ITM 1010

Computer and Communication Technologies

Lecture #17

Part II Introduction to Communication Technologies:

Data Compression II

Image Compression

□ Digitised images typically contain huge amount of data if not compressed eg:

Image type	Data File Size (Mbits)
Monochrome image (352x288 pixels)	0.81
Colour image (352x288 pixels)	2.4
Colour TV images (625x720 pixels x 24 bits)	10
High Resolution Photograph (1200x1024 pixels x36 bits)	44

JPEG Compression

- JPEG (joint photographic experts group) usually refers to a set of standards for both lossy and lossless compression methods.
 - "baseline codec" is the most popular JPEG standard and achieves very high compression ratio but is lossy.
- Baseline Process
 - Uses Discrete Cosine Transform (DCT) to reduce information content of image
 - Huffman coding is used to compress data further

ENCODING

raw image X
$$\longrightarrow$$
 C \longrightarrow C \longrightarrow Cq \longrightarrow compressed image DCT Quantization Huffman coding

DECODING

JPEG Overview

- □ Pixels in input image are grouped into 8x8 blocks
- Discrete Cosine Transform (DCT) is applied to each block
 - DCT produces 64 coefficients from the 64 input pixels
 - Most of these coefficients are small (image pixels usually do not change rapidly from pixel to pixel); large coefficients usually arise from low frequency component of image
 - Coefficients are stored in 8-bit numbers (most are zero)
 - DCT effectively discards information that is not readily apparent to the human eye
- \square DCT of a sequence of N numbers x(n) is similar to DFT:

$$c(k) = \alpha(k) \sum_{n=0}^{N-1} x(n) \cos \frac{\pi (2n+1)k}{2N}, \quad 0 \le k \le N-1$$

$$\alpha(0) = \sqrt{\frac{1}{N}}, \quad \alpha(k) = \sqrt{\frac{2}{N}} \text{ for } 1 \le k \le N-1$$

Trade off between quality and compression

MPEG

- Motion Photographic Experts Group (MPEG) defined a number of standards for compressing audio-visual data
- MPEG-1 standard is used in VCDs and mp3 audio files
 - MPEG-1 compresses 320x240 images (30 frames per second, equivalent to 55Mbit/s image data rate) and CDquality audio onto a 1.5Mbit/s data-stream
- Audio compression (MPEG-1 layer3, or commonly called mp3) can compress a 768kb/s stereo signal to 16kb/s
- MPEG-2 standard is used in DVDs, HDTV, digital TV broadcasts

mp3 Compression Overview

- High compression ratio achieved by exploiting knowledge of human perceptual limitations
- mp3 coding has 4 distinct parts:
 - Transform time to frequency domain, and grouping of audio signal into frequency subbands
 - Apply psychoacoustic model whereby sound components below a certain threshold or which are masked by a large signal in the same frequency subband (using the known behaviors of human hearing) may be discarded
 - Quantization and coding to keep noise below the level which can be discerned by the human ear
 - Output data frame packing to format the quantized audio data into a decodable data-stream

Behaviors of Human Hearing

- Minimum hearing threshold
- Amplitude masking

Sub-band Coding

MPEG-1 Video coding

- MPEG-1 achieves high compression ratio by exploiting four types of redundancy in the data stream for a moving image:
 - Interframe redundancy
 - Interpixel redundancy within a frame
 - Psychovisual redundancy
 - Entropic encoding redundancy
- Interpixel redundancy reduced by DCT and Huffman coding
- Interframe redundancy: complete pictures are only sent in key frames (Intrapicture or I- frames). Changes between I-frames are sent as P-frames (predicted frames) and changes are smoothed by adding highly compressed B-frames (bidirectional) between the I and P frames

MPEG-1: Exploiting inter-frame redundancy

Туре	Size	Compression
I P B	18 KB 6 KB 2.5 KB	7:1 20:1 50:1
Avg	4.8 KB	27:1

MPEG-1 and MPEG-2

	MPEG-1	MPEG-2
Standard Finalized in 1992		1994
Spatial Resolution	1/4TV (CIF Format) ~288 x 360 pels	TV: ~ 576 x 720 pels HDTV: 1152 x 1440 pels
Temporal Resolution	25 - 30 frames/s	TV: 50-60 fields/s HDTV: 100-120 fields/s
Bit Rate	1.5 Mbit/s	TV: ~4 Mbit/s HDTV: ~20 Mbit/s
Quality	comparable to VHS	TV: comparable to NTSC/PAL
Compression Ratio	20 - 30	30-40

Summary

- Compression of images and sound can be lossy because of limitations in the human perception of sound and images
- MPEG-1 (VCDs) and MPEG-2 (DVD and digital broadcasting) reduce the bandwidth needed for transmitting moving pictures and sound by a factor of about 30

