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Real-Time Head Pose Tracking with Online
Face Template Reconstruction
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Abstract—We propose a real-time method to accurately track the human head
pose in the 3-dimensional (3D) world. Using a RGB-Depth camera, a face template
is reconstructed by fitting a 3D morphable face model, and the head pose is
determined by registering this user-specific face template to the input depth video.

Index Terms—Head pose tracking, deformable face model, iterative closest point,
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1 INTRODUCTION

THE objective of head pose tracking is to estimate the 3D rigid head
movement, i.e., translation and rotation, for each frame of a video
sequence. It is a challenging computer vision problem with a wide
range of applications such as human computer interaction, aug-
mented reality, gaze estimation and free viewpoint TV.

There are a variety of approaches in the literature that exclu-
sively used color information to estimate the human head pose in
an image or across a video sequence. See [9] for an excellent survey.
Since the launch of Microsoft Kinect, researchers have increasingly
leveraged the RGB-Depth (RGBD) cameras to address challenging
computer vision problems, such as human skeleton estimation, 3D
reconstruction, facial expression tracking, and hand gesture track-
ing. Besides the color information, a RGBD camera can provide an
additional depth channel of the scene at a video frame rate.

Recently Fanelli et al. [1] trained a random regression forest to
directly map depth features to head poses. The performance of
such learning based methods [1], [2], [17] depends heavily on the
comprehensiveness of the training dataset, which should involve a
wide range of head translations and rotations along all X, Y, and Z
directions, a large number of subjects, facial expressions and inter-
object occlusions (e.g., eyeglasses). Current head pose datasets,
such as BIWI [19] and ICT-3DHP [20], cannot satisfy all these
requirements. For example, both datasets cover limited range of
head translations, especially for the Z (depth) direction. Another
category of RGBD based methods [3], [4] tracked 3D facial land-
marks and accordingly estimate the head pose. They can be consid-
ered as 3D extensions of 2D non-rigid facial tracking algorithms,
such as AAM, ASM or CLM [10], by jointly using the color and
depth information. Color-based landmark detection or feature
tracking were performed which are computationally expensive
and not robust to illumination changes. Furthermore, these meth-
ods are not suitable for applications which require only the head
pose as input, since the time consumed by locating facial land-
marks should be spared.

The proposed method belongs to another category of
approaches, namely template matching. In [5], head pose was deter-
mined by comparing the matching errors between an input depth
image and a bunch of template images which were pre-computed
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(offline) by diversely posing a 3D average face. Nose analysis was
performed to locate nose candidates, and template images were
selected according to the nose positions and orientations. Since there
are a limited number of template images, the space of head poses is
discrete, which may degrade the precision. In [6], Padeleris et al.
selected one frame (typically the first one) of a sequence as a tem-
plate image. For each subsequent frame, hypothesized images were
rendered by applying different translations and rotations on the
depth image. The head pose is determined by maximizing the simi-
larity between the template image and the hypothesized images.
Particle swarm optimization was employed to search the six-dimen-
sional solution space. Therefore, a large number of hypothesized
images need to be rendered increasing the computational cost.
Rather than using 2D template images, in [7], [8] 3D face templates
were directly matched to the 3D point cloud converted from the
depth values. It turns the head pose tracking into a rigid 3D match-
ing problem which can be time-efficiently implemented using algo-
rithms such as the iterative closest point (ICP) [15]. In these works
the 3D face template was reconstructed in a pre-processing step (off-
line). Our work differs in that the 3D face template is reconstructed
online, i.e., during the real-time head pose tracking.

In this paper, a face template reconstruction algorithm is devel-
oped which is 20 times faster than existing similar approaches
(based on the 18 seconds per frame reported in [11]). Rather than
requiring a pre-processing step to reconstruct the face template off-
line, the reconstruction can be sequentially accomplished during
the head pose tracking using up to nine frames which are automat-
ically selected from the input video. The absence of an offline pre-
processing step greatly enhances the user experience. The accuracy
of our head pose tracking system outperforms the state-of-the-art
methods by a large margin, as shown in Section 5. Furthermore, it
has a low computational complexity. Without specific code optimi-
zation, processing one frame only takes about 21 ms, equivalent to
a tracking speed of around 47 fps. Furthermore, it can track fast
translational movement (0.3 meter per second), fast rotational
movement (120 degree per second) and large rotation angles (50
degree for each of the pitch, yaw and roll rotations). The system is
robust to large occlusion and can recover from tracking failure
quickly. High accuracy, low complexity and good robustness make
the system suited to many real-life applications.

