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a b s t r a c t

In this paper, a novel reduced reference (RR) stereoscopic image quality assessment (SIQA) is proposed by
characterizing the statistical properties of the stereoscopic image in the reorganized discrete cosine
transform (RDCT) domain. Firstly, the difference image between the left and right view images is com-
puted. Afterwards, the left and right view images, as well as the difference image, are decomposed by
block-based discrete cosine transform (DCT). The DCT coefficients are further reorganized into a three-level
coefficient tree, resulting in ten RDCT subbands. For each RDCT subband, the statistical property of the
coefficient distribution is modeled by the generalized Gaussian density (GGD) function. And the mutual
information (MI) and energy distribution ratio (EDR) are employed to depict the statistical properties
across different RDCT subbands. Moreover, EDR can further model the mutual masking property of the
human visual system (HVS). By considering the GGD modeling behavior within each RDCT subband and MI
together EDR characterizing behavior across RDCT subbands, the statistical properties of the stereoscopic
image are fully exploited, including the left view, right view, and the difference image. Experimental results
demonstrated that the statistical properties of the difference image can well represent the perceptual
quality of the stereoscopic image, which outperforms the representative RR quality metrics for stereoscopic
image and even some full reference (FR) quality metrics. By considering the left view, right view, and
difference image together, the performances of the proposed RR SIQA can be further improved, which
presenting a more closely relationship between the quality metric output and human visual perception.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Image perceptual quality assessment plays the essential role in
the image processing and communication [1,2], such as image
capturing, compression, storage, transmission, displaying, printing,
sharing, and so on. Therefore, there are many research works aim to
develop image quality metrics for guiding the performance optimi-
zation during each step of image processing [3,4] and communica-
tion. Human eyes are the ultimate receivers of the images. The
subjective test process is regarded as the most reliable way to
evaluate the perceptual quality of the image. However, the sub-
jective test process is time-consuming, which is impractical for the
optimization process of the online image processing. Therefore, the
Science and Software En-
ina.
,
(Q. Liu),
objective quality metrics that can automatically evaluate the image
perceptual quality and guide the image processing applications are
demanded.

Nowadays, with the rapid developments of content generation
and display technology, three-dimensional (3D) applications and
services are becoming more and more popular for visual quality of
experiences (QoE) of human viewers. The 3D contents displaying
on the 3D devices have brought new entertainments and more
vivid experiences to the consumers, which attract more and more
attentions from not only researchers but also the industries. For
these applications, the quality of 3D content is the most critical
part to provide the visual QoE. However, in the 3D processing
chain including capturing, processing [5–7], coding [8,9], trans-
mitting, reconstruction, retrieving, etc., artifacts are inevitably in-
troduced due to the resource shortage in processing [10]. There-
fore, how to automatically evaluate the perceptual quality of 3D
content [11] becomes a challenging issue in 3D visual signal pro-
cessing. Moreover, it is claimed that the artifacts of 3D content
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affect more on human visual system (HVS) [12,13], compared with
the conventional 2D contents. Therefore, the realization of the HVS
properties on 3D content is researched to help more accurately
evaluate perceptual quality of the 3D contents.

According to the availability of the reference image, the conven-
tional 2D image quality assessment (IQA) methods can be divided into
three categories, specifically the full reference (FR) [14–16], no re-
ference (NR) [17–22], and reduced reference (RR) [22–28], respectively.

