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Abstract—Blind image quality assessment (BIQA) aims to
estimate the subjective quality of a query image without access
to the reference image. Existing learning-based methods typically
train a regression function by minimizing the average error
between subjective opinion scores and model predictions. However,
minimizing average error does not necessarily lead to correct
quality rank-orders between the test images, which is a highly
desirable property of image quality models. In this paper, we
propose a novel rank-order regularized regression model to
address this problem. The key idea is to introduce a pairwise rank-
order constraint into the maximum margin regression framework,
aiming to better preserve the correct perceptual preference. To the
best of our knowledge, this is the first attempt to incorporate rank-
order constraints into margin-based quality regression model. By
combing with a new local spatial structure feature, we achieve
highly consistent quality prediction with human perception.
Experimental results show that the proposed method outperforms
many state-of-the-art BIQA metrics on popular publicly available
IQA databases (i.e., LIVE-II, TID2013, VCL@FER, LIVEMD,
and ChallengeDB).

Index Terms—Image quality assessment, rank-order regularized
regression.

I. INTRODUCTION

W ITH the rapid development of multimedia and network-
ing technologies and services, the volume of digital

image data has been growing explosively in recent years. With
the wide spread of intelligent mobile devices (smartphones,
tablets, etc.), it has become incredibly convenient for common
consumers to acquire, edit and share images in their daily
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lives. However, various annoying distortions may degrade the
subjective quality of an image during its acquisition, storage
and transmission processes. Recently, perceptual image quality
evaluation has received great attention due to its important role
in the acquisition, compression, transmission, enhancement and
display of images [1]–[6]. In many applications, the reference
image and distortion information are unavailable, and thus the
development of general purpose blind image quality assessment
(BIQA) methods becomes highly desirable.

In practice, a BIQA model may be required to answer two
fundamental questions: 1) How good the quality of an image
is, i.e., the absolute perceptual quality; 2) Whether one image
has better quality than another, i.e., the relative quality between
images. To date, many BIQA algorithms have been proposed,
but most of them focus on estimating the absolute perceptual
quality, without specific mechanisms to maintain the correct
rank-orders between images.

Existing general purpose BIQA approaches maybe roughly
classified into four categories. The first class of methods typi-
cally train a regression function to map quality-sensitive features
to the subjective quality scores. In [7], Mittal et al. introduced
the mean subtracted contrast normalized (MSCN) coefficients to
describe the natural scene statistics (NSS) in the spatial domain,
and then support vector regression (SVR) is employed to gener-
ate the predicted quality score. In [8], Moorthy et al. developed
NSS features in the wavelet domain and the subjective qual-
ity is generated with two steps, i.e, distortion identification and
distortion-specific regression. Gao et al. [9] further enriched the
NSS features in the wavelet domain and multiple kernel learn-
ing (MKL) is introduced to improve the SVR performance. The
second class of approaches try to estimate the subjective image
quality by pooling the human opinion scores from labeled sam-
ples. In [10], He et al. designed a sparse representation based
method to determine the weights assigned to each differential
mean opinion score (DMOS). In [11], Ye et al. discussed a
clustering based weighting method. In [12], a KNN based label
transfer model was explored for fusing multiple image quality
labels. The third class of methods predict the perceptual im-
age quality by directly measuring the similarity between the
query image and the pristine image in the feature space. In [13],
Mittal et al. utilized the probabilistic latent semantic analysis
(pLSA) to learn the latent topics. For a query image, its esti-
mated loadings across all topics are compared with all pristine
images, whose average dot product is used as the predicted
quality. In [14], Mittal et al. further developed a multivariate
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Fig. 1. Diagram of rank-order regularized regression. The absolute opinion score constraint drives the regression function to improve the prediction accuracy of
each image. The perceptual rank-order constraint refines the regression function to improve the consistency of the quality rank-order of each pair of images.

Gaussian (MVG) model to describe the statistics of MSCN co-
efficients. The predicted image quality is represented as the
distance of the MVG features between the query and pristine
images. The fourth class of approaches arise with the booming
deep neural network, which aims at end-to-end optimization of
the feature extractor and quality regressor simultaneously. In
[15], Kang et al. explored a deep convolutional neural network
(CNN) based method, where the deep learner is fed by the lo-
cal patches extracted from the human-rated images. Similarly,
Bosse et al. [16] utilized a popular CNN architecture in [17],
and fine tuned it to adapt to the BIQA task.

Among the aforementioned algorithms, the first category of
methods show the superiority in producing high prediction accu-
racy for perceptual image quality. Although different regression
models [9], [18], [19] are explored for BIQA, they share one
common feature. That is, only the absolute opinion score is
utilized in training the perceptual quality regressor, and the rela-
tive perceptual rank-orders are not imposed. A mean prediction
error based cost function is insensitive to mistaken rank-orders.
For example, suppose there are two human opinion scores a and
b in the training set (a > b). Each one has two alternative predic-
tions with the same absolute error x, i.e., â = a ± x, b̂ = b ± x,
and a − x < b + x. When the predictions are (a − x, b + x),
it is clear that the rank-order is wrong. Apparently, one would
prefer the predictions to be (a − x, b − x), (a + x, b + x)
or (a + x, b − x), which maintain the correct rank-order.
However, existing methods are ignorant to this, because all
combinations share the same mean prediction error x. There-
fore, it is meaningful to adopt a robust regression model, which
could enforce the correct perceptual rank-orders between the
images.

In this paper, we propose a general purpose BIQA algorithm,
which contains two main contributions:

1) We develop a novel Rank-order Regularized Regression
(R3) model. Its diagram is shown in Fig. 1, which in-
cludes two types of constraints. On the one hand, the
absolute opinion score constraint attempts to associate
each single image with an accurate quality score. On the
other hand, the perceptual rank-order constraint tries to
preserve the correct perception rank-order for each pair
of images. In the proposed algorithm, we convert this
pairwise constrained regression problem into a quadratic

programming problem [20], [21] and use the interior-point
algorithm [22], [23] to solve it.

2) A new image feature is introduced by computing the
joint statistics of the spatial intensity variations and the
distribution of the neighboring pixels. Both the multi-
scale and Lab color perception properties are explored
to enhance the discriminative power of this quality-aware
feature.

The proposed regression model and image feature lead to
significantly improved quality prediction accuracy of the pro-
posed method against state-of-the-art BIQA metrics on the
LIVE-II, TID2013, VCL@FER, LIVEMD and ChallengeDB
databases.

The rest of this paper is organized as follows. Section II briefly
reviews the SVR model and relevant rank learning methods. The
proposed algorithm is presented in Section III. The experimental
results are discussed in Section IV. Finally, Section V concludes
this paper.

II. RELATED WORK

In existing BIQA methods, SVR [19], [24] is one of the most
widely used regression tools for bridging the gap between image
features and the subjective image quality. Let L = {(xi, yi)}
denote the training set, which consists of n samples. xi ∈ Rd

is the input feature vector of the ith sample, and yi ∈ R is
the corresponding subjective quality label. SVR aims to learn
a function f(xi), which maps xi to yi as closely as possible.
f(xi) is typically a linear function, i.e.,

f(xi) = wT Φ(xi) + b (1)

where w and b denote the linear weight vector and the bias, re-
spectively, and Φ(·) represents the feature space transformation.