The rest of the paper is structured as follows. Section 2 introdu-
ces the framework of our head pose tracking method. Section 3
proposes the online face template reconstruction algorithm. Section
4 presents how to use the reconstructed face template to track head
poses in a RGBD video and use K-means clustering to identify out-
liers caused by hair or eyeglasses occlusion. Section 5 shows the
experimental results. Finally, Section 6 draws the conclusion.

2 OVERVIEW

The general framework of our head pose tracking method is illus-
trated in Fig. 1. With known intrinsic camera parameters, the input
color and depth video frames are converted into a 3D point cloud.
To estimate the head pose, we leverage the time-efficient iterative
closest point algorithm to register a face template to the point cloud
in the 3D space. ICP is an iterative optimization process which
needs a good initialization to converge to the global optimum. This
initialization is derived from head pose prediction which uses the
historical head poses to predict the next one.

To estimate the head pose in each video frame, the ICP algorithm
needs to use a 3D face template. To enhance the precision, this face
temple should be specific to the tracked subject (user). Our work dif-
fers from the prior similar studies [7], [8] in that we reconstruct this
user-specific face template during the real-time head pose tracking
(online) rather than using an offline pre-computation.

Before the user-specific template is ready, an average template
will be used which will unavoidably deteriorate the tracking

0162-8828 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


mailto:
mailto:

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.38, NO.9, SEPTEMBER 2016 1923
Head Pose
intrinsic camera Prediction
parameters
A
\ 4 %2
) - ICP ~ah | -
3D Point Cloud —>» = e . . —» : S
bt Registration 3.
- e
k e T B oagas BN
A B < 50
Input color and Head pose
depth frame face template tracking
v T Face template
; reconstruction
N Frame Face Multi-frame
d Selection Model Fitting Fusion

Fig. 1. General framework of the proposed head pose tracking method.

performance. Therefore, a fast reconstruction algorithm is required
to ensure high accuracy as early as possible. We achieve fast recon-
struction by tailoring the optimization process and using sequen-
tial reconstruction. To enhance the accuracy, multiple frames
capturing different views of the subject’s face are selected for
reconstruction. Rather than requiring all these frames to be avail-
able before the reconstruction (causing a long time delay), our
method reconstructs the face template frame-by-frame, and uses a
time-efficient step to fuse reconstruction results from multiple
frames. The reconstruction can start typically in the first frame of a
video sequence, making our method suffer less from the recon-
struction time delay. The quality of the face template is improved
incrementally as more frames are used.

As can be seen from Fig. 1, head pose tracking and face template
reconstruction are two loosely dependent processing stages. Infor-
mation needs to be shared only occasionally, e.g., when the
updated face template is ready. Therefore, we use two threads to
implement the two stages, so that the computational costs can be
allocated into multiple cores of the CPU, and the relatively time-
consuming face template reconstruction will not slow down the
foreground real-time head pose tracking.

3 FACE TEMPLATE RECONSTRUCTION

The face template reconstruction consists of three sequential proc-
essing stages, including frame selection, face model fitting, and
multi-frame fusion, as shown in Fig. 1. Motivation and implemen-
tation details on each processing stage are given below.

3.1 Frame Selection

In the course of tracking, multiple frames are automatically selected
from the video sequence to reconstruct the user-specific face tem-
plate. Multiple frames can capture different views of the face, so as
to handle the face self-occlusion. It can also suppress the depth noise,
by averaging 3D positions of the same point in multiple frames.

Fig. 2 illustrates the fitting zones for frame selection. These fit-
ting zones are bounded by the depth positions and the yaw rota-
tions of the head pose. As shown in Fig. 1, the real-time head pose
tracking results are monitored in the frame selection process.
When the head is found to enter a fitting zone, the corresponding
color and depth frames will be selected. There are totally nine fit-
ting zones in our implementation. Once a fitting zone has been vis-
ited, it is marked as invalid. Thus, up to nine frames will be used
for the face template reconstruction.

