ITM1010 Assignment #1

Due time: 5:00pm on Thursday, 2 October 2003 to the tutor or me.

Q-1. Convert the following decimal numbers to their binary equivalents:

a. 162₍₁₀₎

b. 2048₍₁₀₎ **c**. 32.125₍₁₀₎

Q-2. Convert the following binary numbers to their decimal equivalents:

a. 101010₍₂₎

b. 11011011₍₂₎

c. 11101.11₍₂₎

Q-3. Convert the following decimal numbers to their hexadecimal equivalents:

a. 426₍₁₀₎

b. $5000_{(10)}$

c. 65535₍₁₀₎

Q-4. Write the following decimal numbers to 3-digit hexadecimal numbers using the 2s complement representation of negative numbers (without sign bit).

a. $-1800_{(10)}$

b. $-3022_{(10)}$

Q-5. Subtract the following binary numbers using 2s complement. Show your work in steps.

a. 1010₍₂₎-1100₍₂₎

b. $1010_{(2)}$ - $0100_{(2)}$

- Q-6. State the purposes of Gray code, BCD code and ASCII code.
- Q-7. Draw the standard logic symbol for a 2-input (a) AND gate, (b) OR gate, (c) NAND gate, (d) NOR gate, and (e) XOR gate.
- Q-8. Fill in the following truth tables:

Inputs		Outputs					
Α	В	AND	OR	NAND	NOR	XOR	
0	0						
0	1						
1	0						
1	1						

Q-9. Complete the following:

 $\mathbf{a}.\ A(B+C) =$

b. A + AB = **c**. $A + \overline{A}B =$ **d**. $\overline{A + B} =$

Q-10. Simplify the following expressions using Boolean algebra:

a.
$$\overline{ABC} + \overline{ABC}$$

b.
$$\overline{A}B\overline{C} + A\overline{B}C + \overline{A}BC + A\overline{B}\overline{C}$$

c.
$$\overline{ABC} + \overline{\overline{A} + C}$$

d.
$$\overline{X} \overline{\overline{Y}} \overline{\overline{Z}}$$

Q-11. Plot the high output from the truth table on a K-map and simplify the resultant expression.

a.

1.				
	A	В	C	F
	0	0	0	1
	0	0	1	0
	0	1	0	0
	0	1	1	0
	1	0	0	1
	1	0	1	1
	1	1	0	0
	1	1	1	0

b.

A	В	С	D	F
0		0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	Х
1	1	0	0	0
1	1	0	1	1
0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 1 1 1 1 0 0 0	0 0 1 1 0 0 1 1 0 0 1 1 0 0	0 1 0 1 0 1 0 1 0 1 0	0 1 0 1 0 0 0 1 0 0 x 0 1
1	1	1	1	0

X: Don't care

- Q-12. Design a 3-input circuit that will output low only on input counts of 1 (i.e. when A = 0, B = 0, and C = 1) and 3 (when A = 0, B = 1, and C = 1). Implement the circuit with the fewest logic gates. Label the standard gates in your circuit drawing.
- Q-13. Which input of the active-low latch must be activated to put the latch in the SET state?
- Q-14. What logic levels must be applied to the inputs of the active-low latch to put it in the CLEAR state?
- Q-15. What state of operation is the active-high latch in when both inputs are activated?