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ABSTRACT

Recently, classical sampling theory has been broadened to in-

clude a class of non-bandlimited signals that possess finite

rate of innovation (FRI). In this paper we consider the re-

construction of a periodic stream of Diracs from noisy sam-

ples. We demonstrate that its noiseless FRI samples can be

represented as a ratio of two polynomials. Using this struc-

ture as a model, we propose recovering the FRI signal using

a model fitting approach rather than an annihilation method.

We present an algorithm that fits this model to the noisy sam-

ples and demonstrate that it has low computation cost and is

more reliable than two state-of-the-art methods.

Index Terms— Finite rate of innovation, sampling the-

ory, noise, recovery of Dirac pulses

1. INTRODUCTION

Signal acquisition and reconstruction relies on the ability to

convert a signal between the continuous and discrete-time do-

mains. Unsurprisingly, perfect reconstruction when convert-

ing between these domains is highly prized. In 2002, Vetterli

et al [1] demonstrated perfect reconstruction for a class of

non-bandlimited signals that possess finite rate of innovation

(FRI). In other words, they have a finite number of degrees

of freedom per unit of time. Specifically, the authors showed

how to reconstruct periodic streams of Diracs and piecewise

polynomials using the sinc and Gaussian kernels.

Since then the sampling of FRI signals has received wide

attention and been extended to broader scenarios [2]. For ex-

ample, the use of polynomial and exponential reproducing

kernels were proposed in [3, 4], and reconstruction of piece-

wise sinusoidal signals examined in [5]. Recently, recovery

from non-uniform samples was examined in [6] and the re-

construction of a long sequence Diracs, 1000 in total, pre-

sented in [7]. FRI theory has also been generalised to a spher-

ical coordinate scheme in [8] and higher dimensional signals,

such as multi-dimensional Diracs in [9] and curves in [10].

As a result, FRI has found application in the compression of

ECG signals [11], the detection of spikes in neurophysiologi-

cal data [12, 13] and in ultrasound [14]. However, similar to

This work was supported by an RGC grant #CUHK410110 of the Hong

Kong University Grant Council.

Fig. 1. The FRI acquisition system. The continuous-time input

signal x(t), in this case a sequence of K Diracs, is filtered by a

sampling kernel ϕ(−t/T ) and sampled at a period T .

most applications, perfect FRI reconstruction is only achieved

in noiseless conditions. Therefore, a particular topic of inter-

est, examined in [2, 15, 16, 17], is the recovery of FRI signals

in noisy conditions.

In this paper, we consider a classic FRI sampling prob-

lem; the reconstruction of a periodic stream of Diracs from

noisy samples. We demonstrate that, in noiseless conditions,

the samples of this periodic FRI signal can be expressed as a

ratio of two polynomials. Therefore, the samples of the FRI

signal can be represented using only the coefficients of these

polynomials. In view of this, we propose a novel method to

recover an FRI signal in the presence of noise. The method is

based on fitting a model comprising a ratio of two polynomi-

als to the noisy FRI samples. The central concept is that, by

minimising the fit between the two, we recover the best esti-

mate of the FRI samples. Accordingly, we present an iterative

algorithm that estimates the coefficients of the polynomials

by fitting the model to the noisy data. We demonstrate that

this algorithm requires less computation time than two state-

of-the-art methods - matrix pencil [15] and Cadzow iterative

denoising [2] - whilst still achieving the same accuracy.

The paper is organised as follows. In Section 2, we review

FRI sampling theory relating to a periodic stream of Diracs in

both noiseless and noisy conditions. For a complete review

of the state-of-the-art see [18]. In Section 3, we present the

framework of our reconstruction algorithm; namely that the

samples of a FRI signal can be represented as a ratio of poly-

nomials. Using this framework, we present our reconstruc-

tion algorithm in Section 4 and evaluate it using simulations

in Section 5. We then conclude in the final section.

2. SAMPLING FRI SIGNALS

The generic FRI sampling problem presented in [1] involves

the recovery of a continuous-time FRI signal, x(t), from a set
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of N samples, {yn}
N−1
n=0 . These samples are obtained from an

analogue-to-digital acquisition system; the continuous-time

signal x(t) is filtered using a kernel, with impulse response

ϕ(−t/T ), and then uniformly sampled in time. Assuming a

sampling period T , the samples we obtain are

yn =

∫ ∞

−∞

x(t)ϕ

(
t

T
− n

)

dt =

〈

x(t), ϕ

(
t

T
− n

)〉

, (1)

where n = 0, 1, . . . , N − 1. Figure 1 illustrates this acquisi-

tion system using a stream of Diracs (a standard FRI signal).

