On sampling lattices with similarity scaling relationships

Steven Bergner (1), Dimitri Van De Ville(2), Thierry Blu(3), and Torsten Möller(1)

(1) GrUVi-Lab, Simon Fraser University, Burnaby, Canada.
(2) BIG, Ecole Polytechnique Fédérale de Lausanne, Switzerland.
(3) The Chinese University of Hong Kong, Hong Kong, China.
sbergner@cs.sfu.ca, thierry.blu@m4x.org, Dimitri.VanDeVille@epfl.ch, torsten@cs.sfu.ca

Abstract:
We provide a method for constructing regular sampling lattices in arbitrary dimensions together with an integer dilation matrix. Sub-sampling using this matrix leads to a similarity-transformed version of the lattice with a chosen density reduction. These lattices are interesting candidates for multi-dimensional wavelet constructions with a limited number of sub-bands.

1. Introduction to sampling lattices and related work

A sampling lattice is a set of points \(\{ R^k : k \in \mathbb{Z}^n \} \subset \mathbb{R}^n \) that is closed under addition and inversion. The non-singular generating matrix \(R \in \mathbb{R}^{n \times n} \) contains basis vectors in its columns. Lattice points are uniquely indexed by \(k \in \mathbb{Z}^n \) and the neighbourhoods around all sampling points are identical. This makes them suitable sampling patterns for the reconstruction of shift-invariant spaces.

Sub-sampling schemes for lattices are expressed in terms of a dilation matrix \(K \in \mathbb{Z}^{n \times n} \) forming a new lattice with generating matrix \(RK \). The reduction rate in sampling density corresponds to

\[
\text{det } K = \alpha^n = \delta \in \mathbb{Z}^+.
\]

Dyadic sub-sampling discards every second sample along each of the \(n \) dimensions resulting in a \(\delta = 2^n \) reduction rate. To allow for fine-grained scale transitions we are particularly interested in low sub-sampling rates, such as \(\delta = 2 \) or 3.

As discussed by van de Ville et al. [8] the 2D quincunx sub-sampling is an interesting case permitting a two-scale relation. With the implicit assumption of only considering subsets of the Cartesian lattice it is shown that a similarity two-channel dilation may not extend for \(n > 2 \).

We show that by permitting more general basis vectors in \(\mathbb{R}^n \) the desired fixed-rate dilation becomes possible for any \(n \). Our construction produces a variety of lattices making it possible to include additional quality criteria into the search as they may be computed from the Voronoi cell of the lattice [9] including packing density and expected quadratic quantization error (second order moment). Agrell et al. [1] improve efficiency for the computation by extracting Voronoi relevant neighbours. Another sampling quality criterion appears in the work of Lu et al. [4] in form of an analytic alias-free sampling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generating matrix \(R \) that, when sub-sampled by a dilation matrix \(K \) with reduction rate \(\delta = \alpha^n \), results in a similarity-transformed version of the same lattice, that is, it can be scaled and rotated by a matrix \(Q \) with \(Q^T Q = \alpha^2 I \). An illustration of a sub-sampling resulting in a rotation by \(\theta = \arccos \frac{1}{\sqrt{2}} \) is given in Figure 1. Formally, this kind of relationship can be expressed as

\[
QR = RK
\]

leading to the observation that sub-sampling \(K \) and scaled rotation \(Q \) are related by a similarity transform

\[
R^{-1} QR = K.
\]
Using a matrix \(J_2 = \begin{bmatrix} 1 & j \\ 1 & -j \end{bmatrix} \) it is possible to diagonalize a 2D rotation matrix by the following similarity transform

\[
\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = J_2^{-1} \begin{bmatrix} e^{j\theta} & 0 \\ 0 & e^{-j\theta} \end{bmatrix} J_2 = J_2^{-1} \Delta J_2. \tag{4}
\]