3.2 Face Model Fitting

Once a new video frame is selected, a morphable 3D face model
will be fitted to it. We use the Basel Face Model (BFM) [13] which is
a linear model trained on neural expression face scans of N = 200

subjects. BFM represents the face shape using a 3D mesh com-
prised of M = 53,490 vertices. Each face sample can be taken as a
3L dimensional vector (z1, y1, 21,...21, YL, 21), i.e,, X, y, z coordi-
nates of all vertices. Principal Component Analysis (PCA) is per-
formed on the 200 training face samples to estimate the mean u €
R3L | the standard deviations o € RY~!, and the orthonormal bases
of principal components P € R3*(¥=1 resulting in a parametric
face model consisting of M=(u, o, P). A new face can be generated
as a linear combination of the principal components

f = pu + Pdiag(o)a, (Y]

where @ € RV~! are the principal component coefficients which are
normally distributed with unit variance.

We fit BFM to the newly selected video frame by minimizing
the following objective function
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where o € R are the principal component coefficients of the BFM
face model. The ith vertex of the new face is

f, = n; + P;a. 3)

The first K = 60 principal components are used to generate this
new face. Different from eq. (1) where the principal component
coefficients have unit variance, in eq. (2) their values are explicitly
regularized by the standard deviations o;s, j € {1,2,... K}. This
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Fig. 2. Fitting zones for frame selection.
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Fig. 3. An 2D illustration for the face model fitting process formulated by eq. (2).

regularization term constrains the Mahalanobis distance between
the mean face u and the new face, so that the new face can be a
realistic human face rather than being twisted. X is an empirical
scalar constant determining the regularization strength.

In eq. (2), R and t determine the head pose. R € %% is the rota-
tion matrix and t € R? is the translation vector. d; is the matching
point of f; in the point cloud derived from the depth video frame;
and n; is the unit normal vector of f;. A (2D) illustration is given in
Fig. 3. After rotation and translation, the matching error between f;
and d; is projected onto f;’s normal direction using the inner product
operation. The projection in the formulation is to solve the sampling
problem in 3D registration. As illustrated in Fig. 3, although the two
point clouds, indicated by the red and blue dots, respectively, are
sampled from the same surface, the matching error can still be large
when the two point clouds are perfectly registered, since their sam-
pling patterns are quite different. But once projected onto the normal
direction of the surface, the matching error is diminished.

Furthermore, w; in eq. (2) is a scalar weighting factor for the ith
vertex. The use of w; has the following effects. First, by setting w; to
zero, a part of the face vertices can be excluded from the calcula-
tion. For example, vertices in the mouth, chin and eye regions are
excluded in the face template, as shown in Fig. 1, because they can
be easily affected by expressional deformations. To reduce compu-
tational complexity, we downsample the 3D face mesh. The total
number of mesh vertices in use is trimmed to 1,100. Second, by
assigning some vertices larger weights, we can emphasize their
importance during the optimization. Specifically, we use a time-
efficient facial landmarks detector (IntraFace [14]) to locate facial
features such as the eye corners and the nose tip in the video frame.
By assigning these feature points larger weights, the optimization
of eq. (2) can converge more quickly, because the matching points
{f;,d;} found by the facial landmark detection tends to be more
accurate compared with those found by projection and local
search, especially in the first few iterations of the optimization. In
the implementation, we use five facial landmarks (four canthi plus
the nose tip) and set w; to 40 for each of them.

The optimization of eq. (2) is carried out in an iterative process
which consists of three major sequential steps:

(1)  With constant R, t and e, find the matching points {f;, d;}s;
(2)  Given matching points and constant «, calculate R and t;
(3)  Given matching points, the updated R and t, calculate o.

For fast face template reconstruction, each step is calculated
using a time-efficient method.

In the first step, f; is perspectively projected onto the depth
image (projective data association [21]), followed by a local search
around the projection point to find the closest d;. A pair of match-
ing points {f;, d;} is rejected if their distance is larger than a prede-
fined threshold (30 mm), or the normal vector of f; points away
from the camera center (self-occluded).

The second step is equivalent to minimizing the following
point-to-plane ICP objective function

L
a(R, ) =Y wi[(Rn;) - (R(p; + Pir) +t — d)]”. o)
i=1
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By assuming small head rotation angles across adjacent frames [4],
[21], eq. (4) can be converted into a quadratic function and its mini-
mization can be solved analytically.