In this paper, we consider the specific case presented in

[1, 2]: the signal x(t) is a τ -periodic stream of K Diracs and

the sampling kerenel is a sinc window with bandwidth B =
1/T . This type of FRI signal has a rate of innovation 2K/τ
and is defined as

x(t) =
K∑

k=1

∑

l∈Z

xkδ (t− tk − lτ) , (2)

where {xk, tk}
K
k=1 are respectively the amplitudes and loca-

tions of the K Diracs. Note that the locations are restricted

such that tk ∈ [0, τ [ . Therefore, using the definition of the

Dirichlet kernel (or τ -periodic sinc function), the samples of

(2) we obtain using the sinc kernel are

yn =

K∑

k=1

xk
sin(πB(nT − tk))

Bτ sin(π(nT − tk)/τ)
. (3)

Note that T = τ/N in this framework thus N = Bτ as B =
1/T . Also, without loss of generalisation, we shall assume

Bτ is an odd integer.

Now, as demonstrated in [2], the signal x(t) can be

perfectly reconstructed from a set of N samples provided

N ≥ 2K + 1. The authors’ reconstruction scheme involves

determining the locations {tk}
K
k=1 via the annihilation filter

method (also known as Prony’s methods) and then determin-

ing the amplitudes {xk}
K
k=1 via least mean squares.

In brief, the annihilation filter method involves determin-

ing a filter A whose coefficients a = [a0, a1, . . . , aK ]
T

satisfy

a ∗ ŷn = 0, where ∗ represents convolution and ŷn is the dis-

crete Fourier transform (DFT) of the samples. Using matrix

notation, this convolution can be written as







ŷ−M+L ŷ−M+L−1 · · · ŷ−M

ŷ−M+L+1 ŷ−M+L · · · ŷ−M+1

...
...

. . .
...

ŷM ŷM−1 · · · ŷM−L








︸ ︷︷ ︸

YL=K=YK

a = 0 (4)

where M = ⌊N/2⌋, L = K and YK is a Toeplitz matrix of

size (N − K) × (K + 1). The locations {tk}
K
k=1 are then

determined from the roots of filter A. Since the samples ŷn
are annihilated in (4) the filter A is called the annihilation

filter. For further details of the annihilation method see [2].

2.1. Model Mismatch

Unfortunately, in practice, no acquisition system is perfect

thus the samples we obtain are corrupted either by noise or

more generally mode mismatch. We denote these noise cor-

rupted samples as ỹn. The presence of noise means that the

annihilation equation in (4) is no longer valid. In other words,

if ỸK is the Toeplitz matrix formed from the noisy samples

then ỸKa 6= 0. One simple solution is to assume ỸKa ≈ 0

and estimate a using the total least squares (TLS) method.

However, when the noise level increases this approach be-

comes unreliable [18].

More sophisticated approaches involve extending the an-

nihilation equation in (4) such that L = ⌊N/2⌋, hence we

obtain a new noisy matrix ỸL that is (L + 1)-square in size.

In [2, 19], the authors’ presented iterative algorithms that ex-

ploit the K-rank Toeplitz structure of YL in noiseless condi-

tions. Blu et al [2] used Cadzow’s iterative denoising (CID)

algorithm [20] whereas [19] used structured low rank approx-

imation [21]. Once the approximate matrix is obtained it is

reshaped such that L = K and the locations determined by

TLS. A non-iterative approach using T̃L was proposed in [15]

and subsequently used in [16, 4]. This approach involves ap-

plying the matrix pencil method [22] to T̃L to obtain an esti-

mate of tk directly. The performance achieved using the ma-

trix pencil method is similar to that achieved using the CID

algorithm [4]. Finally, a stochastic algorithm was proposed in

[23] to reconstruct FRI signals in the presence of noise.

A disadvantage of both the iterative and non-iterative al-

gorithms is that they require singular valued decomposition

(SVD) to be performed on ỸL. Thus, their computational

cost rapidly increases as the number of samples N increases

(remember that L = ⌊N/2⌋). Note that the iterative algo-

rithms are the worst offenders as this SVD is performed at

each iteration. In this paper, we propose a new approach to

dealing with noise that does not require us to compute large

SVD.

2.2. Assessment of FRI Signal Recovery

Often, the accuracy of an FRI recover algorithms is based on

how accurate the parameters {xk, tk}
K
k=1 have been estimated

in comparison to the originals. This may however be unreli-

able as it depends on the order of the reconstructed locations.

