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ABSTRACT

The optical flow is a velocity field that describes the motion of pixels

within a sequence (or set) of images. Its estimation plays an impor-

tant role in areas such as motion compensation, object tracking and

image registration. In this paper, we present a novel framework to

estimate the optical flow using local all-pass filters. Instead of us-

ing the optical flow equation, the framework is based on relating one

image to another, on a local level, using an all-pass filter and then

extracting the optical flow from the filter. Using this framework, we

present a fast novel algorithm for estimating a smoothly varying op-

tical flow, which we term the Local All-Pass (LAP) algorithm. We

demonstrate that this algorithm is consistent and accurate, and that it

outperforms three state-of-the-art algorithms when estimating con-

stant and smoothly varying flows. We also show initial competitive

results for real images.

Index Terms— Optical Flow, All-pass Filters, Approximation,

Motion Estimation.

1. INTRODUCTION

An important topic in image processing is the estimation of motion

from a sequence of images. This motion is known as the optical

flow [1] and is utilised in a wide range of applications such as com-

puter vision, biology [2, 3] and medical imaging [4, 5]. In more de-

tail, first proposed in [1], the problem of estimating the optical flow

comprises finding a velocity field u based on the variation of pixel

intensities within an image sequence. A standard framework for this

problem is to assume a pixel remains constant as it flows from one

image to another, this is known as the brightness constraint [6]. Ac-

cordingly, two images I1(x, y) and I2(x, y) are related as follows

I2(x, y) = I1(x− u1(x, y), y − u2(x, y)), (1)

where u(x, y) = [u1(x, y), u2(x, y)]
T

is the optical flow field and

(x, y) is the pixel coordinates. The above constraint is then lin-

earised by performing a first order Taylor approximation under the

assumption that the displacement of the flow is small [1, 7]. The

result is the standard Optical Flow Equation:

I2 − I1 + u1
∂I1
∂x

+ u2
∂I2
∂y

= 0. (2)

Note that we have omitted the dependency on x and y for ease of

notation. A difficulty associated with (2) however is that it offers

one constraint for two unknowns (the aperture problem [8]).

To counter this problem, Horn and Schunck [1] proposed a

global approach using L2 regularization. They minimised the L2

norm of (2) under the constraint that the optical flow is smoothly

varying. Since then, this approach has been extended to use robust

penalty terms [9, 10], L1 regularization [11, 12] and low-rank regu-

larizers [13]. A taxonomy of regularizers was presented in [14]. In

This work was supported by Huawei.

contrast, Lucas and Kanade [7] opted for a local approach. Specif-

ically, they constrained the flow to be constant over a local region

and solved (2) within such regions. This local approach is more

robust to noise but at the expense of producing a consistent estimate

of the flow [10]. To harness both robustness and consistency, the

local and global approaches were combined in [10]. Using a similar

joint framework, the local constancy constraint on the optical flow

has been extended to affine models in [15, 16] and linear filters in

[17]. Spectral techniques involving the Radon transform have also

been used to estimate multiple superimposed translations in [18] and

local affine models in [19]. Finally, feature matching was proposed

in [20] and used as an initialisation in [21, 22]. For a complete

review of the state-of-the-art see [23, 24, 25, 26, 27], and, more

recently, [6, 28].

In this paper, we present a novel framework for optical flow esti-

mation using local all-pass filters. More precisely, instead of assum-

ing small displacement and using (2), we assume the optical flow is

slowly changing so that it is locally constant. Under this assumption,

we relate local changes between two images via a filter that turns out

to be all-pass. Then, we extract the local optical flow from this all-

pass filter. Importantly, in contrast to [7], we obtain a consistent esti-

mate of the optical flow. Accordingly, we present a novel filter-based

method to estimate smoothly varying optical flows, which we term

the Local All-Pass (LAP) algorithm. We evaluate this algorithm in

noiseless conditions (i.e. images that exactly satisfy the brightness

constraint) and show improved accuracy and speed when compared

to state-of-the-art algorithms. We also present initial results for real

images taken from the Middlebury website [6].