Using this observation to replace the scaled rotation matrix \(Q \) in Equation 3 leads to

\[
K = R^{-1}QR \\
\frac{K}{\alpha} = \det(R^{-1}J_n^{-1} \Delta S S^{-1}J_nR) = \alpha P \Delta P^{-1}
\]

with

\[
R = J_n^{-1}SP^{-1} \\
Q = \det(R^{-1}J_n^{-1} \Delta J_n).
\]

Thus, given a matrix \(K \) that has an eigen-decomposition corresponding to that of a uniformly scaled rotation matrix, we can compute the lattice generating matrix \(R \) as in Equation 6. The elements of the diagonal matrix \(S \) inserted in the construction of \(R \) scale the otherwise unit eigenvectors in the columns of \(P \). Below, we will refer to this construction as function \(\text{formRQ}(K, S) \) using \(S = I \) by default.

2.1 Constructing suitable dilation matrices \(K \)

The eigenvalues of \(K, \Delta \) and \(Q \) impose restrictions on their shared characteristic polynomial \(d(\lambda) = \det(K - \lambda I) = \sum_{k=0}^{n} c_k \lambda^k \) as discussed in the appendix. For the case \(n = \text{even} \) with the only non-zero coefficients \(c_0 = \delta, c_{n/2} < 4\delta, c_n = 1 \) this leaves a finite number of different options for \(c_{n/2} \). The case \(n = \text{odd} \) permits a single possible polynomial with non-zero coefficients \(c_0 = -\delta, c_n = 1 \). For these monic polynomials it is possible to directly construct a candidate \(K \) via the companion matrix (([6], p. 192))

\[
K = \begin{bmatrix} 0 & -c_0 \\ 1 & -c_1 \\ & \ddots & \ddots & \ddots \\ & & 1 & -c_{n-2} \\ & & & 1 & -c_{n-1} \end{bmatrix} \tag{7}
\]

This allows to construct a lattice fulfilling the self-similar sub-sampling condition for any dimensionality \(n \), one for every possible characteristic polynomial.

With this starting point it is possible to construct additional suitable dilation matrices via a similarity transform with a unimodular matrix \(T \)

\[
K_T = TK_T^{-1} = P_T \Delta P_T^{-1}. \tag{8}
\]

Using a unimodular rather than any non-singular \(T \) guarantees that \(T^{-1} \) is also unimodular following from the fact that \(T^{-1} \) can be constructed from the adjugate (the transpose co-factor matrix) of \(T \). Thus, \(K_T \) remains an integer matrix by this transform. Possible generators for this unimodular group are discussed in ([5], pp. 23). Our implementation, referred to as function \(\text{genUnimodular}(n) \), uses a construction of \(T = LU \) from several random integer lower and upper triangular matrices having ones on their diagonal.

It is not guaranteed that all possible \(K \) for a given characteristic polynomial can be generated through a similarity transform with some \(T \). However, \(\text{formRQ}(K_T) \) provides numerous non-equivalent \(R_T \) lattice generators. Among them it is possible to apply further criteria to select the “best” lattice.

An alternative to transforming \(K \) is the eigenvector scaling by diagonal matrix \(S \) in Equation 6. Using non-unit scaling allows to produce further lattices for any given \(K \) resulting in an \(n \)-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired sub-sampling matrices are summarized in Algorithm 1.

The function \(\text{compoly}(n, \alpha, C) \) is defined in the appendix. A possible implementation for the function \(\text{genUnimodular}(n) \) is described in Section 2.1 and \(\text{formRQ}(K) \) is defined near Equation 6. It should be noted that the list of lattices returned by \(\text{genLattices} \) may contain several equivalent copies of the same lattice. A Gram matrix implicitly represents angles between basis vectors as \(A = R^T R \). Two lattices \(R_1 \) and \(R_2 \), scaled to same determinant, are equivalent if their Gram matrices are related via \(A_1 = T^T A_2 T \) with a unimodular matrix \(T \in \mathbb{Z}^{n \times n} \) and \(\det(T) = 1 \). Determining this unimodular matrix is known to be a difficult problem, as it for instance also occurs when relating the adjacency matrices of two supposedly isomorphic graphs. Hence, our current method employs a simpler necessary test for equivalence by comparing the first few elements of the set
4. Discussion and potential applications