Using the updated R and t in the third step, the BEM coefficients
« can be obtained by minimizing

m|\Qm

5)

L K
CQ(C{) = Z’ll)i[(an) . (R(ML + Piot) +t— d,)]z + )\ZU

which is also a quadratic function. The minimization solution of eq.
(5) is given below

M 1, M
o= — (;PiTwiPi + AQ) <Zl PiTWiTgi)7 (6)

where
g =R'(t—d)+u, @)
W, = wnn; " (®)
€ 0
o1
Q=|: . | 9)
1
0

Limited by the paper length, details for minimizing eq. (4) and the
derivation of eq. (6) are given in the supplementary material [18].

It should be noted, after the above analysis of eq. (2), that the
benefits of using the morphable face model are mainly threefold.
First, as elaborated at the beginning of this section, BFM was con-
structed using 200 high quality (noise-free) face scans. By weight-
ing the regularization term of eq. (2) properly, we can use BFM to
generate a smooth face template that is able to well approximate
the noisy input. The noise robustness brought about by this morph-
able face model is especially beneficial to our problem, since the
Kinect depth video is notoriously noisy. Second, as discussed
above, the mouth and chin regions are excluded in the face tem-
plate to relieve the negative effect of facial expression. Without
using BFM, to identify these semantic regions in a point cloud is
not so straightforward. Last, as shown in eq. (1), BEM is a linear
model, which makes the optimization of eq. (2) and the subsequent
multi-frame fusion step much more time-efficient than non-rigidly
deforming a general face template to fit the input point cloud.

3.3 Multi-Frame Fusion

To handle face self-occlusion and depth noise, model fitting results

from multiple frames are fused together time-efficiently in this stage.
In eq. (6), g; is a frame dependent variable. To emphasize its

frame-dependent nature, we denote it with a subscript

g, =R/ (t—di) + m;, (10

where [ is the frame index; R; and t; are respectively the rotation
matrix and the translation vector of frame [. Calculated in the /th
frame, g, ; is the 3D displacement of the ith vertex of the user’s face
from that of the mean face in the model coordinates. To fuse the
BFM fitting results from multiple frames, we calculate the average
value of g; ;s

F;
E_ ol 8

g i3 11)

and use it in eq. (6) to determine the BFM coefficients . Note that
due to the face self-occlusion and depth holes, the number of
frames F; may be different for different vertices. Also note that we
assume the face in the template region is static across the chosen
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frames. Facial expression will violate this assumption, but since the
template excludes the mouth, chin, and eyes, the influence from
facial expression is largely diminished.

Multi-frame fusion is performed after the face model fitting for
each selected frame. To reduce memory usage, the average value

gfr‘ and the number of frames F; are recorded for each vertex.
When a new frame is selected, the average value can be updated
memory-efficiently by a weighted average

F;
() Fi8 T 81

12
' F+1 12
The normal vectors n;s are updated following the multi-frame
fusion, and then a notification will be sent to the head pose tracking
thread to inform that an updated face template is ready for use.

4 HeAD POSE TRACKING

Given the user-specific face template, the head pose is tracked in a
video sequence by minimizing the point-to-plane ICP registration
function in eq. (4). The minimization is also implemented in an iter-
ative process which consists of two major steps: (1) finding the
matching points, and (2) calculating the rotation matrix R and the
translation vector t.

To find the matching points {f;, d; }s, we use perspective projec-
tion and local search as described in Section 3.2. And similarly,
rejections are made based on Euclidean distances between the
matching points, and the normal directions on the face template.

Furthermore, an additional rejection step is performed to han-
dle outliers caused by, e.g., inter-object occlusions (hair, eye-
glasses). To this end, we leverage the K-means clustering
algorithm as follow

(1)  For each d;, generate a six dimensional sample, (r;, g;, b;,
YXi, VY, vZi), Where {r;, g,, b;} are the three color values of
d; (between 0 and 255), and {x;, y,, z; } are the x, y, z coordi-
nates of d; (in unit of mm), and y is a weighting factor,
whose value is set to 0.2;

Use the K-means clustering algorithm [22] to get five clus-
ters of samples in this six-dimensional space;

For each cluster ¢ € {1,2,...5}, calculate the average RGB
values (7., b, g.) of all its samples, and transform this trip-
let into the Lab color space (L, a.,b.). Compare the Lab
centers (L., a.,b.)s of the five clusters. Find the cluster
whose center is most distinctive among the five, by com-
paring the sum of Euclidean distances from the other cen-
ters in the Lab color space. Then reject the matching points
{f;,d;}s whose d;s are used to generate this cluster.