The paper is organised as follows. In Section 2, we introduce the

all-pass filter framework and detail its application when estimating a

constant optical flow. Next, in Section 3, we adapt the framework to

allow the estimation of a smoothly varying optical flow and present

the LAP algorithm. In Section 4, we cover pre- and post-processing

techniques that are applied to the LAP algorithm. We then evaluate

the LAP algorithm in Section 5 and conclude in the final section.

2. ALL-PASS FILTER FRAMEWORK

The central concept in this framework is that a constant optical flow

between two images, I1 and I2, is equivalent to filtering with an

all-pass filter H . Using this concept, the framework comprises two-

stages: first, we estimate the all-pass filter in question. Then, in the

second stage, we extract the optical flow information from the filter.

In the following discussion we expand upon these two stages.

2.1. Shifting is all-pass filtering

Assuming the brightness constraint, (1), a constant optical flow is

equivalent to shifting an image by a constant displacement vector

u = [u1, u2]
T
. Now, using the shifting property of the Fourier
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transform, it easily follows that this image shift is equivalent to

filtering I1. In the continuous domain, the corresponding filter is

characterized by a frequency response

H(ω1, ω2) = e−ju1ω1−ju2ω2 .

This filter has the following properties

• Separable: H(ω1, ω2) = H1(ω1, )H2(ω2);
• Real: the impulse response is real-valued and hence

H(ω1, ω2) = H∗(−ω1,−ω2);
• All-pass: |H(ω1, ω2)| = 1.

Now, in the case where sampling is ideal (with sinc-prefiltering),

we obtain a digital version of the filter H . Note that the properties of

this digital filter are the same as its continuous version. Importantly,

the (2π, 2π)-periodic frequency response of the digital filter can

always be expressed as

H(ω1, ω2) =
P (ejω1 , ejω2)

P (e−jω1 , e−jω2)
(3)

where P (z1, z2) is the 2D z-transform of some separable real filter.

A possible choice for P (ejω1 , ejω2) is ej
1
2
argH1(ω1)ej

1
2
argH2(ω2)

using the principal value for the determination of the argument. Note

that (3) describes general all-pass filters, not only filters that corre-

spond to a shift.

2.2. Approximating the all-pass filter - A basis representation

Given the frequency response in (3), we propose an approximation

approach to obtaining the all-pass filter H(ω1, ω2). We start by

linearising the filter transform been I1 and I2 using the all-pass

structure in (3) to obtain

P (ejω1 , ejω2)Î1(ω1, ω2) = P (e−jω1 , e−jω2)Î2(ω1, ω2)

where “ˆ” denotes the Fourier transform of the images. In the sam-

pled space domain, this relation becomes

p[k, l] ∗ I1[k, l] = p[−k,−l] ∗ I2[k, l], k, l integer, (4)

where ∗ denotes convolution.

Now, using a standard signal processing technique, we express

the filter P (ejω1 , ejω2) as a linear combination of a few fixed,

known real filters Pn(z1, z2). In other words, we propose a filter

basis representation:

P (z1, z2) =

N−1
∑

n=0

cnPn(z1, z2), (5)

where N is some small number. As a consequence, our approxi-

mation approach to determining H(ω1, ω2) amounts to finding the

coefficients {cn}n=0,...N−1 corresponding to the filter basis. Note

that by doing so, we will preserve the real all-pass property, but we

will lose separability.

A straightforward algorithm for finding the approximation of P
consists in minimizing, in the L2 sense, the difference between the

left and right handsides of (4) when P satisfies the linear representa-

tion (5). Algebraically, the result of this minimization is obtained by

solving a linear system of equations, which is very fast and efficient

(one global minimum only).

2.3. Finding a good filter basis

Having formulated the approximation of the all-pass filter, let us

now examine the fixed filters required in (5). One possible approach

is to use a canonical filter basis: Pm,n(z1, z2) = z−m
1 z−n

2 where

m2 + n2 ≤ R2 and R is the radius of the disk which contains the

support of the approximated P filter. This results in a very accurate
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Fig. 1. Graph showing the accuracy of the all-pass framework when

estimating a constant optical flow. The accuracy is measured over

three different shifts: 1, 8 and 16 pixels, and for 1000 different di-

rections (ranging from 0 to 360 degrees). Note, the accuracy is mea-

sured as percentage of absolute error relative to the shift of the flow.

estimation of a constant optical flow; on the order of less than 1%
error for a flow with a displacement of 1 pixel. However, such a fil-

ter basis requires N ≈ πR2 different basis elements, which makes it

unsuitable for larger displacements: intuitively, R is an upper bound

on the displacement of the flow that can be estimated in this context.