The parameters w and b can be learned by solving the fol-
lowing optimization problem:

min
w ,ξi ,ξ ∗

i

1
2
‖w‖2 + C

∑

i

(ξi + ξ∗i )

s.t. yi − wT Φ(xi) − b ≤ ε + ξi, ∀i

wT Φ(xi) + b − yi ≤ ε + ξ∗i , ∀i

ξi ≥ 0, ξ∗i ≥ 0 (2)
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where ε denotes the tolerated precision, ξi and ξ∗i denote the
training loss.

It is noted that the above model does not explicitly penal-
ize rank-order mistakes, which may limit it from producing
high rank-order correlations with the human perception. Fortu-
nately, a wealth of studies about rank learning provide us with
many useful methodologies to address this problem. In [25],
Herbrich et al. discussed a margin based framework for learn-
ing the ranking function, where a pairwise rank constraint is uti-
lized. In [26], Burges et al. introduced the probabilistic ranking
function, which can be learned by a gradient descent method. In
[27], Hüllermeier et al. further decomposed the ranking problem
into an ensemble of binary classification problems to account
for the pairwise preferences.

Following the pairwise comparison framework, some inter-
esting attempts were explored for BIQA recently. In [28], Chen
et al. used the rank SVM to evaluate the perceptual rank-order
between two enhanced images. In [29], Yan et al. employed
the multiple additive regression trees to predict the perceptual
rank-order for the color images enhanced with different param-
eters. In [30], Reibman et al. proposed a probabilistic predictor
to measure the confidence of the pairwise preceptual preference
between two images. Although these rank learning methods
cannot be directly used for estimating the absolute perceptual
quality of a single image, their rank constraints inspire us to ex-
tend SVR to a more general rank-order regularized regression
model.

III. PROPOSED APPROACH

A. Rank-Order Regularized Regression (R3)

In the proposed regression model, we incorporate a pairwise
rank constraint into (2), and rewrite the primal problem as

min
w ,ξi ,ξ ∗

i ,ηi j

1
2
‖w‖2 + C1

∑

i

ξi + C2

∑

i

ξ∗i + C3

∑

ij

ηij

s.t. yi − wT Φ(xi) − b ≤ ε + ξi, ∀i

wT Φ(xi) + b − yi ≤ ε + ξ∗i , ∀i

wT Φ(xi) − wT Φ(xj ) ≥ ε − ηij , ∀(i, j) ∈ P
ξi ≥ 0, ξ∗i ≥ 0, ηij ≥ 0 (3)

where P = {(i, j) : yi > yj + Δ} and Δ is a perceptual differ-
ence threshold which eliminates the pairwise training samples
of indistinguishable differences in subjective quality scores. C1 ,
C2 and C3 are parameters to maintain a trade-off between min-
imizing the prediction error and preserving the pairwise rank-
orders.

To illustrate the roles of different constraints, a simulated ex-
ample is shown in Fig. 2, where five data samples are included
in all plots, and a linear model is used to predict the vertical axis
y from the horizontal axis x. Two drastically different prediction
models are obtained (top and bottom), with model parameters
(w1 , b1) and (w2 , b2), respectively. The left plots illustrate the
penalties of prediction error, where the prediction error terms ξ
and ξ̂ are similar to each other. Therefore, the two linear mod-

Fig. 2. Comparison of the regression performances under different model
parameters w and b. The left plots show the prediction error with respect to the
absolute opinion score. The right plots show the predicted pairwise rank-order.
The x-coordinate represents the observation data and the y-coordinate indicates
the target variable. The red bounding boxes highlight two samples whose ranks
are correctly predicted in (a) and mistaken in (b).

els perform similarly. However, the predicted ranks are very
different. For example, comparing the samples i and j in the
right plots, since yi is significantly higher than yj , one would
expect i to be ranked higher than j. Obviously, such an expected
rank-order is well preserved by the top linear model, but not the
bottom one, where wT (xi − xj ) < 0. Since our pairwise rank-
order constraint requires wT (xi − xj ) ≥ ε − ηij , the mistaken
ranks would increase ηij and avoid selecting the parameters w2
and b2 . This demonstrates that an additional rank-order con-
straint can greatly help guide the regression training process to
select a better model.

To extend the linear prediction function, we further explore
its kernel version, as in [19], [25]. Moreover, the constrained
optimization problem of (3) can be converted to a unconstrained
optimization problem by introducing Lagrangian loss functions

L =
1
2
‖w‖2 + C1

∑

i

ξi + C2

∑

i

ξ∗i + C3

∑

ij

ηij

+
∑

i

αi(yi − wT Φ(xi) − b − ε − ξi)

+
∑

i

α′
i(w

T Φ(xi) + b − yi − ε − ξ∗i )

+
∑

ij

α′′
ij

(
wT (Φ(xi) − Φ(xj )) − ε + ηij

)
(4)

where αi , α′
i and α′′

ij are the Lagrange multipliers.
According to the Karush-Kuhn-Tucker (KKT) conditions

[24], the solution that minimizes the primal problem of (4)
is given by solving the saddle point, which corresponds to van-
ishing the partial derivatives of L w.r.t. the primal variables
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(w, b, ξi , ξ
∗
i , ηij ). Meanwhile, the constraints and the Lagrange

multipliers should satisfy the following requirements
1) Primal feasibility:

yi − wT Φ(xi) − b ≤ ε + ξi, ∀i

wT Φ(xi) + b − yi ≤ ε + ξ∗i , ∀i

wT Φ(xi) − wT Φ(xj ) ≥ ε − ηij , ∀(i, j) ∈ P. (5)

2) Dual feasibility:

αi, α
′
i , α

′′
ij ≥ 0, ∀ i and (i, j) ∈ P. (6)

3) Complementary slackness:

αi(yi − wT Φ(xi) − b − ε − ξi) = 0

α′
i(w

T Φ(xi) + b − yi − ε − ξ∗i ) = 0

α′′
ij

(
wT (Φ(xi) − Φ(xj )) − ε + ηij

)
= 0. (7)

Particularly, the derivative on w is represented by

∂L/∂w = w+
∑

i

(α′
i − αi)Φ(xi) +

∑

ij

α′′
ij

(
Φ(xi) − Φ(xj )

)
.

(8)
Given ∂L/∂w = 0, we can deduce the w by

w =
∑

i

(αi − α′
i)Φ(xi) −

∑

ij

α′′
ij

(
Φ(xi) − Φ(xj )

)
. (9)

Replacing αi − α′
i with βi , we obtain the kernel version of

the prediction function by plugging (9) into (1)

f(x) =
∑

i

βiK(xi, x) −
∑

ij

α′′
ij

(
K(xi, x) − K(xj , x)

)
+ b

(10)
where K(·, ·) is the kernel function.