The assumption is that the color appearance of the outliers is
distinguishable from the face, which matches empirical observa-
tions well. A video demonstrating the robustness of our method to
outliers can be found in [18]. Notice that in many cases, the use of a
distance threshold can eliminate most outliers already. This is one
of the many benefits from using the depth data. Also notice that a
more comprehensive approach for color-based outlier rejection is
to use Lab values rather than RGB values in step 1, since the
Euclidean distance between Lab triplets can better represent the
perceived color difference. The current implementation balances
the time efficiency against accuracy. In addition, to further reduce
the computational complexity, the K-means clustering is per-
formed only once. The cluster centers are re-used in the following
iterations of the ICP registration.

To calculate R and t, the closed form solution of eq. (4) is used. It
is noticed that the ICP registration can be easily trapped into a local
minimum. Therefore, a good initialization of R and t should be
provided. When head poses in the previous video frames are
tracked successfully, they are used to predict the head pose in the

(¥)

(3)
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TABLE 1
BIWI and ICT-3DPH Head Pose Databases

Sequences Frames Subjects Rotation range
BIWI 24 ~15K 14 males ~+-75° yaw
6 females ~+-60° pitch
ICT-3DHP 10 ~14 K 6 males ~+-75° yaw
4 females ~+-45° pitch

current video frame, using multiple linear head pose predictors
which are jointly trained using real-world head movement data.
More details on the head pose prediction algorithm can be found
in our previous work [12]. For the first frame of the video sequence,
or when the tracking is lost (i.e., the located minimum of eq. (4) is
larger than a threshold), we use a color-based face detector [16] to
initialize R and t. Specifically, we assume that the nose tip is the
closest point to the camera in the face region, and the user’s head
faces towards the camera center.

5 RESULTS

5.1 Databases

To quantitatively evaluate the head pose tracking accuracy, the
BIWI [19] and ICT-3DHP [20] Kinect head pose databases are used.
The general information is summarized in Table 1.

The BIWI head pose database contains 24 video sequences with
around 15 thousand frames. Each video was recorded with a sub-
ject turning his/her head around in front of a Kinect camera (ver-
sion 1) at about one meter distance. 20 subjects participated
including 14 males and 6 females. The ground truth for the head
pose of each frame was obtained using a face tracking software
FACESHIFT [7], and provided in the form of 3D location of the
head center and the rotation angles. Both color and depth images
are available for each video frame, and camera parameters are
given so that the color and depth registration can be performed.
Since the BIWI database was not developed intentionally for track-
ing, 11 of the 24 sequences were not recorded continuously. On the
other hand, all the 10 video sequences in the ICT-3DHP head pose
database are sequential without missing frames. There are 10 sub-
jects involved including six males and four females. Each subject
was recorded sitting in front of a Kinect camera (version 1) at about
one meter distance. Registered color and depth images are pro-
vided for each video frame. The ground truth was collected using
the Polhemus Fastrack flock of birds tracker which is attached to a
cap worn by each subject.

5.2 Quantitative and Qualitative Evaluation

Since the head center of the BFM face model is different from the
one defined in either of the two databases and the displacement
between the different head centers is unknown, like in the prior
study [3], we only evaluate the head rotation accuracy.

Fig. 4 shows the success ratio, i.e., the percentage of correctly
estimated images, depending on the angular error thresholds for
both BIWI and ICT-3DHP databases. The angular error is calcu-
lated by L2 norm of the three-dimentional Euler rotation difference
(including yaw, pitch and roll) between the estimated head rota-
tion and the ground truth. The red and green lines represent per-
formances of [1] and ours, respectively. On both databases, our
method outperforms [1] by a large margin. But it should be noted
that the method in [1] estimates the head pose using only the cur-
rent frame, while our method needs to use the tracking results of
the previous frames. In fact, we can use [1] to replace the color-
based face detector [16] for initialization when the tracking loss
occurs. As discussed in Section 5.1, near half of the sequences in
BIWI have missing frames, which will unavoidably cause tracking
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Fig. 4. Success ratio depending on the angular error thresholds for (a) BIWI and
(b) ICT-3DHP. The red lines represent the performance of the random forests [1].
The green lines represent the performance of our method. The blue dashed line in
(a) represents the performance of our method which replaces the face detection
[16] with [1] for head pose initialization.