In view of this relationship, we propose a compact, yet flexi-

ble, filter basis that achieves a similar quality to the canonical basis.

Using the Gaussian filter as a template, our basis comprises up to

N = 6 filters as follows:















































p0[k, l] = e
− k

2+l
2

2σ2

p1[k, l] = k p0[k, l]

p2[k, l] = l p0[k, l]

p3[k, l] = (k2 + l2 − 2σ2) p0[k, l]

p4[k, l] = kl p0[k, l]

p5[k, l] = (k2 − l2) p0[k, l]

(6)

where σ = (R + 2)/4 and the size of the filters is (2R + 1) by

(2R + 1) pixels. Note that, depending on the situation, the number

of filters can be reduced in the basis. The advantage of these bases

is that they are completely scalable and are typically suited for flows

of displacement up to R pixels.

2.4. Extracting the displacement vector

Now, how to retrieve the displacement from the all-pass filter? Since

we expect the frequency response of the approximated filter Happ

to be close to e−jω1u1−jω2u2 , we use the following formula

u1,2 = j
∂ log

(

Happ(e
jω1 , ejω2)

)

∂ω1,2

∣

∣

∣

ω1=ω2=0
.

This formula has the following simple (and intuitive) expression in

terms of the impulse response of the filter P :

u1 = 2

∑

k,l
k p[k, l]

∑

k,l
p[k, l]

and u2 = 2

∑

k,l
l p[k, l]

∑

k,l
p[k, l]

. (7)

The above expressions proved to be very accurate in all the tests that

we have made.

2.5. Examples

To illustrate the accuracy of the all-pass framework, we examine the

estimation of three optical flows with constant displacement: 1, 8
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(a) Ground Truth (b) LAP Estimate (c) Lucas-Kanade [7] Estimate

Fig. 2. Graphs comparing the consistency of the raw LAP algorithm (without any pre/post processing) and the Lucas-Kanade algorithm [7]

when estimating a constant optical flow. Note that the flow has a displacement of 1 pixel and is applied to the image shown in Fig. 3(a)

Constant Flows Smoothly Varying Flows Real Flows

Algorithms
D = 1 pixel D = 15 pixel D = 1 pixel D = 15 pixel Dimetrodon RubberWhale

AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE

LAP 4×10
−6 1×10

−7 0.001 0.001 0.107 0.002 0.746 0.102 1.782 0.096 3.870 0.116

LDOF [21] 0.777 0.020 0.169 0.054 2.119 0.043 11.91 1.310 2.104 0.115 4.310 0.129

MPOF [22] 1.833 0.046 0.094 0.044 2.103 0.041 7.201 0.964 2.976 0.150 2.662 0.087

HS [1, 28] 1.293 0.033 0.084 0.039 1.854 0.037 6.010 0.868 4.562 0.219 3.801 0.119

Table 1. Error comparison for the LAP algorithm and three state-of-the-art optical flow algorithms. In the table, AAE represents the average

angular error (in degrees), AEE is the average end-point error (in pixels) and D represents the displacement of the optical fow. The bold

values indicate the best result.

and 16 pixels, respectively. For each displacement, we test 1000 dif-

ferent directions of the flow, ranging from 0 to 360 degrees. The

results of these estimations are shown Figure 1. The figure shows

the absolute error of the estimate as a percentage of the original dis-

placement of the flow. From the figure, we observe that the maxi-

mum percentage error is less than 0.5%, 1% and 2% for a shift of 1,

8, 16 pixels, respectively. Note that we use R = 2D, where D is

displacement, and N = 6 filters for this estimation.