Let n denote the number of the training images, and m the
number of all their pairwise combinations, where m = n(n−1)

2 .
From (10), we can find that the maximum number of the support
vectors could be up to n + m. Since m rapidly increases with n,
the complexities of both the training and testing processes of the
regression model would greatly increase, making it intractable.
To address this issue, simplification is necessary.

Inspired by the “Representer Theorem” in [31], we know
that our loss function in (4) corresponds to a special case of
the arbitrary cost function c which satisfies c (X × R2)n →
R ∪∞. Let h denote a strictly monotonically increasing real-
valued function on [0,∞), and F the function set

F =
{

f ∈ X |f(x) =
∞∑

i=1

αiK(xi, x),

αi ∈ R, xi ∈ X , ‖f‖ < ∞
}

. (11)

Then any f ∈ F minimizing the regularized risk function

c
(
(x1 , y1 , f(x1), . . . , (xn , yn , f(xn ))

)
+ h(‖f‖) (12)

would admit a representation form of

f(x) =
n∑

i=1

αiK(xi, x). (13)

By replacing the prediction function (10) using (13), we re-
duce the number of parameters from n + m to n, which signifi-
cantly simplifies the solution of the R3 problem. In addition, as
discussed in [32], the penalty for w could also be achieved by
suppressing the coefficient vector α = [α1 , . . . , αn ]T . Accord-
ingly, the objective function in (3) can be rewritten as

min
α,ξi ,ξ ∗

i ,ηi j

‖α‖2 + C1

∑

i

ξi + C2

∑

i

ξ∗i + C3

∑

ij

ηij

s.t. yi −
n∑

u=1

αuK(xu , xi) ≤ ε + ξi, ∀i

n∑

u=1

αuK(xu , xi) − yi ≤ ε + ξ∗i , ∀i

n∑

u=1

αu

(
K(xu , xi) − K(xu , xj )

) ≥ ε − ηij ,

∀(i, j) ∈ P
ξi ≥ 0, ξ∗i ≥ 0, ηij ≥ 0. (14)

Here, the optimization for (14) is a quadratic programming (QP)
problem, which can be solved by the interior-point algorithm
[23]. Furthermore, inspired by the sample selection scheme in
large-scale classification [33], [34], we introduce a k-nearest-
neighbor (KNN) based method to speed up the solving of (14)
by limiting the size of the pairwise training samples. Particularly,
it follows three steps to train the regressor, i.e.,

1) Compute the chi-square distances [35] of the features be-
tween the test image and all training samples, based on
which we find the KNN of the test image.

2) Use the KNN to construct the training set. Then, the pa-
rameter α of (13) is learned from the 2K prediction er-
ror constraints and K (K−1)

2 − l pairwise rank-order con-
straints as in (14), where l is the number of the pairwise
training samples that do not pass the perceptual difference
threshold condition in P .

3) Use the learned regression function to predict the subjec-
tive quality score for the test image.

In this way, the number of the support vectors is limited to
be less than or equal to K, which corresponds to the training
samples located within the soft-margin in (14).

After building the R3 model, we consider the differences of
the deviations caused by different distortion types and estimate
the image quality with two steps, which are similar to [8], [36].
Firstly, an SVM [37] classifier is used to identify the distortion
type of a test image. Then, a distortion-specific regressor is
used to predict its perceptual quality, where the training subset
is identified to share the same distortion type with the test image
by the SVM classifier.

B. Local Spatial Structure Feature

The structural information of an image is contained in both the
spatial intensity variations and the dependencies between neigh-
boring pixels. Existing NSS features work well in describing the
statistical characteristic of the spatial intensity variations. The
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property of the spatial neighboring interactions has also been ex-
ploited. For example, Mittal et al. [7] investigated the products
of pairwise neighboring pixels in four directions. An asymmet-
ric generalized Gaussian distribution (AGGD) model is used to
describe their distribution. In [9], pairwise mutual information
between 17 neighboring coefficients and one central coefficient
is computed in the wavelet domain.

For local spatial structure (LSS), a complete description
should contain the joint statistics between all neighboring pixels,
which cannot be fully achieved from pairwise relationships only.
To overcome this limitation, many local binary pattern (LBP)
based methods [12], [38]–[40] were proposed. In comparison
with pairwise neighboring statistics, LBP captures the relative
relationships between the central pixel and all of its neighbors.

Inspired by the success of LBP, we focus on extracting im-
age features based on LSS. Because LBP misses the magnitude
information of the spatial contrast, we incorporate a more com-
prehensive joint statistic of LSS which is referred to as the
completed LBP (CLBP) [35]. Particularly, CLBP utilizes three
components to describe the local image structure, i.e., the central
pixel’s intensity, and the sign and the magnitude of the neigh-
boring pixel’s local difference. The three components are first
encoded into binary patterns, which are denoted by CLBP C,
CLBP S and CLBP M , respectively. The joint statistics of
these encoded patterns are used as the image features.

According to [35], the code of the central intensity’s binary
pattern is given by

CLBP CP,R = t(gc , cI ), t(x, c) =
{

1, x ≥ c
0, x < c

(15)

where gc denotes the gray level of the center pixel. The subscript
P denotes the number of neighboring pixels and R is the radius
between the center pixel and its neighbors. cI is a threshold set
as the average intensity of all the pixels in an image.

The encoding of the local difference’s sign can be expressed
as

CLBP SP,R =
{∑P −1

p=0 t(gp − gc , 0), if U(LBPP,R ≤ 2)
P + 1, otherwise

(16)

U(LBPP,R ) = |t(gP −1 − gc , 0) − t(g0 − gc , 0)|

+
P −1∑

i=1

|t(gi − gc , 0) − t(gi−1 − gc , 0)| (17)

where U(LBPP,R ) denotes the discontinuities of the binary
presentation in a circular shape of neighboring pixels [41].

The code of the local difference’s magnitude mp is defined
as

CLBP MP,R =
P −1∑

p=0

t(mp, c)2p (18)

where c denotes the threshold, which is set as the average value
of all mp ’s in an image.

The image feature sP,R can be interpreted as the joint distri-
bution of all the three binary patterns, i.e.,

sP,R = hist3(CLBP CP,R , CLBP SP,R , CLBP MP,R )
(19)

where hist3(·, ·, ·) is the 3D histogram operator.
Let nC (P ), nS (P ) and nM (P ) denote the number of the

binary patterns for the central intensity, sign and magnitude
of the neighboring pixels’ local differences, respectively. Let
D(sP,R ) denote the dimension of the CLBP feature, which
equals to nC (P ) × nS (P ) × nM (P ). According to [35], the
values of D(sP,R ) are given by

D(sP,R ) =

⎧
⎨

⎩

2 × 10 × 10, P = 8
2 × 18 × 18, P = 16
2 × 26 × 26, P = 24.