loss. Since we use a frontal face detector for initialization, once
tracking loss happens, it may need a long time before the next fron-
tal face is detected, during which the tracking accuracy will dra-
matically drops. On the other hand, the method in [1] can provide
a coarse head pose estimation even if the frame contains a profile
face. It explains the superior performance of our tracking method
using [1] for initialization (denoted as “ours + [1]”), as shown in
Fig. 4a. Notably, only 0.8 percent of the 15,699 frames in BIWI uses
[1] for initialization, while the other frames are tracked using ICP.
Combining ICP and detection based method like [1] can take merits
from both approaches, specifically, accuracy, time-efficiency, occlu-
sion robustness from ICP, and large rotation robustness from [1].
Note that the curve for “ours + [1]” is not plotted in Fig. 4b. Because
our method generate no tracking loss on the ICP-3DHP database, it
has the same performance as “ours + [1]”. Furthermore, it should be
emphasized that, if using an angular error threshold of 15 degree (as
in [1]), the target loss rates of our method on the BIWI and ICT

TABLE 2
Mean Rotation Errors (in Unit of Degree) for Yaw,
Pitch and Roll on the BIWI Database

Yaw Pitch Roll
RF [2] 9.2 8.5 8.0
RF + Tensor [17] 5.0 7.4 6.6
CLM-Z [3] 14.8 12.0 23.2
CLM-Z [3] + GAVAM [23] 6.9 5.1 11.3
Ours 3.0 3.2 5.3
Ours + [1] 2.2 1.7 3.2

All results except for ours and ours + [1] are cited from [3] and [17].
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TABLE 3
Mean Rotation Errors (in Unit of Degree) for Yaw, Pitch
and Roll on the ICT-3DHP Database

Yaw Pitch Roll
RF [2] 7.2 94 75
GAVAM [23] 3.0 3.5 3.5
CLM [10] 111 9.9 7.3
CLM-Z[3] 6.9 7.1 10.5
CLM-Z [3] + GAVAM [23] 29 3.1 3.2
Ours 3.3 3.1 2.9

All results except for ours are cited from [3].

databases are 6.9 and 4.4 percent , respectively, in comparison to
31.6 and 35.9 percent of [1]. If using [1] to replace [16] as the initializa-
tion method, the target loss rate on BIWI can be further reduced to
3.1 percent.

Tables 2 and 3 list the mean head rotation errors for yaw, pitch
and roll on the BIWI and ICT-3DHP databases, respectively.
Among the methods in comparison, [2] and [17] are detection-
based, while the others are tracking-based methods like ours. All
results except for ours are directly cited from [3] and [17]. On the
BIWI database, “ours + [1]” can achieve the state-of-the-art perfor-
mance. Even without using [1] for initialization, our method still
outperforms the state-of-the-art methods by a large margin. On the
ICP-3DHP database, the yaw accuracy of our method is slightly
lower than GAVAM [23] and CLM-Z [3] + GAVAM [23]. However,
according to [23], GAVAM runs at 12 Hz on the Intel X535 Quad-
core processor. Our method is much more time-efficient as dis-
cussed in Section 5.4.

According to our experiments with different subjects, the pro-
posed method (without using [1]) can robustly track rotation
angles within +-50° for yaw, row and pitch; a rotation speed
around 4 degree per frame (120 degree per second); and a transla-
tional speed about 1 cm per frame (0.3 meter per second). Demo
videos of the field tests can be found in our project website [18]. It
can also be seen from these videos that our method is able to han-
dle large occlusions and can recover from the tracking failure
quickly.

