Computer and Communication Technologies

Lecture #2

Part I: Introduction to Computer Technologies
Introduction to Numbering Systems

Decimal Numbering System

- The decimal numbering system is a positional-weighted numbering system. This means that each digital position has a specific weight (value). For example, 0.1, 1, 10, 100 all contain a 1, but each 1 has a different place value.
- The decimal system uses ten different basic symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Each of these symbols is called a digit. The base is 10.
- The value of a decimal number is determined by positional weight, the sum-of-weights method.

The Sum-of-Weights Method

• Example: the number 42,100.00

=42,100.00

Why Binary Systems (Digital)

Information Integrity: Better noise immunity

• Information Manipulation: The binary numbering system offers a simple means of representing and processing information in both hardware and software.

Sources of Digital Information

Binary Numbering System

Powers of two	28	27	2 ⁶	2 ⁵	24	23	22	21	20	2-1	2-2	2-3
Value (decimal)	256	128	64	32	16	8	4	2	1	0.5	0.25	0.125

Example:

$$1011.11_{(2)} = 1x2^{3} + 0x2^{2} + 1x2^{1} + 1x2^{0} + 1x2^{-1} + 1x2^{-2}$$
$$= 8 + 0 + 2 + 1 + 0.5 + 0.25$$

$$=11.75_{(10)}$$

Binary Notation

Binary Digit is called BIT (Binary Digit)

Possible representations:

0

high

true

false

low

0 volt

+5 volt

LSB – Least Significant Bit

Bit change with the least effect (on the right)

MSB – Most Significant Bit

Bit change with the most effect (on the left)

Binary & Decimal Conversion

Binary-to-Decimal Conversion

Sum-of-weights method. Example

$$1011.11_{(2)} = 1x2^{3} + 0x2^{2} + 1x2^{1} + 1x2^{0} + 1x2^{-1} + 1x2^{-2} = 11.75_{(10)}$$

Decimal-to-Binary Conversion

Radix division for integer & Radix multiplication for fractional:

Example: 92.875

Class exercise

 Convert the following decimal number to its binary equivalent.

 $12.375_{(10)}$

Binary Arithmetic

• Addition: Rules: 0 + 0 = 0, 1 + 0 = 1, 1 + 1 = 101101 + 1001 = 10110, in decimal \Rightarrow $13_{(10)} + 9_{(10)} = 22_{(10)}$

Subtraction

- Rules:
$$0 - 0 = 0$$
, $1 - 0 = 1$, $1 - 1 = 0$, & $10 - 1 = 1$
 $10110 - 1001 = 1101$, in decimal => $22_{(10)} - 9_{(10)} = 13_{(10)}$

Multiplication

 $1101 \times 101 = 1000001$, in decimal => $13_{10} \times 5_{10} = 65_{10}$

Division

 $110111 \div 101 = 1011$, in decimal => $55_{10} \div 5_{10} = 11_{10}$

Complement representations

- The process of subtraction can be accomplished by adding a negative number to a positive number.
- Complement number representations are designed for this purpose.
 - Ones complement
 - Twos complement
- Multiplication & division can be accomplished by repetitive addition and subtraction respectively.
- Many computers perform all basic mathematical operations almost entirely with adder circuits.

Ones Complement

- The 1s complement of a binary number of a binary number is derived by subtracting each bit in the number to be complemented from 1.
- e.g. 1s complement of 1100 is 0011

```
\begin{array}{c}
11111 \\
-1100 \\
\hline
0011 \text{ (1s comp)}
\end{array}
```


Subtraction in 1s Complement

$$\frac{1110}{-0010}$$
Step 1: $-0010 = 1101_{(1s \text{ comp})}$
Step 2: 1110

$$\frac{+1101}{1011}_{(1s \text{ comp})}$$
Step 3: $\frac{+1}{100}$ (End-around carry)
$$\frac{1100}{1100}$$
 (Difference)

$$14_{(10)}$$
 $-2_{(10)}$ $=12_{(10)}$

Carry = 1

$$\rightarrow$$
 positive result
 $7_{(10)}$ - $9_{(10)}$ = - $2_{(10)}$

$$\begin{array}{c}
0111 \\
-1001
\end{array}$$
Step 1: $-1001 = 0110_{(1s \text{ comp})}$
Step 2: $0111 \\
+0110 \\
\hline
01101
\end{array}$
Step 3: $+0$

$$1101 (Difference in 1s complement form)
$$1101 = -0010$$$$

2s Complement

• Twos (2s) Complement = 1s complement + 1.

$$\frac{1000}{-1100}$$

$$-1100 = 0011_{(1s comp)}$$

$$\frac{+ 1}{0100_{(2s comp)}}$$

$$\frac{1000}{+0100}$$
Carry
$$Carry$$

$$11_{(10)}$$
- $5_{(10)}$ = $6_{(10)}$

$$8_{(10)}$$
 - $12_{(10)}$ = - $4_{(10)}$

Class Exercise

Subtract the following binary number using 2s complement.

0101

- 0 1 0 0

0011

-0101

Sign Bit

 A single bit, usually the leftmost bit, may be used to distinguish positive and negative numbers. The meaning of the sign bit can be fixed arbitrarily. But normally,

```
sign bit
```

- 0 positive number
- 1 negative number

e.g.
$$-5_{(10)} = 1101$$

 $+5_{(10)} = 0101$

 Note: the magnitude of a number is represented by the lower three bits

Sign Bit

1s Complement

2s Complement

The leftmost bit still indicates sign.

- In two's complement representation, two numbers can be added simply as two positive numbers e.g. 6 + (-2) = 4
- Overflow occurs whenever the sum of two positive numbers yields a negative result or when two negative numbers are summed and the result is positive.