(20)

Inspired by the hierarchical property of visual perception
[42]–[44], we extract the multi-scale CLBP feature under three
parameter settings for (P,R), i.e., (8, 1), (16, 2) and (24, 3).
In addition, we extract the CLBP features from all three color
channels of a color image, which is implemented in the per-
ceptually uniform Lab color space [45]. In Fig. 3, we show the
diagram of the multi-scale feature extraction process for the L
component. Let SL, Sa and Sb denote the multi-scale features
in the three color components, respectively, which are expressed
as

SL = [sL
8,1 , s

L
16,2 , s

L
24,3 ],

Sa = [sa
8,1 , s

a
16,2 , s

a
24,3 ],

Sb = [sb
8,1 , s

b
16,2 , s

b
24,3 ]. (21)

Finally, the proposed multi-scale and multi-channel LSS fea-
ture set S is given by

S = [SL, Sa , Sb ]. (22)

IV. EXPERIMENTAL RESULTS

A. Procedures

To evaluate the performance of the proposed algorithms,
we conduct the experiments on three publicly available
benchmark databases, i.e., LIVE-II [46], TID2013 [47] and
VCL@FER [48].

1) LIVE-II: The LIVE-II IQA database is composed of 29
original images and 779 distorted versions of them under
5 distortion types, which include 169 JPEG2000 (JP2K)
compression images, 175 JPEG compression images, 145
additive Gaussian White Noise (WN) images, 145 Gaus-
sian Blur images, and 145 Fast Fading (FF) images. Each
distorted image is associated with a Differential Mean
Opinion Score (DMOS), which ranges from 0 to 100 and
a larger value indicates worse perceptual quality.

2) TID2013: The TID2013 IQA database includes 25
reference images and 3000 distorted versions of them
under 17 distortion types, which are additive Gaussian
WN, additive noise in color components (ANC), spatially
correlated noise (SCN), masked noise (MN), high
frequency noise (HFN), impulse noise (IN), quantization
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Fig. 3. Diagram of the multiscale CLBP feature extraction. Step 1: Generate three encoded maps, i.e., CLBP_S/M/C, for the local contrast’s sign, magnitude
and central intensity, respectively. Step 2: Compute the 3D joint histogram for CLBP_S/M/C, where the x/y/z-axis correspond to the values of three encoded maps
and a warmer color denotes a higher frequency of occurrence. Step 3: Reshape the 3D histogram into the 1D vector sL

P ,R and concatenate the multiscale vectors.

noise (QN), Gaussian Blur, image denoising (ID), JPEG
compression, JP2K compression, JPEG transmission
errors, JPEG2000 transmission errors (JPEGTE), Non
eccentricity pattern noise (NEPN), Local block-wise
distortions of different intensity (LBDDI), Mean shift
(MS) and Contrast change (CC). Each distorted image
is assigned a Mean Opinion Score (MOS), which ranges
from 0 to 9 and a larger value indicates better subjective
quality.

3) VCL@FER: The VCL@FER IQA database consists of 23
reference images and 552 distorted versions of them under
4 distortion types, which include additive Gaussian WN,
Gaussian Blur, JP2K and JPEG. Each distorted image has
a MOS value, which ranges from 0 to 100.

Following the same criterion in [7], [8], [36], [49], we di-
vide the LIVE-II database into non-overlapped training and
testing sets. Particularly, we randomly select 23 of the 29
reference images and their associated distorted images to
construct the training set. The rest of the images are used
for testing. We conduct the random splitting evaluation 100
times. The median values of the indices across 100 trials are
reported.

Following the approach used by the video quality experts
group (VQEG) [50], the objective quality scores are first mapped
to the subjective scores via a four-parameter logistic function,
whose coefficients are solved via the iterative least squares es-
timation [51]. Two common measures are then employed to
evaluate the performance of different BIQA algorithms, which
include the Pearson’s linear correlation coefficient (PLCC) and
the Spearman’s rank-order correlation coefficient (SROCC) be-
tween the predicted quality metric Q and the ground-truth human
perception (e.g, DMOS or MOS).

B. Implementation Details

In implementing the regression, the YALMIP toolbox [52]
with the Gurobi solver [53] is used to model and solve the opti-
mization problem in (14). The polynomial kernel is employed in
this experiment. We set the perceptual difference threshold Δ to
10, which is obtained by rounding off the mean standard devi-
ation of all DMOS in LIVE-II database. The model parameters
C1 ∼ C3 are determined by cross validation.

To better understand the impact of R3 , we implement two
versions of the proposed regression method. The first is a par-
tial version (2) that does not involve the rank-order constraint.
The second is the full version (3) that includes the rank-order
regularization.

C. Parameter Selection for K

In this section, we investigate how the prediction accuracy
and complexity vary with the parameter K in the KNN method.
Particularly, we implement the proposed BIQA algorithm with
different K on the LIVE-II database, where K ranges from 5
to 40 with an interval of 5. The training and testing sets are
obtained by randomly splitting the LIVE-II database 100 times,
as discussed in Section IV-A. The median SROCC value is used
to evaluate the prediction accuracy and the median running time
is used to measure the complexity. The results are reported in
Fig. 4.

As shown in Fig. 4(a), the SROCC performances of the pro-
posed method with and without R3 monotonically go up as K
increases from 5 to 40, but the increase becomes slower when
K is larger than 20. When K is larger than 30, SROCC starts to
converge. By contrast, for both the proposed method with and
without R3 , the running time is always monotonically increas-



2496 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 11, NOVEMBER 2017

Fig. 4. Median SROCC and running time in seconds versus the parameter
K as testing on the LIVE-II database. (a) SROCC variation. (b) Running time
variation.

ing. In particular, the running time of the proposed method with
R3 grows much faster due to the increased cost in computing
the pairwise rank-order term. To achieve a balance between ac-
curacy and complexity, we set the parameter K to 30 in the rest
of the paper, and there are at most 30 support vectors needed for
the quality regressor.

D. Prediction Accuracy and Monotonicity

A good BIQA metric should satisfy two requirements: 1) Pre-
dicts perceptual quality accurately with small prediction error,
which can be measured by PLCC; 2) Predicts perceptual quality
with high monotonicity, which can be evaluated by SROCC.
In this section, we conduct such performance evaluation on the
LIVE-II database. Both the proposed method with and without
R3 are compared with classical full-reference (FR) IQA metrics
(PSNR, SSIM [54]), and state-of-the-art BIQA metrics (BIQI

Fig. 5. Scatter plots of the predicted quality index Q versus DMOS for the
test set with median SROCC. The x-axis is the predicted quality index Q and
the y-axis is the DMOS value. The red line represents the ideal linear correlated
line. (a) Proposed without R3 . (c) Proposed w/R3 .

[36], DIIVINE [8], BLINDS-II [49], BRISQUE [7], NIQE [14]
and QAC [55]).