FR metrics require the full assess of the original image to eval-
uate the perceptual quality of the distorted image. The original
image is assumed to be artifact free and of perfect quality. Such
metrics can be employed to guide the perceptual quality optimi-
zation during image/video compression, watermarking, and so on.
The most appealing quality metrics are the mean square error
(MSE) and its related peak signal-to-noise ratio (PSNR), because of
their simplicity, clear physical meaning, and easy optimization.
However, MSE and PSNR do not correlate with HVS properties.
Therefore, many FR metrics are developed to incorporate the HVS
properties and image signal properties. Wang et al. developed the
most popular image quality metric structural similarity (SSIM) [14]
that captures the structure information loss to depict the perceptual
quality of the distorted image. A wavelet-based visual signal-to-
noise ratio (VSNR) is developed to capture the distortions inwavelet
domain [15]. A simple quality metric considering texture masking
and contrast sensitivity function is developed for perceptual image
coding [29]. In [16], Ma et al. proposed to incorporate the horizontal
effect of HVS into SSIM for a better image quality metric.

However, in real-world applications, we are not able to access
the original image for quality analysis in most cases, where only the
distorted image is available. The NR quality metrics are thus em-
ployed. Many researchers employ the behaviors of specific distor-
tions for the NR quality assessment, such as the blocking artifact of
JPEG coded images, ringing artifact of the JPEG 2000 coded images,
and so on. As JPEG 2000 employs the wavelet transform to com-
press the image, the wavelet statistical model is utilized to capture
the compression distortion [18]. Liang et al. [19] combined the
sharpness, blurring, and ringing measurements together to depict
the perceptual quality of the JPEG 2000 coded image. The dis-
tribution of the DCT coefficient after quantization is modeled in [20]
to predict the PSNR value of the JPEG coded image. Furthermore,
Ferzli et al. [21] did the psychophysical experiment to test the
blurring tolerance ability of the HVS, based on which the just-no-
ticeable blur (JNB) model is developed. These methods employ the
behaviors of specific distortions to predict the degradation level.
Therefore, if a new distortion is introduced, these methods can
hardly evaluate the perceptual quality of the distorted image. In
order to compromise between the FR and NR IQAs, RR IQAs are
developed. It is expected that the RR methods can effectively
evaluate the image perceptual quality based on a limited number of
RR features extracted from the reference image. Only a small
number of bits are required for representing the extracted features,
which can be efficiently encoded and transmitted for the quality
analysis. Consequently, it will be very useful for the quality mon-
itoring during the image transmission and communication.

For RR quality metrics, only partial information of the original
image is available for quality analysis, which can be further cate-
gorized into the following three classes.

� Distortion-based RR metrics: The behaviors of the distortions are
modeled for RR quality metric design. Wolf et al. [30,31]
proposed to extract a set of spatial and temporal features for
measuring the distortions introduced in the standard video
compression and communication environment. The features
that are associated with the blurring, blocking, and frame
differences are extracted in [32] to depict the compression
artifacts introduced by MPEG-2. These RR quality metrics are
designed for some specific distortions, which cannot be effec-
tively applied to the other images of different distortions.
Therefore, a general RR IQA for evaluating the image perceptual
quality of different distortions is required.

� HVS-based RR metrics: HVS properties should be considered for
quality assessment, as the human eyes are the ultimate re-
ceivers. Le Callet et al. [33] employed a neural network to train
and evaluate the perceptual qualities of video sequences based
on the perceptual-related features extracted from the video
frames. In [34,35], the perceptual features motivated from the
computational models of low level vision are extracted as the
reduced descriptors to represent the image perceptual quality.
The merits from the contourlet transform, the contrast sensi-
tivity function, and Webers law of just noticeable difference are
incorporated to derive an RR IQA [36], which are employed for
evaluating the perceptual qualities of the JPEG and JPEG 2000
coded images. Recently, an RR IQA [37] for wireless imaging is
developed by considering different structural information that
is observed in the distortion model of wireless link.