Instead, we propose assessing recovery based on the mean

squared error (MSE) between the reconstructed FRI samples,

y′n, and ỹn, which we term MSER. As a result, we can then

construct a criteria to decide if the FRI recovery has been suc-

cessful. This criteria is

MSER < MSEIN, (5)

where MSEIN is the input MSE between the ỹn and yn. Note

that it is reasonable to assume prior knowledge of MSEIN via

noise statistics so (5) can be used directly when recovering

FRI signals.
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3. FRI SAMPLES AS A RATIO OF POLYNOMIALS

A fundamental concept in this paper is that, in the noiseless

scenario, the samples of a FRI signal can be expressed as a

ratio of two polynomials: a numerator polynomial of order

K−1 and a denominator of order K. To demonstrate this rela-

tionship, consider again the samples of the τ -periodic stream

of K Diracs defined in (3). Using the identities N = Bτ and

T = τ/N , these samples are

yn =
K∑

k=1

xk
sin(π (n− t̄k))

N sin(π (n− t̄k) /N)
, (6)

where t̄k = tk/T . Now, if we use Euler’s formula, the sam-

ples are expressed as a ratio of complex exponentials. In

particular, the denominator is dependent on a j2πn/N term.

Therefore, we can manipulate the complex exponentials such

that we obtain:

yn = ej2πnM/N PK−1(e
j2πn/N )

QK(ej2πn/N )
, (7)

where PK−1(e
j2πn/N ) is a polynomial of order K − 1 and

QK(ej2πn/N ) is a polynomial of order K. In fact, the poly-

nomial QK is the annihilation filter mentioned in the previous

section, hence we shall refer to it now as A.

The important aspects of this relationship are as follows.

First, the samples of the FRI signal are defined by the coef-

ficients of the two polynomials. In other words, if we know

these coefficients we can construct the FRI samples and in

turn recover the FRI signal. Second, as the order of the poly-

nomials is related to the number of Diracs, this representation

of the FRI samples is independent of the number of samples.

Finally, this is a sparse representation of the samples in the

time domain.

Now, in noisy conditions, the expression in (7) does not

hold. However, we can use this ratio structure as a model and

performing model-fitting on the noisy samples. The principle

is that by fitting the model to the noisy samples we obtain a

sparse representation of the samples that fits the FRI frame-

work. Therefore, if we minimise this fitting procedure, we

obtain the best sparse representation of the samples and a FRI

signal. As a result, we present a new approach to the recovery

of FRI signals in the presence of noise; Rather than annihilat-

ing the noisy samples, we propose fitting a model comprising

a ratio of two polynomials to them. This fitting procedure is

summarised as

min
A,P

N−1∑

n=0

∣
∣
∣
∣
ṽn −

PK−1(e
jωn)

AK(ejωn)

∣
∣
∣
∣

2

, (8)

where ṽn = yne
−j2πnM/N and ωn = 2πn/N .

Notice that this nicely coincides with the criteria defined

in (5). By minimising (8) we should obtain a sparse represen-

tation of the noisy samples that minimises the MSE between

the reconstructed samples and the noise samples.

4. MODEL FITTING ALGORITHM

4.1. Algorithm

Unfortunately, the minimisation as stated in (8) is non-linear

in nature. Therefore, its direct computation would require

non-linear based methods, such as the Gauss-Newton method

or the Levenberg-Marquard algorithm. Instead, we propose

to estimate the solution in a linear manner using the follow-

ing iterative minimisation

min
Ai,P

N−1∑

n=0

∣
∣
∣
∣

Ai
K(ejωn)ṽn − PK−1(e

jωn)

Ai−1
K (ejωn)

∣
∣
∣
∣

2

, (9)

where i represents the iteration number. In the following sec-

tion we shall detail our implementation of (9). Note, however,

that this type of algorithm is similar to the Steiglitz-McBride

algorithm [24] for system identification and Sanathanan-

Koerner algorithm [25] for transfer function synthesis. Ac-

cordingly, alternative minimisation procedures are possible,

for example see [26].

4.2. Implementation

We start by rewriting (9) in terms of the product of Fourier

matrices. First, by defining WN,M as a N ×M inverse DFT

matrix, we have the following
{
PK(ejωn)

}N−1

n=0
= WN,Kp

{
AK+1(e

jωn)
}N−1

n=0
= WN,(K+1)a,

where p is the K coefficients of P . Now, we define ṽ =
[ṽ0, ṽ1, . . . , ṽN−1]

T
as the vector relating to ṽn and Ṽ as the

diagonal matrix constructed from ṽ. Using this new notation,

(9) becomes

min
ai,p

‖Ai−1ai −Bi−1p‖
2
, (10)

where the matrices Ai−1 and Bi−1 are defined as

Ai−1 = ṼRi−1WN,(K+1), and Bi−1 = Ri−1WN,K ,

where Ri−1 =
[
diag

{
WN,(K+1)ai−1

}]−1
.