In Fig. 5, we show the scatter plots of the proposed methods
for the test set with median SROCC. It can be seen that the
predicted image quality scores show a nearly linear relationship
with respect to DMOS, where most samples compactly gather
around the diagonal line, i.e., “Q = DMOS”. It demonstrates that
the model predictions are highly consistent with human percep-
tion. By comparing Fig. 5(a) and 5(b), we can observe that the
strongest impact of R3 is on the “outlier” image samples, which
create strong rank-order penalties that led to significant changes
in the behavior of the regressor. As a result, these samples are
more tightly clustered towards the diagonal line when the pro-
posed R3 approach is applied. To quantify the impact of R3

in Fig. 5, we further compute the number of incorrectly ranked
image pairs, which is represented by Poutlier =

∑N
ij δi,j . Par-
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TABLE I
MEDIAN PLCC ACROSS 100 TRAIN-TEST

TRIALS ON THE LIVE-II IQA DATABASE

Distortion JP2K JPEG WN Blur FF All

Metric Type

PSNR FR 0 896 0 860 0 986 0 783 0 890 0 872
SSIM FR 0.937 0.928 0.970 0.874 0.943 0.945
BIQI Blind 0 750 0 630 0 968 0 800 0 722 0 740
DIIVINE Blind 0 922 0 921 0 988 0 923 0 888 0 917
BLINDS-II Blind 0 963 0.979 0 985 0 948 0 864 0 923
BRISQUE Blind 0 923 0 974 0 985 0 951 0 903 0 942
NIQE Blind 0.926 0.952 0.976 0.943 0.879 0.905
OAC Blind 0 865 0 944 0 9 18 0 911 0 825 0 863
Proposed w/o R3 Blind 0.938 0.945 0.982 0.957 0.917 0.943
Proposed w/ R3 Blind 0.965 0 974 0.989 0.972 0.948 0.966

TABLE II
MEDIAN SROCC ACROSS 100 TRAIN-TEST

TRIALS ON THE LIVE-II IQA DATABASE

Distortion JP2K JPEG WN Blur FF All

Metric Type

PSNR FR 0 890 0 841 0 985 0 782 0 890 0 876
SSIM FR 0.932 0.903 0.963 0.894 0.941 0.947
BIQI Blind 0 736 0 591 0 958 0 778 0 700 0 726
DIIVINE Blind 0 913 0 910 0 984 0 921 0 863 0 916
BLINDS-II Blind 0.951 0.942 0.978 0.944 0.862 0.920
BRISQUE Blind 0 914 0.965 0 979 0 951 0 877 0 940
NIOE Blind 0.919 0.942 0.972 0.933 0.864 0.909
OAC Blind 0 862 0 936 0 951 0 913 0 823 0 868
ProDosed w/o R3 Blind 0.928 0.928 0.981 0.965 0.907 0.941
Proposed w/ R3 Blind 0.952 0.954 0.984 0.968 0.923 0.960

ticularly, N is the total number of all possible combinations for
image pairs in the test set, and δi,j denote the counting function,
which is given by

δi,j =
{

1, if (DMOSi − DMOSj ) · (Qi − Qj ) < 0
0, otherwise

(23)

where DMOSi and Qi denote the ground-truth and the pre-
dicted quality for the ith image, respectively. Corresponding to
Fig. 5, the Poutlier for the proposed method w/ and w/o R3 are
1476 and 1789, respectively. That is, the proposed R3 model
could significantly reduce the “outlier” image samples, whose
rank-orders are mistaken.

The quantitative comparisons of different IQA metrics are
presented in Tables I and II, which list the median PLCC and
SROCC results, respectively. For clarity, the optimal BIQA re-
sults in terms of PLCC and SROCC are highlighted in boldface
for each distortion type. It can be seen that for each distor-
tion type, the proposed methods with and without R3 always
achieve the top three PLCC or SROCC results. In particular,
the proposed method with R3 performs the best on almost all
individual distortion types other than JPEG, for which its perfor-
mance is very close to the best result obtained by the BRISQUE
metric.

TABLE III
STANDARD DEVIATIONS IN PERFORMANCE OF THE PROPOSED METHOD

WITHOUT AND WITH R3 ACROSS 100 TRIALS ON THE LIVE-II DATABASE

Proposed w/o R3 Proposed w/R3

PLCC SROCC PLCC SROCC

JP2K 0.007 0.009 0.010 0.012
JPEG 0.008 0.015 0.008 0.014
WN 0.004 0.006 0.004 0.005
Blur 0.012 0.017 0.016 0.021
FF 0.013 0.025 0.022 0.027
All 0.005 0.005 0.008 0.007

TABLE IV
MEDIAN RMSE OF THE PROPOSED METHOD WITHOUT AND WITH

R3 ACROSS 100 TRIALS ON THE LIVE-II DATABASE

JP2K JPEG WN Blur FF All

Proposed w/o R3 9.416 8.448 5.274 7.170 9.291 8.255
Proposed w/ R3 6.924 5.924 4.183 5.377 7.514 6.202

A challenging task of general purpose BIQA is to accurately
predict the subjective image quality across different distortion
types. On this criterion, the proposed method performs the best
on the entire database, which contains all test samples across all
five distortion types. As shown in Tables I and II, both versions
of the proposed methods outperform the other BIQA metrics.
Specifically, the proposed method with R3 achieves the highest
PLCC and SROCC results. Since the rank-order constraint better
preserves the perceptual preference, no matter for each distor-
tion type or the entire database test, the proposed method with
R3 always achieves higher PLCC and SROCC results than that
without R3 . In Table III, we show the standard deviations across
100 train-test trials. It can be seen that the standard deviations
are all very small, which demonstrates that the performance of
the proposed method is robust to variations of the training sets.
In addition to the PLCC and SROCC indexes, the median root
mean square error (RMSE) results of the proposed method w/
and w/o R3 are also reported in Table IV. We can find that the
RMSE of the regression model w/ R3 is smaller than that w/o R3

across all distortion types and the whole test set. It validates that
the correct rank-order information is also beneficial for better
approximating the human perception of image quality.

To verify that the superiority of the proposed method is statis-
tically significant, we further perform the one-sided t-test [56]
on the SROCC results which are generated from 100 train-test
trials. The results are reported in Table V. It can be seen that the
proposed method with R3 is statistically better than all the other
BIQA algorithms. This is consistent with the median SROCC
comparison result in Tables I and II.