3. LOCAL ALL-PASS ALGORITHM

In the preceding discussion, we have assumed the optical flow is

constant. We now relax this assumption and consider the estimation

of a smoothly varying optical flow. To estimate such a flow, we

propose a local adaptation to our framework. Instead of estimating

a unique all-pass filter based on the whole image, we assume the

flow is constant within a window R and estimate an all-pass filter

within that window. As such, we have the local all-pass equation

for optical flow estimation:

p[k, l] ∗ I1[k, l] = p[−k,−l] ∗ I2[k, l], where k, l ∈ R. (8)

Once we have obtained the local filter, we can then shift the window

R and estimate a new local all-pass filter. Based on this concept,

we formulate a novel method to estimate a smoothly varying flow,

which we term the Local All-Pass (LAP) algorithm. Notice that this

is similar to the formulation by Lucas and Kanade [7], however, im-

portantly, we do not use the Optical Flow Equation, (2); thus we are

not restricted to flows of small displacement.

More precisely, the LAP algorithm first estimates a local all-

pass filter for every pixel in the image - the filter corresponds to the

central pixel of the region R. Then, using these filters, it extracts

an estimate of the optical flow according to (7). For a (2R + 1) by

(2R+1) block R, the estimation stage in the algorithm is equivalent

to solving the following minimisation at each pixel

min
{cn}

∑

l,k∈R

∣

∣

∣
p[k, l] ∗ I1[k, l]− p[−k,−l] ∗ I2[k, l]

∣

∣

∣

2

(9)

where p[k, l] = p0[k, l] +

N−1
∑

n=1

cnpn[k, l].

Notice that we have assumed c0 = 1 thus the above minimisation

is equivalent to solving a linear system of equations with (N − 1)
unknowns. This solution can be implemented very efficiently using

convolutions and pointwise multiplications.

In practice, we may find that the linear system of equations in

(9) is singular for certain pixels. However, instead of considering

the condition number of the system, we assume these cases are rare

and opt to deal with any erroneous estimates that occur in a post-

processing stage, see the next section. To validate this approach,

Figure 2 highlights the consistency of the LAP algorithm when esti-

mating a constant flow (with a displacement of 1 pixel). The figure

compares the raw LAP estimate to that obtained from [7].

4. PRE- AND POST-PROCESSING

The majority of optical flow algorithms employ some form of pre-

and post-processing. For example, image pre-filtering is used to en-

force the brightness constraint [28] and median filtering is used to

improve the optical flow estimate [12]. In our case, we choose to

pre-filter real images using a high pass filter based on the Laplacian

function. We also incorporate post-processing to aid the accuracy

of the LAP algorithm. This post-processing comprises two stages:

first, we identify and replace erroneous estimates of the optical flow

using an inpainting procedure [29, 30]. We opt for a fast inpaint-

ing procedure based on isotropic diffusion [31]. Note that errors

are identified in two ways: 1) if they are within 2R from the image

boundary; 2) if they have a magnitude (i.e. displacement) greater

than R. The second stage is to smooth any outlying estimates not

previously identified using mean filtering.

4.1. Multi-Scale refinement

Although the LAP algorithm can estimate large optical flows di-

rectly, it requires a large filter basis to do so. This is equivalent

to assuming large regions of the flow are very slowly varying (i.e.

constant). To overcome this issue, we use a multi-scale refinement

in which the optical flow is estimated in a coarse-to-fine manner.

However, unlike [7, 32], we do not implement this refinement using

image pyramids, rather we change the scale of the filters using the
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LAP LAP w. Median Filters LDOF [21] MPOF [22] HS [1, 28]

Time (seconds) 6.23 7.76 29.87 279.00 47.05

Table 2. Computation time for the five optical flow algorithms. The size of the images used to compute the flow are 388 by 584 pixels.

(a) Image 1, I1 (b) Ground Truth Flow, u (c) Image 2, I2 (d) LAP Flow Estimate, uest

Fig. 3. Illustration of the smoothly varying optical flow and its estimation using the LAP algorithm. The first image is shown in (a), the

smoothly varying optical flow in (b), the second image in (c) and the estimate of the flow using the LAP algorithm in (d). Note that the optical

flow has a maximum displacement of 15 pixels.

parameter R; large values of R allow the estimation of large flows

whilst small values allow faster variation in the flow. Therefore, we

start by estimating a large flow using filters with an equivalent large

R and then refine the estimate with smaller values of R.

