Signal Interpolation
Annihilation algorithms
Noisy annihilation
Application: Optical Coherence Tomography
Conclusion

Sparsity Through Annihilation
Algorithms and Applications

Thierry Blu
Department of Electronic Engineering
The Chinese University of Hong Kong

ICSP, 25 October 2010

Outline

Signal Interpolation
Annihilation algorithms
Noisy annihilation
Application: Optical Coherence Tomography
Conclusion

A very old problem

Given a sampling device that provides smooth, uniform samples \(y_n \) of a “real-world” function \(x(t) \)

\[
x(t) \quad y(t) \quad T \quad y_n = y(nT)
\]

How to reconstruct \(x(t) \) exactly, and under which conditions?

Note: Implicitely, there is the assumption that if the samples are shifted, then the reconstruction should also be shifted by the same amount.
Signal Interpolation
Annihilation algorithms
Noisy annihilation
Application: Optical Coherence Tomography
Conclusion

Standard solution (from Shannon, Whittaker, Kotel’nikov, Nyquist, . . .)

If $x(t)$ is band-limited in $[-\pi/T, \pi/T]$ and $\hat{\varphi}(\omega) \neq 0$ in that band, then the knowledge of its samples y_n at the frequency $1/T$ allows to reconstruct $x(t)$ uniquely by

$$x(t) = \sum_{n \in \mathbb{Z}} y(nT) \psi(t - nT)$$

where $(\varphi \ast \psi)(t) = \text{sinc}(t/T)$.

Problems
- need for a better adapted signal model
- the samples are almost always in finite number
- a natural signal is never band-limited
- noise sensitivity of Shannon’s formula

Note: Replacing sinc by other “basis” functions (e.g., splines) addresses these issues, but fails to produce shift-invariant solutions.

Shannon’s nightmare

An ideal band-limited signal $x(t)$ can be represented exactly by its samples $x(nT)$

But a single discontinuity and no more sampling theorem.

Note: Bandlimited signals are represented using $1/T$ degrees of freedom per unit of time.

Are there other shift invariant signal families with finite numbers of degrees of freedom per unit of time, and allowing perfect reconstruction?

Signals with Finite Rate of Innovation

A novel signal model, that emphasizes the duality of the “information”—the innovation—conveyed by a signal

- A linear aspect: e.g., the amplitude of a sample
- A nonlinear aspect: e.g., a time of change of the signal

The FRI hypothesis

A Finite Rate of Innovation signal can be expressed as the convolution of an acquisition window with a stream of Diracs

$$y(t) = \left(\sum_{k=-\infty}^{+\infty} x_k \delta(t - t_k) \right) \ast \varphi(t) = \sum_{k=-\infty}^{+\infty} x_k \varphi(t - t_k)$$

x_k and t_k are called the innovations of the signal.

Rate of innovation: the average number of innovations per unit of time.

Examples
- Piecewise-constant signals
- OCT signals: convolution with a Gabor window
- . . . and many more “sparse” signals

Are there interpolation formulas for such signals?

Notes

Annihilation of periodic signals

Consider the case
- \(\tau \)-periodic signal \(x(t) = x(t + \tau) \), where \(\tau = NT \), \(N \) integer
- \(\varphi(t) = \text{sinc}(Bt) \) with \(BT = \frac{2M+1}{N} \leq 1 \), \(M \) integer
- rate of innovation, \(2K/\tau \leq B \) (\(K \) is number of Diracs in \([0, \tau]\))

Then the filter of transfer function \(H(z) = \prod_{k=1}^{K} (1 - e^{-j2\pi \frac{k}{\tau} z^{-1}}) \) annihilates the \(N \)-DFT coefficients of \(y_n \)

\[
\sum_{k=0}^{K} h_k y_{n-k} = 0, \quad m = -M + K, \ldots, M
\]

Under algebraic form, the annihilation equation becomes \(AH = 0 \), where \(A \) is a Toeplitz matrix

\[
A = \begin{bmatrix}
\hat{y} - M + K & \hat{y} - M + K - 1 & \cdots & \hat{y} - M - 1 & \hat{y} - M + 1 & \hat{y} - M + K \\
\hat{y} - M + K + 1 & \hat{y} - M + K & \cdots & \hat{y} - M + 2 & \hat{y} - M + 1 & \hat{y} - M + K \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\hat{y} M & \hat{y} M - 1 & \cdots & \hat{y} M - K + 1 & \hat{y} M - K
\end{bmatrix}
\]