E. Classification Accuracy

In a two-step method, distortion-type classification plays
an important role in assigning the correct distortion-specific
regression function to the test image. To verify the superiority
of our LSS feature in identifying different distortion types, we
investigate the median classification accuracy across 100 trials
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TABLE V
STATISTICAL SIGNIFICANCE ON RELATIVE PERFORMANCE OF BIQA METHODS. A VALUE OF “1”/“0”/“−1” INDICATES

THE ROW ALGORITHM IS STATISTICALLY SUPERIOR/EQUIVALENT/INFERIOR TO THE COLUMN ALGORITHM

BIQI DIIVINE BLINDS-II BRISQUE NIQE QAC Proposed w/o R3 Proposed w/R3

BIQI 0 −1 −1 −1 −1 −1 −1 −1
DIIVINE 1 0 1 −1 1 1 −1 −1
BLINDS-II 1 −1 0 −1 1 1 −1 −1
BRISQUE 1 1 1 0 1 1 −1 −1
NIQE 1 −1 −1 −1 0 1 −1 −1
QAC 1 −1 −1 −1 −1 0 −1 −1
Proposed w/o R3 1 1 1 1 1 1 0 −1
Proposed w/ R3 1 1 1 1 1 1 1 0

TABLE VI
MEDIAN CLASSIFICATION ACCURACY (%) ACROSS 100
TRAIN-TEST TRIALS ON THE LIVE-II IQA DATABASE

JP2K JPEG WN Blur FF All

DIIVINE 80.00 81.10 100.00 90.00 73.30 83.75
LSS 91.55 100.00 100.00 96.67 80.00 92.90

in Table VI, where DIIVINE based classification is also listed
for comparison. It can be seen that the proposed LSS feature-
based classification achieves higher accuracies for all distortion
types. The mostly occurred classification errors are between the
JP2K and FF datasets. This is likely because the FF images were
created in two steps: JP2K compression followed by simulated
random fast fading channel distortion. As a result, the artifacts
in the FF set are very similar to those in JP2K, especially when
the fast fading errors are minor. Consequently, such classifi-
cation errors do not lead to strong degradations in the overall
performance of the proposed algorithm.

F. Cross Database Verification

To verify the proposed methods across databases, we follow
the approach in [7], [8], [49]. In particular, we use the entire
LIVE-II database as the training set, and then test the proposed
method on the “known” subset of TID2013 and VCL@FER
databases which include four common distortion types, i.e.,
JP2K, JPEG, WN and Blur.

Tables VII and VIII show the detailed SROCC results be-
tween the predicted quality score and MOS on TID2013 and
VCL@FER databases, respectively. For comparison, two clas-
sic FR-IQA metrics (i.e., PSNR, SSIM) and six state-of-the-art
BIQA algorithms (i.e., BIQI, DIIVINE, BLINDS-II, BRISQUE,
NIQE and QAC) are also listed. The best SROCC results among
all BIQA metrics are highlighted by boldface.

In the TID2013 database, the proposed method with R3

achieves the best SROCC result for the distortion type of Blur,
and the second best for JP2K and JPEG. For the case of all test
samples across four distortion types, it outperforms all the other
BIQA metrics. Similarly, on the VCL@FER database, for JP2K,
JPEG and Blur, the proposed method with R3 obtains the best
SROCC performance. When tested on the entire VCL@FER
database, it is again superior to all the other BIQA algorithms.

TABLE VII
SROCC BETWEEN THE PREDICTED QUALITY SCORE AND MOS

ON THE “KNOWN” SUBSETS OF THE TID2013 DATABASE

Metric Type JP2K JPEG WN Blur All

PSNR FR 0.891 0.919 0.944 0.967 0.924
SSIM FR 0.949 0.932 0.874 0.970 0.921
BIQI Blind 0.852 0.891 0.807 0.839 0.839
DIIVINE Blind 0.854 0.668 0.872 0.830 0.796
BLINDS-II Blind 0.901 0.859 0.661 0.870 0.793
BRISQUE Blind 0.909 0.889 0.851 0.881 0.882
NIQE Blind 0.898 0.864 0.816 0.815 0.812
QAC Blind 0.894 0.871 0.754 0.885 0.855
Proposed w/o R3 Blind 0.870 0.872 0.809 0.869 0.857
Proposed w/ R3 Blind 0.905 0.890 0.840 0.919 0.886

TABLE VIII
SROCC BETWEEN THE PREDICTED QUALITY SCORE

AND MOS ON THE VCL@FER DATABASE

Metric Type JP2K JPEG WN Blur All

PSNR FR 0.852 0.604 0.974 0.779 0.825
SSIM FR 0.935 0.924 0.914 0.905 0.911
BIQI Blind 0.573 0.583 0.703 0.640 0.617
DIIVINE Blind 0.752 0.518 0.913 0.850 0.727
BLINDS-II Blind 0.765 0.733 0.894 0.853 0.810
BRISQUE Blind 0.744 0.711 0.823 0.901 0.812
NIQE Blind 0.800 0.746 0.848 0.904 0.811
QAC Blind 0.757 0.594 0.882 0.899 0.769
Proposed w/o R3 Blind 0.798 0.785 0.891 0.913 0.805
Proposed w/ R3 Blind 0.810 0.838 0.831 0.915 0.827

In addition, similar to the results in LIVE-II database, the pro-
posed method with R3 performs better than that without R3 in
this cross-database investigation. It verifies that our R3 model
is robust to the visual content variation across different IQA
databases.

In order to show the superiority of the R3 method in ranking
the quality of images, we further build a challenging test set
to compare different BIQA algorithms. Particularly, all human
rated test samples are selected from the VLC@FER database,
which has no visual content overlapping with the training
set (i.e., LIVE-II database). For each reference image in the
VLC@FER database, we implement all possible pairwise com-
parisons between its associated distorted images under 4 distor-
tion types and 6 degradation levels, which produces

(24
2

)
, i.e.,
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TABLE IX
PLCC AND SROCC BETWEEN THE PREDICTED QUALITY SCORE AND

MOS ON THE CHALLENGING SUBSET OF VCL@FER DATABASE

Metric PLCC SROCC

BIQI 0.375 0.363
DIIVINE 0.495 0.477
BLINDS-II 0.578 0.572
BRISQUE 0.554 0.566
NIQE 0.556 0.574
QAC 0.451 0.437
Proposed w/o R3 0.699 0.700
Proposed w/ R3 0.717 0.721

TABLE X
MEDIAN SROCC ACROSS 100 TRAIN-TEST

TRIALS ON THE LIVEMD DATABASE

Part 1 Part 2 All

BIQI 0.845 0.793 0.768
DIIVINE 0.828 0.853 0.822
BLIINDS-II 0.884 0.887 0.866
BRISQUE 0.915 0.876 0.874
NQIE 0.835 0.846 0.833
QAC 0.714 0.790 0.731
Proposed w/o R3 0.915 0.895 0.890
Proposed w/ R3 0.913 0.929 0.911

276 pairs of images. If more than half of the six representative
BIQA metrics (i.e., BIQI, DIIVINE, BLINDS-II, BRISQUE,
NIQE and QAC) mistake the perceptual rank-order of a pair of
aforementioned images, this pair of images are collected into
our challenging test set. Then, we compare the performance of
different BIQA algorithms in ranking the quality of these se-
lected images. The PLCC and SROCC results are reported in
Table IX. It can be seen that the proposed methods outperform
all the other methods in terms of both PLCC and SROCC by
large margins.

G. Multiply Distortion Verification

In the real-world application, the natural images usually un-
dergo multiply distortions during their acquisition and postpro-
cessing process. To verify that the proposed method works well
in this scenario, we further evaluate the performance of R3 on
the multiply distortion database–LIVEMD [57]. More specifi-
cally, the LIVEMD contains 15 pristine images and their 450
distorted versions, which are divided into two parts according
to their distortion types. The Parts 1 and 2 are created by adding
JPEG and noise to the blurred images, respectively.

