1)|

|X(ω1)|+ |X(ω2)|
+ ω2 ×

|X(ω2)|
|X(ω1)|+ |X(ω2)|

,
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which is what intuition would suggest: a weighting of the end frequencies based on the relative magnitude
of their DTFT.

In practice, this formula is most useful when the uncertainty band is smallest; i.e., ω2 − ω1 = 2π/N .
Then, a straightforward procedure for estimating a single frequency from N uniform signal samples is to:

1) determine ωDFT, the frequency of the peak of the signal DFT;
2) apply (1) with ω1 = ωDFT − π/N and ω2 = ωDFT + π/N .

This works because, for a single-frequency signal, the peak of the DTFT is always within ±π/N of the
maximum of the DFT. But it would also be possible to bypass the computation of the full DFT if a rough
estimate of ω0 were available; e.g., when the frequency of the signal is continuously changing (tracking
between successive signal windows like in radar applications), or when the frequency is a priori known
up to some perturbation (physical resonance experiments, laser-based optical measurements, etc.).

ROBUSTNESS TO INACCURACIES

When the single-exponential model is not exact, the formula (1) is still a very robust estimator of
its frequency. This is particularly so when the uncertainty bandwidth ω2 − ω1 is reduced to 2π/N , an
assumption that we will make from now on. Indeed, consider a noise model xn = a0e

jnω0 + bn where
the complex-valued samples bn are independent realizations of a Gaussian random variable with variance
σ2—“additive white Gaussian noise” assumption. When the number of samples N is large enough, a
linearization of (1) makes it possible to calculate (tedious, not shown here) the standard deviation ∆ω of
the frequency estimation error. In particular, in the case where ω0 is at the center of the interval [ω1, ω2],
this error behaves according to

∆ω =

√
2 π2/4

N
√
N SNR

=
π2

4
√
6
∆ωCR (2)

where SNR = |a0|/σ and where ∆ωCR is the Cramér-Rao lower bound of the problem (see [3] for
a calculation). Obviously, ∆ω is very close to ∆ωCR, within less than 1%. When ω0 is closer to the
extremities of the interval [ω1, ω2], ∆ω deviates from the Cramér-Rao lower bound by up to 80%, still a
very low error in absolute terms. In fact, a simple refinement of the trick as depicted in Fig. 2 shows how to
attain this lower bound, outlining the near-optimality of this procedure: no other unbiased single-frequency
estimation algorithm would be able to improve this performance by more than 1%.

This is confirmed in Fig. 3 by simulations that consist of one million tests, where: 1) the number of
samples, N , is random (uniform) between 10 and 1000; 2) the frequency ω0 is random (uniform) between
−π and π; 3) a0 = 1; 4) the standard deviation σ of the noise is such that the SNR is random (uniform)
between −5 dB and 40 dB; 5) the noise bn is drawn from an iid statistics (Gaussian). In each test, the
uncertainty band before refinement is set by ω1 = ωDFT − π/N and ω2 = ωDFT + π/N . For comparison
purposes, Fig. 3 also shows the distribution of errors of Jacobsen’s estimator [1], [2], which is based on
three consecutive DFT coefficients around ωDFT. The better performance of our formula is likely due to
the higher SNR enjoyed by the two DFT coefficients around the maximum of the DTFT, in comparison
to the three DFT coefficients used by Jacobsen’s formula, one of which has a significantly lower SNR,
being further away from the DTFT peak by more than 2π/N . A somewhat milder difference is also
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Fig. 2. Refined trick: a double application of (1) achieves a quality that is equivalent to the best unbiased single-frequency estimation
algorithm.

that (1) assumes an exact single-frequency model, whereas Jacobsen’s formula is but a local quadratic
approximation.

Beyond just noise, when the single-frequency model is rendered inaccurate due to, e.g., quantization,
sample windowing, or addition of other sinusoidal/polynomial terms, the frequency estimation error of (1)
is controlled by ε, the maximum error of the magnitude of the DTFT at the frequencies ω1 and ω2,
according to (proof in Appendix A)

|ω̄0 − ω0| ≤
4ε tan

( π

2N

)

N |a0|︸ ︷︷ ︸
≈ 2πε

N2|a0|
for large N

. (3)

where |a0| is the amplitude of the single-frequency “ground-truth” signal.
Note that, because it is valid for every single “noise” instance, this bound is of a very different nature

than the statistical result (2)—an average over infinitely many additive white Gaussian noise realizations.
Interestingly, inaccuracies of the model outside the uncertainty band do not contribute to the estimation
error, which suggests that (3) can be used to predict the accuracy of a multiple frequency estimation
problem that uses the single-frequency trick.