Hence, an exact reconstruction algorithm looks like

A non-iterative solution to a non-linear problem: two linear systems to solve + polynomial root extraction

Consider the Gaussian case
- \(\varphi(t) = e^{-\frac{t^2}{2\sigma^2}} \)
- \(K \) Diracs to retrieve from \(N \) samples \(n \in [-N/2, N/2] \)

Then the filter of transfer function \(H(z) = \prod_{k=1}^{K} (1 - e^{-j\sqrt{\pi} \frac{\sigma}{\sqrt{2}} z^{-1}}) \) annihilates the samples \(\tilde{y}_n = e^{j\sqrt{\pi} \frac{\sigma}{\sqrt{2}} n^2 / 2} y_n \)

\[
\sum_{k=0}^{K} h_k \tilde{y}_{n-k} = 0, \quad m = -N/2 + K, \ldots, N/2
\]

Consider the non-periodic sinc case
- \(\varphi(t) = \text{sinc}(t/T) \)
- \(K \) Diracs to retrieve from \(N \) samples \(n \in [-N/2, N/2] \)

Then the filter of transfer function \(H(z) = (1 - z^{-1})^K \) annihilates the samples \(\tilde{y}_n = (-1)^n P(n)y_n \) where \(P(n) = \prod_{k=1}^{K} (n - k/T) \)

\[
\sum_{k=0}^{K} h_k \tilde{y}_{n-k} = 0, \quad m = -N/2 + K, \ldots, N/2
\]
Consider kernels that satisfy Strang-Fix conditions of order $L \geq 2K$

- either $\{1, t, t^2, \ldots, t^{L-1}\} \in \operatorname{span}_n \{\varphi(nT - t)\}$
- or $\{e^{at}, e^{(a+b)t}, e^{(a+2b)t}, \ldots, e^{(a+(L-1)b)t}\} \in \operatorname{span}_n \{\varphi(nT - t)\}$

Then the filter of transfer function $H(z) = \prod_{k=1}^{K} (1 - e^{bt_k} z^{-1})$ annihilates modified samples \tilde{y}_n

$$\sum_{k=0}^{K} h_k \tilde{y}_{n-k} = 0, \quad m = K, K+1, \ldots, L$$

The \tilde{y}_n are obtained by an adequate linear transformation of the y_n.

A very large range of observation/analysis kernels (wavelets, etc.)

The noisy periodic case

- τ-periodic signal $x(t) = x(t + \tau)$, where $\tau = NT$, N integer
- $\varphi(t) = \operatorname{sinc}(Bt)$ with $BT = \frac{2M+1}{N} \leq 1$, M integer
- rate of innovation, $2K/\tau \leq B$ (K = number of Diracs in $[0, \tau]$)

Estimation problem

Find estimates \bar{y}_n, \bar{x}_k and \bar{t}_k of y_n, x_k and t_k such that

- $\bar{y}_n = \sum_k \bar{x}_k \varphi(nT - \bar{t}_k)$
- $\|\bar{y} - y\|_2^2$ is as small as possible

FRI with noise

Schematical acquisition of a τ-periodic FRI signal with noise

$$\sum_k x_k \delta(t - t_k) \ast \varphi(t) = \tilde{y}(t), \quad T \rightarrow y_n$$

Modelization

$$y_n = \sum_k x_k \varphi(nT - t_k) + \varepsilon_n$$

Total least-squares

Replace the annihilation equation $AH = 0$ by

$$\min_{\|H\|_2} \|AH\|_F^2 \quad \text{under the constraint} \quad \|H\|_2^2 = 1$$

Solution

Perform a Singular Value Decomposition

$$A = USV^T$$

and choose the last column of V for H.

- U is unitary of same size as A
- S is diagonal (with decreasing coefficients) and of size $(K+1) \times (K+1)$
- V is unitary and of size $(K+1) \times (K+1)$
Total least-squares

The estimation of the innovations are then obtained as follows

- t_k: by finding the roots of the polynomial $H(z)$
- x_k: by least-square minimization of

$$\begin{bmatrix}
\varphi(T - t_1) & \varphi(T - t_2) & \cdots & \varphi(T - t_K) \\
\varphi(2T - t_1) & \varphi(2T - t_2) & \cdots & \varphi(2T - t_K) \\
\vdots & \vdots & \ddots & \vdots \\
\varphi(NT - t_1) & \varphi(NT - t_2) & \cdots & \varphi(NT - t_K)
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_K
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_N
\end{bmatrix}$$

\[\text{Note:}\]
- Related to Pisarenko method
- Not robust with respect to noise \(\sim\) need for extra denoising