Following the criteria in Section IV-A, we implement the veri-
fication based on 100 train-test trials on LIVEMD. The training
set includes 360 distorted images that are generated from 12
randomly selected reference images, and the other 90 distorted
images are used for testing. For comparison, the six state-of-
the-art BIQA algorithms [7], [8], [14], [36], [49], [55] are also
involved in this verification. The median SROCC results have
been reported in Table X, where the highest value are highlighted
by bold face in each column. It is seen that the quality predicted

TABLE XI
MEDIAN SROCC ACROSS 100 TRAIN-TEST

TRIALS ON THE CHALLENGEDB DATABASE

Metric PLCC SROCC

BIQI 0.540 0.519
DIIVINE 0.556 0.527
BLINDS-II 0.576 0.542
BRISQUE 0.625 0.597
NIQE 0.498 0.489
QAC 0.298 0.318
Proposed w/o R3 0.625 0.612
Proposed w/ R3 0.642 0.631

by R3 model is highly consistent with the human perception on
the multiply distortion images, whose SROCC is up to 0.911 on
the entire test set of LIVEMD. In addition, similar to the results
on the single distortion databases, the proposed method is also
superior to all the other BIQA metrics in this investigation.

H. Authentic Distortions Verification

In addition to the graded simulated distortions discussed in
previous sections, we further investigate the performance of the
proposed method in coping with diverse authentic image dis-
tortions, which is implemented on the ChallengeDB database
[58]. More specifically, there are totally 1162 authentically dis-
torted images in [58], which are captured from diverse mobile
devices.

The test criteria still follows the instruction in Section IV-A,
and the 100 rounds of random train-test trials are implemented
for all BIQA algorithms [7], [8], [14], [36], [49], [55] in com-
parison. In each train-test split, there are 930 images used for
training and the rest 232 images are used for testing. The median
SROCC results are reported in Table XI, and the highest value
are highlighted by bold face for clarity. Similar to the results
on the simulated distortions, the proposed method still achieves
the best prediction performance with respect to all the other
BIQA metrics. Meanwhile, the proposed method w/ R3 is still
consistently superior to the method w/o R3 .

I. Cross Feature Verification

To verify the proposed method across feature spaces, we com-
pare the performance between the regression models w/o and
w/ R3 constraint by feeding them with six popular quality-aware
image features [7], [8], [14], [36], [49], [55]. More specifically,
we follow the train-test splitting criterion in Section IV-A and
implement the test on LIVE-II database. Let Swo and Sw de-
note the median SROCC produced from the regression models
w/o and w/ R3 constraint, respectively. The difference value
dR3 , which is equal to Sw − Swo , is used to evaluate the con-
tribution of R3 model. A positive dR3 means that the R3 con-
straint improves the quality prediction accuracy and vice versa.
The experimental results have been shown in Fig. 6, where
the x-axis indicates different features fed to two regression
models and y-axis is the SROCC improvement brought by R3

constraint.
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Fig. 6. SROCC improvement brought by R3 across different features.

TABLE XII
PREDICTION PERFORMANCE OF THE PROPOSED METHOD

WITH AND WITHOUT R3 UNDER DIFFERENT KERNELS

Kemel Proposed w/o R3 Proposed w/R3

PLCC SROCC PLCC SROCC

Polynomial 0.943 0.941 0.966 0.960
RBF 0.943 0.940 0.964 0.957

It is seen that the proposed R3 constraint could consistently
improve the performance of regression model across all six
image features, where dR3 is always positive as shown in Fig. 6.
In our investigation, the maximum SROCC improvement of R3

is up to 0.052, which is achieved for the BIQI feature. When the
state-of-the-art BRISQUE feature is fed to R3 model, we could
still increase the SROCC by 0.02 with respect to a classic SVR
model without rank-order constraint.

J. Influence of Different Kernel

Through extensive experiments on five popular databases
(i.e., LIVE-II, TID2013, VCLFER, LIVEMD and Chal-
lengeDB), it is validated that the rank-order regularization plays
a positive role in improving the prediction performance towards
BIQA, where the proposed method w/ R3 is consistently supe-
rior to the one w/o R3 . To further verify the necessary of R3

in a quality regression model, we compare its influence with
the popular radial basis function (RBF) kernel, which is widely
used to better explore the training data. More specifically, we re-
implement the consistency experiment in Section IV-D, and the
RBF kernel is applied to the proposed regression models. The
results are reported in Table XII. It is seen that the non-linear
RBF kernel does not bring PLCC/SROCC improvements with
respect to the polynomial kernel for both the regression mod-
els w/ and w/o R3 . As discussed in [59], [60], the kernel type
and parameter selection is usually based on application-domain
knowledge, which does not necessarily lead to a performance
improvement by using one particular kernel. In contrast, when

Fig. 7. SROCC performance comparison for the LSS features extracted from
different scales and color spaces. (a) Regression model without R3 constraint.
(b) Regression model with R3 constraint.

we add R3 in the regression model, its PLCC/SROCC perfor-
mance would consistently outperform the model w/o R3 , no
matter which kernel is used.

K. Contributions of LSS Feature

The proposed LSS feature is extended from classic texture de-
scriptor CLBP [35] by introducing two visual perception clues,
i.e., multi-scale and Lab color space convention. To verify that
these two clues are beneficial in improving the quality predic-
tion accuracy, we investigate the SROCC performance changes
by combining each of the two clues with the CLBP. Follow-
ing the train-test splitting criterion in Section IV-A, we conduct
the investigation on the LIVE-II database. Both the regression
models w/o and w/ R3 constraint are tested on different combi-
nations. The detailed results have been reported in Fig. 7, where
the x-axis indicates different scales of CLBP and Multi-scale
corresponds to the feature vector of concatenating CLBP8,1 ,
CLBP16,2 and CLBP24,3 . In the legend, we show two color
spaces which are used for extracting the image feature, where
the Gray is initially used in [35] and Lab is employed in our LSS
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TABLE XIII
MEDIAN SROCC COMPARISON BETWEEN THE

PIXEL-WISE AND BLOCK-WISE LSS FEATURE

JP2K JPEG WN Blur FF All

Pixel-wise 0.952 0.954 0.984 0.968 0.923 0.960
Block-wise 3 × 3 0.937 0.939 0.976 0.946 0.892 0.939
Block-wise 5 × 5 0.894 0.897 0.956 0.911 0.776 0.891
Block-wise 7 × 7 0.827 0.867 0.930 0.850 0.733 0.841

feature. The y-axis is the median SROCC produced by different
combinations.