� Statistics-based RR metrics: The statistical modeling of the image
signal has been investigated for the image perceptual quality
assessment for RR IQAs. In [38,23], Wang et al. proposed a
wavelet-domain natural image statistic metric (WNISM), which
models the marginal probability distribution of the wavelet
coefficients of a natural image by the generalized Gaussian
density (GGD) function. The Kullback–Leibler distance (KLD) is
used to depict the distribution difference. To improve the
performance and reduce the number of features, the probability
distribution was represented by the Gaussian scale mixture
(GSM) model in wavelet domain [39]. In [24–26], the RR features
are extracted in the reorganized domain. In [24], the DCT
coefficients are first reorganized into several representative
subbands, whose distributions are modeled by the GGD. The
city-block distance (CBD) is utilized to capture the image per-
ceptual quality. In [40], the statistics of image gradient magni-
tude are modeled by the Weibull distribution to develop an RR
image quality metric. Also the statistics of the edge [41] are
utilized for developing the RR IQA. In [42], the authors measure
the differences between the entropies of wavelet coefficients of
the reference and distorted image to quantify the image informa-
tion change, which can indicate the image perceptual quality.

In this paper, we proposed a novel RR SIQA based on the sta-
tistical modeling of the stereoscopic image. The difference image is
computed by referring to the left view and right view image. After
performing the block-based DCT and reorganization process, the
coefficients of the images (left view, right view, and the different
image) are reorganized into different RDCT subbands. The statis-
tical property within each RDCT subband is exploited by the GGD
modeling of the coefficient distribution. The statistical property
across RDCT subbands is modeled by the energy distribution ratio
(EDR), which can be further employed for modeling the HVS
mutual masking property. The main contributions of our proposed
method are listed as follows.

� The statistical property of stereoscopic image is studied for
perceptual quality analysis. The statistical properties of the
obtained difference image are firstly investigated in the RDCT
domain. By considering the difference image, the left and right
view images are considered together for perceptual quality
analysis, which matches the HVS perception of the stereoscopic
image.

� The statistical properties of the difference image are char-
acterized from two perspectives, specifically the within and
across RDCT subband statistical properties, respectively. The
statistical properties depicted within and across the RDCT
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subbands can help capture the distortions introduced to the
stereoscopic image.

� The difference image is demonstrated to be most important for
SIQA, compared to the sole left view and right view image.
Therefore, the proposed RR SIQA metric can be viewed as a
scalable approach. If only a few RR features are constrained, we
can only extract the RR features from the difference image for
quality analysis. Otherwise, all the RR features are extracted for
quality analysis from the images, including the left view, right
view, and difference image.

The rest of this paper is organized as follows. Section 2 over-
views the related work. Section 3 illustrates the proposed RR SIQA
model. Experimental results are provided in Section 4. Finally,
conclusions are given in Section 5.
2. Related work

As 3D images are prevailing, the quality evaluation of 3D
images is demanded for the quality control and optimization for
better QoE of human viewers. Existing perceptual quality metrics
for 3D images can be roughly divided into two categories, named
quality model extended from 2D image quality assessment (IQA)
metrics and the quality model specifically designed for 3D images.

The first category simply extends the 2D IQA models to the
stereoscopic image. Such models treat each view image of the ste-
reoscopic image independently. By fusing the obtained quality in-
dex of each view image, the quality value of the stereoscopic image
is determined. In [43], Hewage et al. investigated the correlation
between subjective quality scores and three quality metrics, in-
cluding PSNR, Video Quality Model (VQM) [44], and SSIM [14] for
3D video content. It is demonstrated that the VQM metric performs
better than the other two metrics for predicting the overall per-
ceptual quality of the stereoscopic image. The quality metric for 3D
image in [45] is also extended from 2D IQAs. These extended me-
trics treat each view image independently, which does not consider
the binocular vision properties. However, such binocular vision
properties are critical for the 3D image perception, which make the
extended quality metrics generate unsatisfactory performances.