MULTIPLE FREQUENCIES

This formula can easily be used in a multiple frequency scenario, provided that the frequencies to
estimate are sufficiently separated. A straightforward procedure consists in, first locating the isolated
peaks of the DFT of the signal (e.g., using Matlab’s findpeaks function), then applying (1) to refine
each frequency individually: see an example in Fig. 4. The estimation error of each frequency can be
quantified by using the bound (3) where, in the absence of other noise, the data inaccuracy ε in the
neighborhood of that frequency is essentially caused by the tail of the DTFT of the other frequencies.
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Fig. 3. Histograms from one million random tests (number of samples N , SNR, frequency, noise): the error that results from using Jacobsen’s
frequency estimator [1], the trick (1), or the refined trick (Fig. 2), is further normalized by the Cramér-Rao lower bound of the estimation
problem (∆ωCR = 2

√
3N−3/2SNR−1). The standard deviations of the three estimators are 1.5325, 1.3008 and 1.0092, respectively.

An example of such calculation is shown in Appendix B, leading to the following statement: assume that
the frequencies ωk of the signal are distant from each other (modulo (−π, π]) by at least δω > π/N , and
that the amplitude of the dominant sinusoid is A, then the estimation error of any of the frequencies of
the signal is bounded according to

|ω̄k − ωk| ≤
2π

N
︸︷︷︸

DFT resolution

× 2(K − 1) tan
(
π/(2N)

)

π sin
(
(δω − π/N)/2

) A

|ak|
︸ ︷︷ ︸

“super-resolution” coefficient

. (4)

Here ω̄k, ωk, |ak| are the estimated frequency, the ground-truth frequency and its amplitude, respectively.
Despite its coarseness (see Fig. 4), this inequality already demonstrates super-resolution potential since
the “super-resolution” coefficient is usually smaller than 1 and, in fact, tends to zero when N tends to
infinity (for fixed δω).

Empirically, a minimum value of 4π/N for δω, or two DFT bins, seems to be sufficient to obtain good
frequency estimates. Of course, this cheap approach to high-resolution multi-frequency estimation is not
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Fig. 4. Multiple frequencies (3 complex exponentials, 12 samples) can be accurately estimated by first locating the isolated peaks (e.g.,
using findpeaks in Matlab) and then applying (1) individually. The actual estimation errors of the three frequencies (from left to right)
are roughly (0.01, 0.02, 0.03) × 2π/12, well below the resolution 2π/12 of the DFT; for comparison, the upper bound (4) provides the
much more conservative values (0.66, 0.45, 0.58)× 2π/12.

optimal; yet, it could be used as the starting point of any iterative algorithm designed to maximize the
likelihood of the problem.

CONCLUSION

The frequency of a single complex exponential can be found exactly using the magnitude of only two
samples of its DTFT, as this note shows. In the presence of noise or other inaccuracies, the trick that we
provide is very robust, and can even be iterated once to reach the theoretical optimum (Cramér-Rao lower
bound)—up to less than 1%. The robustness of this formula makes it possible to, e.g., refine the peaks
of the DFT of a signal, but we also anticipate that it can be used as a tool for high-resolution frequency
estimation. For teaching purposes, we provide a step-by-step proof which requires only undergraduate
signal processing knowledge.
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BOX 2 Step-by-Step Didactic Proof of (1)

Steps

1) Geometric sum:
N−1∑

n=0

zn =
zN − 1

z − 1
with z = ej(ω0−ω) leads to X(ω) = a0

ejN(ω0−ω) − 1

ej(ω0−ω) − 1

2) Euler’s formula: sin θ =
ejθ − e−jθ

2j
leads to

∣∣∣∣∣∣

X(ω0 − ω) = a0e
jN−1

2
ω sin

(
Nω/2

)

sin
(
ω/2

)

then
∣∣X(ω0 − ω)

∣∣ = |a0|
∣∣∣∣
sin
(
Nω/2

)

sin
(
ω/2

)
∣∣∣∣

3) Notation:




ω12= (ω1 + ω2)/2
B = (ω2 − ω1)/4
u = (ω0 − ω12)/2

leads to





∣∣X(ω1)
∣∣= |a0|

∣∣∣∣
sin
(
N(u+B)

)

sin(u+B)

∣∣∣∣
∣∣X(ω2)

∣∣= |a0|
∣∣∣∣
sin
(
N(u−B)

)

sin(u−B)

∣∣∣∣

4) π-periodicity of |sinx|: B = integer× π

2N
leads to

∣∣X(ω2)
∣∣

∣∣X(ω1)
∣∣ =

∣∣∣∣
sin(u+B)

sin(u−B)