It is clear that both the multi-scale and Lab color space con-
vention boost the SROCC performance of BIQA task. As shown
in Fig. 7(a), the Multi-scale feature outperforms all the other
single-scale CLBP features as combing with the regression
model w/o R3 constraint. In the Gray color space, its maxi-
mum SROCC improvement is more than 0.05 with respect to
CLBP16,2 . In the Lab color space, the maximum SROCC im-
provement of Multi-scale feature is close to 0.02 in comparison
with CLBP8,1 . Similarly, when we test on the regression model
w/ R3 constraint, the Multi-scale feature still consistently out-
performs the single-scale CLBP features on both of the color
spaces as shown in Fig. 7(b). In addition, the Lab color space
exhibits superior performance in estimating image quality with
respect to the Gray in this investigation. As shown in Fig. 7(a)
and (b), the median SROCC of the Lab features is higher than
the Gray features across all scales. For the regression model
w/o R3 constraint, the maximum SROCC gain between Lab
and Gray features is achieved by CLBP16,2 which could be up
to 0.059. As testing on the regression model w/ R3 constraint,
we can also achieve 0.05 SROCC improvement by extracting
CLBP24,3 from the Lab color space in comparison with the
Gray.

L. Investigation on Block-Wise LSS Feature

The pixel-wise LSS feature describes the spatial complexity
in a rather small scale, where only the central and neighboring
pixels are involved in the comparison. It is interesting to inves-
tigate how a larger center and neighbor regions would affect
the discriminating power of the proposed LSS feature. More
specifically, we analyze the performance of a block-wise LSS
feature, whose center and neighbors are represented by the mean
intensity values of a d × d block whose locations are same with
the settings of CLBP as shown in Fig. 3. Three scales of blocks
are tested in this investigation, which include 3 × 3, 5 × 5, and
7 × 7. Similar to Section IV-D, we implement 100 rounds of
random splitting trials on the LIVE-II database, where the sizes
of training and testing sets are 80% and 20%, respectively. The
median SROCC results are reported in Table XIII. It is seen
that the block-wise LSS is inferior to the pixel-wise LSS feature
for the BIQA task. Meanwhile, a larger block size would bring
more performance degradation. The possible reason could be
found from previous texture descriptor related literatures. As
discussed in [61], [62], the block-wise or region based differ-
ential operation is widely used for developing robust texture

TABLE XIV
RUNNING TIME (SECONDS) COMPARISON OF BIQA METRICS

Metric Running Time

BIQI 1.198
DIIVINE 54.232
BLINDS-II 217.038
BRISQUE 0.565
NIQE 1.214
QAC 0.407
Proposed w/o R3 8.694
Proposed w/ R 8.931

descriptors, which aims to reduce its sensitivity to the noise or
distortion. This intention is contrary to the purpose of designing
quality or distortion degree relevant image feature, and could
reduce its performance in the BIQA task.

M. Computational Complexity

To evaluate computational complexity, we compare differ-
ent BIQA metrics on their running time. The test is performed
on a machine with Intel Core 2 processor of speed 2.0 GHz,
6 GB RAM and Windows 7 64-bit. The BIQA models are im-
plemented using MATLAB2013a.

The running time is computed by evaluating a 512 × 768
color image selected from the LIVE-II database. The detailed
results have been shown in Table XIV . It can be seen that
the complexity of the proposed methods is moderate in com-
parison with DIIVINE and BLINDS-II. Meanwhile, the CLBP
feature extraction takes up most computations in the proposed
method, whose running time is 8.125 seconds for each image. It
should be noted that the running time of the proposed methods
is obtained from unoptimized MATLAB code. Since the com-
putation of CLBP is completely independent across scales and
color channels, a parallel operation can efficiently speed up the
LSS feature extraction process.

In addition, as shown in Table XIV, the proposed method
with R3 is only a little slower than that without R3 . It indicates
that the added rank-order constraint term does not significantly
increase the computational cost of the regression model.

N. Discussion

In the proposed R3 model, the parameter Δ provides ad-
ditional flexibility to manage the pairwise samples which are
involved in the rank-order constraint. More specifically, a larger
threshold Δ would eliminate more pairwise training samples,
whose perceptual differences are considered to be indistinguish-
able. Not surprisingly, the performance of R3 model would con-
verge to the same value with respect to the classic SVR as Δ
removing all rank-order constraints. To investigate this impact,
we repeat the train-test experiments on LIVE-II and change the
parameter Δ from 0 to 100 at the interval of 10. The median
SROCC results are shown in Fig. 8. In addition, the running
time is also reported in Fig. 9.

We can find that the median SROCC would gradually decline
as Δ increasing. Since more pairwise samples are eliminated
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Fig. 8. Median SROCC variation with respect to the parameter Δ.

Fig. 9. Running time variation of R3 with respect to the parameter Δ.

by higher Δ, the correcting effect from rank-order constraint
is reduced, which results in the performance degradation of R3

model. When Δ increases to 80, all rank-order constraints are
removed and the performance of R3 becomes converging to
the value of regression model w/o R3 . Meanwhile, as shown in
Fig. 9, the similar downtrend in terms of running time can be
founded for R3 model, where the decrease of pairwise samples
reduces the complexity of solving the problem in (14).

In addition, another interesting extension of our R3 model
is to integrate it into a deep neural network. To adapt to the
back-propagation computation, we can rewrite the constrained
optimization task in (3) to a derivable unconstrained loss func-
tion, i.e.,

L =
1

Na

∑

i

(yi − ω ∗ §i)2+

λ · 1
Np

∑

ij

max{0, ε + ω ∗ (§i − §j )},

∀(i, j) ∈ P

(24)

where ω is the kernel parameter for the last fully connected
layer, ∗ denotes the convolution operator, λ is a weight parameter
to balance the regression targets between the absolute opinion
score estimation and pairwise rank-order preservation. §i and
§j are the outputs from previous convolution layer for the ith
and jth image, respectively. Na and Np are the total number of

training samples for measuring the absolute opinion score and
pairwise perceptual preference, respectively.

To facilitate the pairwise comparison, a modified Siamese
network would be more suitable for optimizing the loss function
in (24). In our future work, some more sophisticated network
architecture and regularization terms will be further studied
for interpreting the complex multi-target property of human
perception towards image quality. Meanwhile, more perceptual
properties, such as, masking effect and visual saliency would
be studied for building quality-aware features. A more robust
general regressor without regard to rank-order information
would be explored as well.

V. CONCLUSION

In this paper, we propose a novel general purpose BIQA al-
gorithm, where the main novelty is in the rank-order regularized
regression (R3) model and the local spatial structure (LSS) fea-
ture. Unlike the conventional methods which focus on minimiz-
ing the prediction error for labeled training samples only, our R3

model also tries to preserve perceptual rank-orders. By comput-
ing the joint distribution of the encoded central intensity, and the
sign and magnitude of contrast, we propose a CLBP based LSS
feature that is able to capture the spatial intensity variations and
the neighboring pixel dependencies simultaneously. Extensive
experiments show that for the LIVE-II, TID2013, VCL@FER,
LIVEMD and ChallengeDB databases, the proposed method
with R3 performs highly consistent with human perception of
image quality and shows superior performance over state-of-
the-art BIQA algorithms.
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