The other category considers the specific HVS properties of
viewing 3D images, such as the binocular vision and depth per-
ception properties. In [46], Benoit et al. fused the depth (or dis-
parity) information and 2D quality metrics to evaluate the 3D image
quality. Ref. [47] investigated the integration of disparity informa-
tion into 2D quality metrics. Boev et al. [48] combined the mono-
scopic quality component and the stereoscopic quality component
to develop a stereo-video quality metric, where the cyclopean im-
age concept was first introduced by fusing the left and right views.
To further improve the performance of 3D IQA, the binocular fusion
and rivalry properties are investigated. The binocular spatial sen-
sitivity (BSS) weighted metric is developed [49] based on the bi-
nocular just noticeable difference model [50]. Chen et al. [51] de-
veloped a framework for assessing the quality of stereoscopic
images that have been afflicted by possibly asymmetric distortions.
The linear rivalry model was employed to exploit the binocular
rivalry property in [52]. However, the features employed in the
binocular vision properties based metric are local, which may not
work well when the original 3D images are inaccessible.

For 3D RR IQA metrics, image features including the distortion
driven features such as binary edge mask [53,54], and HVS features
such as contrast sensitivity index [55], are extracted and compared for
quality analysis, which correlate with HVS perception and image sta-
tistical properties. The marginal distributions of disparity [56] subband
coefficients can be well fitted by the GGD model, which is similar to
the luminance images. This property was employed as prior
information to improve the performance of Bayesian disparity esti-
mation [57]. In [27], Wang et al. extracted the RR features in the
contourlet domain for 3D image quality assessment. After receiving
the RR features, the RR metrics evaluate the perceptual quality of the
distorted images by referring to the corresponding extracted RR
features.
3. Proposed reduced reference (RR) stereoscopic image quality
assessment (SIQA)

3.1. Statistical properties of the stereoscopic image

The statistical properties of conventional 2D images have been ex-
tensively studied, such as the GGD modeling of the wavelet coefficient
in [23], the GSM modeling in wavelet domain [39], GGD modeling in
RDCT domain [24]. However, there are no literatures discussing the
statistical modeling of the stereoscopic image, specifically jointly con-
sidering the left view and right view image together. As mentioned
before, HVS perception properties of the stereoscopic images sig-
nificantly affect the quality analysis of the stereoscopic image. It is
expected that an accurate modeling of the statistical properties of the
stereoscopic image can help to capture the quality degradation. In this
section, we focus on the statistical modeling of the stereoscopic image
by jointly considering the left view and right view image.

The correlation between the left view and right view image can
be exploited by performing the disparity map estimation between
the two images. The disparity map depicts the pixel replacement of
one view image referring to the other image. By using the disparity
map, we can obtain the view difference image between the two view
images. Such difference image introduces the view disparities to the
human eyes, which are critical to generate the 3D experiences of the
stereoscopic image. Therefore, the statistical properties of such dif-
ference image are investigated in this section. However, as we target
at an RR SIQA, we need to consider the RR feature extraction in the
receiver side, specifically the statistical feature extraction. The fea-
tures in the receiver side should be easy for computation and ex-
traction following the same procedure as the sender side. Therefore,
we cannot perform the disparity map estimation in the sender and
receiver side. Firstly, the computational complexity is high. Secondly
the disparity map estimated in the reference and distorted stereo-
scopic images will be different. Therefore, we employ a straightfor-
ward and simple way to generate the difference image by subtracting
one view image from the other view image. The statistical properties
of such difference image are studied. And the experimental results in
Section 4 will illustrate the performance improvements by employ-
ing the difference image, not only for our proposed RR SIQA, but also
for the other RR SIQAs as well as the FR SIQAs.