Now, similar to [2, 15], we shall constraint the minimi-

sation in (10) such that the Euclidean norm of ai is equal to

one (i.e. ‖ai‖
2
= 1). Using this constraint, we decouple the

minimisation in (10) to obtain the following in just ai:

min
ai

∥
∥
∥

(

I−Bi−1B
†
i−1

)

Ai−1ai

∥
∥
∥

2

s.t. ‖ai‖
2
= 1, (11)

where (Bi−1)
†
=

[
BH

i−1Bi−1

]−1
BH

i−1. We estimate the

next iteration ai by solving (11) using total least squares, thus

we require SVD. However, unlike [2, 15], the SVD is only

performed on a square matrix of size (K + 1). Therefore, it

scales only with the number of Diracs not the number of sam-

ples hence this method can be applied to large sets of samples.
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Final, once a suitable ai is obtained, we determine p by solv-

ing
min
p

‖ṽ −AiWN,Kp‖
2
. (12)

Two important aspect of this algorithm are of course de-

ciding a0 and deciding when to stop. For the first, we perform

TLS on the noisy matrix ỸK and determine a0. For the sec-

ond aspect, we follow our criteria set in (5), thus we iterate

until the (5) is satisfied. Alternatively, we could iterate for a

fixed number of iterations. The complete procedure is defined

in Algorithm 1.

Algorithm 1 Model-fitting method for recovery of a FRI sig-

nal in the presence of noise.

1. Initialisation: Calculate a0 as the Total Least Squares solution

of ỸKa ≈ 0 subject to ‖a‖2 = 1.

2. Set i = i+ 1.

3. Solve the decoupled minimisation in (10) to obtain ai. Solu-

tion involves SVD of (K + 1)-square matrix.

4. Using ai, solve the minimisation defined in (12).

5. Reconstruct samples y′

n and check against the criteria (5). If

it is not satisfied, and i less than a threshold, return to Step 2.

6. If required, determine {xk, tk}
K

k=1
from y′

n.

5. SIMULATIONS

We now compare the performance of our algorithm against

the CID algorithm presented in [2] and the matrix pencil

method presented in [15].

5.1. Comparison of Computation Time

To perform this comparison, we use a FRI signal comprising

K = 60 Diracs and calculate the computation time required

as a function of the sample number, N . In more detail, we

start with 120 samples of the FRI signal, i.e. the signal is

critically sampled, and then gradually increase until we reach

2401 samples, which equates to oversampling by a factor of

20. Note that the noise level is fixed such that the SNR is

5 dB. The resulting computation times of each algorithm are

shown in Figure 2.

The figure illustrates two points: first, for all values of

N , our algorithm requires the least computation time; and

second, the difference in computation time increases with N .

These results are not surprising as both the other two algo-

rithms require the SVD of a L-square matrix, where L =
⌊N/2⌋, which has a high computational cost. In contrast, we

only require an SVD of a (K + 1)-square matrix. Therefore,

our algorithm is more suited to recovering FRI signals from a

large number of samples.

5.2. Success Percentage of the Algorithm

Having examined the computation time in the previous sec-

tion, we now analyse the average performance of the algo-
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Fig. 2. Graphs showing the computations time, in log(seconds), for

three FRI recovery algorithms as the number of samples increases.

The algorithms are: the matrix pencil [15], Cadzow iterative algo-

rithm [2] and our proposed method.
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Fig. 3. Graph comparing the success percentage of three FRI recov-

ery algorithms for a periodic stream of 6 Diracs in the presence of

noise. The algorithms are: the matrix pencil [15], Cadzow iterative

algorithm [2] and our proposed method. A success is decided using

the criteria in (5).

rithms. In particular, we are interested in how often the al-

gorithms achieve the criteria defined in (5). We define this

characteristic as the success percentage. To compare the suc-

cess percentage of the algorithms, we use a FRI signal com-

prising K = 6 Diracs and sampled using 51 samples, an

oversampling factor of 4. Using 100 realisations of a noise

level, we calculate the success percentage for the algorithms

as the noise level increases from SNR = 20 dB to −10 dB.

The results are shown in Figure 3. The bar graph in Figure 3

demonstrates that our algorithm is the most consistent of the

three and the matrix pencil method is the most inconsistent,

in particular when the noise level is between 4 dB and −2 dB.

6. CONCLUSIONS

In this paper, we demonstrated that the samples of a periodic

stream of finite Diracs can be expressed as a ratio of two poly-

nomials. From this, we proposed a novel method to recover

the FRI signal in the presence of noise. The method is based

on fitting a model comprising a ratio of two polynomials to

the noisy FRI samples. Accordingly, we presented an itera-

tive algorithm that estimates the coefficients of the polyno-

mials by minimising Euclidean distance between the model

and the noisy data. Finally, we showed that our algorithm

has lower computational cost and is more reliable than two

state-of-the-art methods.
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