5.3 Initial Error versus Estimation Error

Using the head pose in the n-1th frame to calculate the initial error,
we plotted in Fig. 5a the relationship between the initial error and
the estimation (final) error of the nth frame on the BIWI database
(similar for ICT-3DHP), where the error is calculated as the L2
norm of the three-dimensional Euler rotation difference. The dot-
ted lines indicate the standard deviation of the estimation error. As
shown by the blue line which represents the result of frames con-
taining mainly frontal faces (head rotation angle < 20°), the esti-
mation error linearly increases to around 4 degree, and then keeps
roughly the same as the initial error goes to 9 degree, and surges
up quickly thereafter. The shape of this curve can be explained by
the three states of the ICP registration process: early-terminated,
convergent and divergent, under subtle, moderate and fast head
movements, respectively.

It can also be observed from Fig. 5a that the relationship
between the initial error and the estimation error is greatly affected
by the head rotation angle: the convergence range diminishes grad-
ually when more frames with larger head rotation angles are
included, as shown by the magenta and cyan curves in Fig. 5a. In
other words, the performance of our method drops as the head
rotation angle increases.

To see this more clearly, Fig. 5b shows the estimation errors
computed for local angle ranges (15° pitch x 15° yaw) on the BIWI
database (similar for ICT-3DHP). Apparently there is a trend that
the performance of our method degrades for larger yaw and pitch
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Fig. 5. (a) A plot of initial head pose errors versus estimation head pose errors on
BIWI. Frames with head rotation angles under a specified threshold value are
used to plot the corresponding lines. (b) Estimation error computed for local angle
ranges (15° pitch x 15° yaw) on BIWI. The color encodes the number of images
(side bar) falling into each region.

rotations. The reason is that as the rotation angles increases, less
geometrical information can be used to determine the head pose,
which is analogous to determining the 3D rotations of a globe
using only its shape information.

5.4 Complexity

We empirically used 10 iterations for the optimization of eq. (2). On
the Intel Core i7 processor at 2.93 GHz, the BEFM model fitting time
for each frame takes about 0.9 seconds, and there are up to nine
frames used in the face template reconstruction process. The short
reconstruction time benefits mostly from the time-efficient solution
in each processing step as described in Section 3.2.

Including the time for the K-means clustering, head pose pre-
diction and ICP registration (typically two or three iterations to
converge), the head pose tracking needs around 21 ms to process
one frame, or equivalently has a processing speed of around 47 fps.

5.5 Discussion

The advantage of using depth and 3D (shape) template in tracking
comes from many aspects. While tracking methods using 2D
(color) template usually suffers from illumination and viewpoint
changes [24], the use of depth makes our method immune to illu-
mination changes. Using a 3D template, the object pose can be
explicitly formulated in our problem, making our method more
robust to large pose/viewpoint changes than the 2D methods. Fur-
thermore, using depth we can time-efficiently reject outliers by set-
ting a distance threshold, as discussed in Section 4. To further
reduce the influence of the remaining outliers, we can use a robust
error metric as discussed in [10] to replace the quadratic one. How-
ever, how to balance the outlier robustness and the time complex-
ity needs future investigation.

1927

In order to achieve high time efficiency, we use the color data in
face-detector-based initialization, landmark detection, and K-
means clustering, but not in the main tracking process. Possible
ways to fully exploit the color data for tracking include (1) using
both color and depth to determine the matching points in the ICP
registration, and (2) performing sparse feature matching or optical
flow to find correspondences across adjacent frames. Furthermore,
by using a skin-color detector to identity outliers, we can improve
the outlier rejection algorithm as discussed in Section 4 in extreme
cases, e.g., when the outliers are quite close to the face and occlude
over 3/4 of the face region.

6 CONCLUSION

Using a RGBD camera, a head pose tracking method is proposed
which can reconstruct a user-specific face template on-the-fly. Dur-
ing the real-time tracking, up to nine video frames are automati-
cally selected for the reconstruction to handle problems such as the
face self-occlusion and the depth noise. The BFM face model is fit-
ted to each frame, which is formulated as an iterative optimization
process. The optimization process consists of three processing
steps, each of which has a time-efficient solution. Using the pro-
posed approach, model fitting results from multiple frames can be
fused together in one step. The face template reconstruction is
sequential (frame-by-frame), so the head pose tracking process suf-
fers less from the reconstruction delay. The head pose tracking is
implemented using the ICP algorithm which registers the user-spe-
cific face template to the input depth video. A K-means clustering
process is proposed to reject outliers based on colors which was
found to be useful in practice. The proposed head pose tracking
method has a low complexity and can achieve the state-of-the-art
performances on two public head pose datasets.
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