The current formation of candidate matrices K based on similarity transforms of one valid example is not guaranteed to produce all possible solutions. For 2D and 3D we also employed an exhaustive search over a range of integer matrices with values in $[-3,3]$ resulting in the same number of non-equivalent 2D cases as the construction via K_T. However, for dimensionality $n > 3$ the exhaustive search had to be replaced by a random sampling of integer matrices ultimately rendering the method infeasible for $n > 5$. In that light the current construction via scaled eigenvectors of the companion matrix is a significant improvement as it allows to produce a large number of non-equivalent lattices for any dimensionality.

Our sub-sampling schemes may have applications for multi-dimensional wavelet transforms [7]. Another direction for possible investigation is the construction of sparse grids that are employed in the context of high-dimensional integration and approximation adapting to smoothness conditions of the underlying function space [3].
Appendix: Characteristic polynomial of a rotation matrix in \mathbb{R}^n

The similarity relationship between K and Q in Equation 2 implies that they share the same characteristic polynomial $d(\lambda) = \det(K - \lambda I) = \det(Q - \lambda I)$ leading to an agreement in eigenvalues $d(\lambda_k) = 0$ and determinant $d(0) \ (6)$, p. 184). Further, since K is an integer matrix the polynomial $d(\lambda) \in \mathbb{Z}[\lambda]$ has integer coefficients c_k.

In order to find integer matrices K with the eigenvalues of a scaled rotation matrix, it will be important to distinguish the two different forms of the diagonal matrix Δ in Equation 5 and 4 for the case $n = \text{even}$

$$\Delta = \text{diag}[e^{i \theta_1}, e^{-i \theta_1}, \ldots, e^{i \theta_{n/2}}, e^{-i \theta_{n/2}}]$$

and the case $n = \text{odd}$

$$\Delta = \text{diag}[1, e^{i \theta_1}, e^{-i \theta_1}, \ldots, e^{i \theta_{(n-1)/2}}, e^{-i \theta_{(n-1)/2}}]$$

with analogue block-wise constructions for J_n.

For dimensionality $n = \text{even}$ the characteristic polynomial fulfills

$$d(\lambda) = \prod_{k=1}^{n/2} (\alpha e^{i \theta_k} - \lambda)(\alpha e^{-i \theta_k} - \lambda)$$

$$= \prod_{k=1}^{n/2} (\alpha^2 - 2\alpha \cos \theta_k + \lambda^2)$$

$$= \prod_{k=1}^{n/2} \left(\frac{\alpha^4}{\lambda^2} - 2\alpha \lambda \cos \theta_k + \alpha^2 \right) \lambda^2$$

$$= d \left(\frac{\alpha^2}{\lambda} \right) \left(\frac{\lambda}{\alpha} \right)^n$$

The similarity relationship between K and Q in Equation 2 implies that they share the same characteristic polynomial $d(\lambda) = \det(K - \lambda I) = \det(Q - \lambda I)$ leading to an agreement in eigenvalues $d(\lambda_k) = 0$ and determinant $d(0) \ (6)$, p. 184). Further, since K is an integer matrix the polynomial $d(\lambda) \in \mathbb{Z}[\lambda]$ has integer coefficients c_k.

Thus, if

$$d(\lambda) = \sum_{k=0}^{n} c_k \lambda^k$$

$$= \sum_{k=0}^{n} c_k \left(\frac{\alpha^2}{\lambda} \right)^k \left(\frac{\lambda}{\alpha} \right)^n$$

$$= \sum_{k=0}^{n} c_{n-k} \alpha^{n-2k} \lambda^k$$

$$\Leftrightarrow c_k = \alpha^{n-2k} c_{n-k} = C \delta^{1-2k} c_{n-k}.$$