∣∣∣∣

5) Sign of sin: ±u ≤ B leads to

∣∣X(ω2)
∣∣

∣∣X(ω1)
∣∣ =

sin(B + u)

sin(B − u)

6) Trigonometry: sin(a± b) = sin a cos b± cos a sin b leads to

∣∣X(ω2)
∣∣

∣∣X(ω1)
∣∣ =

tanB + tanu

tanB − tanu

7) Algebraic resolution: tanu = tanB ×
∣∣X(ω2)

∣∣−
∣∣X(ω1)

∣∣
∣∣X(ω2)

∣∣+
∣∣X(ω1)

∣∣ which leads to

u =
ω0 − ω12

2
= arctan

(
tan
(ω2 − ω1

4

)∣∣X(ω2)
∣∣−
∣∣X(ω1)

∣∣
∣∣X(ω2)

∣∣+
∣∣X(ω1)

∣∣

)

APPENDIX — OTHER PROOFS

A. Error bound (3)

A direct proof of this inequality uses the fact that |arctan a− arctan b| ≤ |a − b| and the triangle
inequality |a + b| ≤ |a| + |b|. More specifically, denoting by X1, X2 the DTFT of the “ground-truth”
signal at ω1, ω2, and by ε1, ε2 the errors (caused by noise or otherwise) on |X1|, |X2|, we have

|ω̄0 − ω0|=
∣∣∣∣2 arctan

(
tan
( π

2N

) |X1|+ ε1 − |X2| − ε2
|X1|+ ε1 + |X2|+ ε2

)
− 2 arctan

(
tan
( π

2N

) |X1| − |X2|
|X1|+ |X2|

)∣∣∣∣

≤ 2 tan
( π

2N

)∣∣∣∣
|X1|+ ε1 − |X2| − ε2
|X1|+ ε1 + |X2|+ ε2

− |X1| − |X2|
|X1|+ |X2|︸ ︷︷ ︸

=
2ε1
(
|X2|+ ε2

)
− 2ε2

(
|X1|+ ε1

)
(
|X1|+ |X2|

)(
|X1|+ ε1 + |X2|+ ε2

)

∣∣∣∣

≤ 2 tan
( π

2N

)max
(
|2ε1|, |2ε2|

)(
|X1|+ ε1 + |X2|+ ε2

)
(
|X1|+ |X2|

)(
|X1|+ ε1 + |X2|+ ε2

)
︸ ︷︷ ︸

= 4 tan
( π

2N

)max
(
|ε1|, |ε2|

)

|X1|+ |X2|

which leads to the inequality (3) after noticing that |X1|+ |X2| ≥ N |a0| (because ω0 ∈ [ω1, ω2]).
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B. Error bound (4)

Denoting by ω1, ω2,. . .ωK the K different frequencies and a1, a2,. . .aK the associated (complex-valued)
amplitudes, the DTFT of the samples xn is given by

X(ω) =
K∑

k=1

ak
ejN(ωk−ω) − 1

ej(ωk−ω) − 1
.

Evaluating the estimation error of the frequency ωk0 using (1) requires calculating the bound ε in (3); i.e.,
the maximum error between X(ω) and the DTFT of a single frequency model, when |ω − ωk0 | ≤ π/N

(with the hypothesis that the minimum distance between ωk0 and the other ωk is at least δω > π/N ):
∣∣∣∣X(ω)− ak0

ejN(ωk0
−ω) − 1

ej(ωk0
−ω) − 1

∣∣∣∣=
∣∣∣∣∣
∑

k ̸=k0

ak
ejN(ωk−ω) − 1

ej(ωk−ω) − 1

∣∣∣∣∣

≤
∑

k ̸=k0

|ak|
∣∣∣∣∣
sin
(
N(ωk − ω)/2

)

sin
(
(ωk − ω)/2

)
∣∣∣∣∣

(using triangle inequality
and Euler’s formula)

≤
∑

k ̸=k0

A∣∣sin
(
(ωk − ω)/2

)∣∣ (denoting A = max
k=1...K

|ak|)

≤ (K − 1)A

min
k ̸=k0

∣∣sin
(
(ωk − ω)/2

)∣∣

≤ (K − 1)A

sin
(
(δω − π/N)/2

) (since |ω − ωk0 | ≤ π/N < δω).

The right-hand side of the last inequality provides an upper bound for ε, that we can use in (3) to find

|ω̄k0 − ωk0| ≤
2π

N
× 2(K − 1) tan

(
π/(2N)

)

π sin
(
(δω − π/N)/2

) A

|ak0|
.
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