Cadzow iterated denoising

Without noise, the annihilation property $A^H = 0$ still holds if $\text{length}(H) = L + 1$ is \textit{larger} than $K + 1$. We have the properties

- A is of rank K
- A is a Toeplitz matrix
- Conversely, if A is Toeplitz and has rank K, then y_n are the samples of an FRI signal

\[\text{Rank K "projection" algorithm}\]

1. Perform the SVD of A: $A = USV^T$
2. Set to zero the $L - K + 1$ smallest diagonal elements of $S \sim S'$
3. Build $A' = US'V^T$
4. Find the Toeplitz matrix that is closest to A' and goto step 1

Examples

Schematic view of the whole retrieval algorithm

Simulations: Quasi-optimality

Retrieval of the locations of a FRI signal. Left: scatterplot of the locations; right: standard deviation (averages over 10000 realizations) compared to Cramér–Rao lower bounds.

Quasi-optimality of the algorithm.

Simulations: Robustness

290 samples of an FRI signal in -5 dB noise. Right: noiseless and noisy signal. Left: retrieved locations and amplitudes.

In high noise levels, the algorithm is still able to find accurately a substantial proportion of Diracs.

Optical Coherence Tomography: Principle

Detection of coherent backscattered waves from an object by making interferences with a low-coherence reference wave. Measurement performed with a standard Michelson interferometer.

Axial (depth) resolution: \propto coherence length of the reference wave; Transversal resolution: width of the optical beam.

NOTE: Very high sensitivity (low SNR), noninvasive, low-depth penetration \rightsquigarrow biomedical applications (ophthalmology, dentistry, skin).

Axial resolution2: 10→20μm. Better resolution \rightarrow better diagnoses.

OCT is a ranging application!

2with SuperLuminescent Diodes: low cost, compact, easy to use.
OCT: Experimental Setup

- Low-coherence source light (SLD)
- Moving mirror
- Object
- Photodetector

$$\psi_R(t)$$
$$\psi_O(t)$$

Reference path

$$\psi_O = x * \psi_R$$

OCT signal

$$\langle |\psi_R(t - z_c) + \psi_O(t - z_0c)|^2 \rangle$$

Note: $$z, z_0$$ are the optical path lengths of the reference and the object wave.

OCT: Mathematical setting

Measured intensity:

$$I_{photo}(z_0-z) = \langle |\psi_R(t - z_c) + \psi_O(t - z_0c)|^2 \rangle = \text{const} + 2\Re \{ (x * \varphi)(\frac{z-z_0}{c}) \}$$

$$\varphi(t)$$ is the temporal coherence function of the reference wave:

$$\varphi(t' - t) = \langle \psi_R(t'), \psi_R(t) \rangle$$

Typically, $$\varphi(t) \propto e^{-t^2/(2\sigma^2)} + 2\pi\nu_0 t$$ and $$x(t)$$ is a stream of Diracs characterizing the depth of the interfaces, and the refractive index jumps.

An FRI interpolation problem

Retrieve $$x(t)$$ from the uniform samples of the OCT signal.

OCT: Example of Processing

Separated Gaussians located at $$z_0$$ and $$z_1$$

their sum

resynthetized signal

retrieved Gaussians

+ noise

Resolution limit of OCT (two interfaces):

$$L_c = c \times \text{FWHM of } A(t)$$

Note: Because the light travels twice (forward then backward) in the object, the actual physical resolution is $$L_c/2$$. Moreover, a larger value of refraction index inside the object further divides the resolution limit.
OCT: Simulation example

Simulation examples: two interfaces distant by 7µm (1ms below)

PSNR 40dB

PSNR 30dB

PSNR 25dB

OCT: Real Data Processing

SLD source of central wavelength 0.814µm and coherence length 25µm.

∼ OCT resolution of 12.5µm.

Depth scan of a 4µm thick pellicle beamsplitter of an optical depth of 6.6µm ∼ approximately half the OCT resolution.

Calibration part:
- Depth scan of 1 interface ∼ effective coherence function;
- High-coherence interferometer ∼ accurate position of the moving mirror.

Example of superresolution: data-model PSNR=31dB

The two retrieved interfaces are distant by 17 interference fringes

∼ 17 × 0.814/2 = 6.9µm.

Presentation of a generic framework for interpolating samples under sparsity assumptions

- Super-resolution applications with noise-robust behaviour
- Unique solution as soon as 2K measurements for 2K unknowns
- Patents on the Dirichlet kernel transferred to Qualcomm