5. RESULTS

We now compare the performance of the LAP algorithm against

two state-of-the-art algorithms: the Large Displacement Optical

Flow (LDOF) proposed in [21] and Motion Preserving Optical Flow

(MPOF) proposed in [22]. We also use, as a baseline, a modern

implementation of Horn and Schunck’s algorithm (HS) presented in

[28].

For reference, given the original optical flow u and its estimate

uest, performance is measured in terms of the computation time, the

End-point Error (EE) and the Angular Error (AE) [25]:










EE = ‖u− uest‖2 ;

AE = cos−1

(

1 + uTuest√
1 + uTu

√

1 + uT
estuest

)

.

These errors are then averaged over the whole optical flow. Note that

AE is in degrees and only greyscale images are considered.

5.1. Noiseless Conditions

We start by evaluating the LAP algorithm in noiseless conditions.

In other words, the second image is generated by warping the first

image with the ground truth optical flow. Therefore, the pair of im-

ages exactly satisfy the brightness constraint (i.e. they do not suffer

from any noise). Under these conditions, we estimate two types of

flows: a constant flow and a smoothly varying flow. In both cases,

we examine a small displacement, a 1 pixel shift, and a large dis-

placement, a 15 pixel shift. To estimate these flows, we use N = 3
in the LAP algorithm and perform 6 multi-scale iterations with the

following filter scale values: R = 32, 16, 8, 4, 2, 2.

The results of estimating the optical flows with each algorithm

are shown in Table 1 and the computation times are shown in Table

2. An illustration of the smoothly varying optical flow (with 15 pixel

shift) and its estimation using the LAP algorithm is shown in Figure

3. From the first table, we observe that the LAP algorithm consis-

tently outperforms the other algorithms when estimating the optical

flow in noiseless conditions; it is roughly 100 times more accurate

for constant flows and about 10 times more accurate for smoothly

varying flows. In terms of computation time, Table 2 shows that the

LAP algorithm is the fastest; about 5 times faster than the LDOF,

which is the next fastest, and 45 times faster than the MPOF, which

is the slowest. Important, unlike the others, this computation time

is achieved using only a Matlab implementation. Finally, for the

smoothly varying flow with a shift of 15 pixels, we interpolate (us-

ing cubic splines [33]) the second image from the LAP, LDOF and

MPOF estimates. The resulting PSNR values are 43.9 dB, 28.1 dB

and 27.9 dB for the LAP, LDOF and MPOF, respectively.

5.2. Real Images

Now, we present an initial evaluation of the LAP algorithm using

two real images (i.e. noisy conditions): the Dimetrodon image pair

and RubberWhale image pair from the Middlebury website [6]. For

these images, we pre-process them using a Laplacian filter. Also,

as real flows are likely to be piecewise, we introduce a two-stage

median filtering based on [34]. This filtering is used when R = 2
and comprises a coarse 11 by 11 filter followed by a fine 5 by 5 filter.

The results of this initial evaluation are shown in the last col-

umn of Table 1. From the table, we observe that the LAP algorithm

performs very well on the Dimetrodon images and is competitive

on the RubberWhale images. This performance is to be expected as

the Dimetrodon flow is approximately smoothly varying while the

RubberWhale flow has more edges that are harder for the LAP algo-

rithm. Note that the computation time for the LAP algorithm with

the median filtering is shown in Table 2; the inclusion of the median

filters increases the time by about 1.5 seconds.

6. CONCLUSION

In this paper, we proposed a new framework for the estimation of the

optical flow. The framework is based on using a local all-pass filter

to relate a local region in one image to the corresponding region in

another image. The optical flow is then extracted from the filter.

Using this framework, we presented the novel LAP algorithm to es-

timate smoothly varying optical flows. It determines a local all-pass

filter at each pixel and then extracts the optical flow from these fil-

ters. We demonstrated that our algorithm is faster and more accurate

than three state-of-the-art algorithms when estimating a constant and

smoothly varying flow in ideal conditions. Finally, we presented ini-

tial results for real images and showed them to be competitive with

the state-of-the-art.
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