Supposing the left view image is Il and the right view image is
Ir, the difference image Id is obtained by:

= − ( )I I I . 1d r l

−I Il r can also be employed to obtain Id, which makes no differ-
ences to the statistical modeling. The corresponding images of Il, Ir,
and Id are illustrated in Fig. 1. Only the luminance component of
the image is illustrated, which mostly affects the HVS perception.
The difference image is processed as +I 128d for better visuali-
zation. The pixel value distribution of the difference image is il-
lustrated in Fig. 1(d), where the red line denotes the pixel value
distribution of the difference image. It can be observed that the
pixel value distribution presents a high kurtosis distribution (with
a sharp peak at zero and a fat-tail distribution). As discussed in
[24,13], the high kurtosis distributions can be well modeled by
GGD, which is defined in:



Fig. 1. The stereoscopic image and the generated difference image. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.
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where β > 0 and α are the two parameters of the GGD function. Γ
is the Gamma Function denoted by:
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αmodels the width of the peak (standard deviation), while β is
inversely proportional to the decreasing rate of the peak. α and β
also refer to the scale and shape parameters, respectively. The blue
line indicates the GGD modeling of the difference image coeffi-
cient distribution. It can be observed that the blue and red lines
overlap with each other, which demonstrates an accurate GGD
modeling of the coefficient distribution. The city-block distance
(CBD) [24,26] is employed to capture the distribution difference,
which is defined as:

∑( ) = | ( ) − ( )|
( )=

d p q p i q i,
4

CBD
i

h

1

L

where p and q are two coefficient distributions, and hL denotes the
number of histogram bins.

As illustrated in [24,26], the coefficient distribution of the natural
image in RDCT domain can be well modeled by GGD. In this paper, we
make the first attempt to employ the RDCT decomposition to process
the difference image between left and right view images. We in-
vestigate whether the RDCT coefficient distribution of the difference
image can be accurately modeled by GGD and whether such modeling
features can be employed as the stereoscopic image features, which
can further help for stereoscopic image quality assessment.

Firstly, the difference image as in Fig. 1(c) is obtained. Afterwards,
the block-based DCT is employed to transform the image pixel values
to the DCT domain. Specifically, the 8�8 block-based DCT is em-
ployed. The obtained image after performing 8�8 DCT is illustrated
in Fig. 2(a). After obtaining the DCT coefficients, the reorganization
process as introduced in [24] is applied, which generate the corre-
sponding RDCT representation as illustrated in Fig. 2(b). For better
visualization, the coefficients of the DCT and RDCT representations
are rescaled in the range of [0,255]. For the reorganization process,
the 8�8 DCT coefficients are firstly decomposed into ten groups.
Then the coefficients of all the 8�8 DCT blocks are grouped and
organized together according to their positions. The reorganization
process results in a three level coefficient tree with ten RDCT sub-
bands …S S, ,0 9, as shown in Fig. 2(b). The RDCT representation
presents a similar appearance like a wavelet representation, which
exhibits structural similarity between subbands and coefficient
magnitude decaying toward high frequency subbands.

As discussed in [26], the RDCT coefficient distribution of the
natural image can be well depicted by GGD. In this paper, we will
investigate how the GGD function models the coefficient distribu-
tion of the difference image and its RDCT subbands. As illustrated in
Fig. 1(d), GGD is demonstrated to accurately model the coefficient
distribution of the difference image with the CBD value equals to
0.1824. The GGD modeling of the RDCT subband coefficient dis-
tribution is illustrated in Fig. 3. It can be observed that the coeffi-
cient distribution of the RDCT subband can be more accurately
modeled by GGD, compared with the difference image in Fig. 1(d).
We also employ the CBD as defined in Eq. (4) to evaluate the GGD
modeling accuracy, which is also illustrated in Fig. 3. It can be ob-
served that only two subbands S1 and S2 generate larger CBD values
than the CBD value of the difference image. And the average CBD
value over all the 9 subbands is 0.129322, which is much smaller
than the CBD value of the difference image. It means that the GGD is



Fig. 2. The DCT and RDCT representation of the difference image.

Fig. 3. The coefficient distribution of each RDCT subband and its GGD modeling curve.
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more suitable to model the RDCT subband coefficient distribution of
the different image.

Therefore, in this paper, other than directly modeling the
coefficient distribution of the difference image, the coefficient
distributions of the RDCT subbands are modeled to extract the
corresponding RR features for quality analysis. As the difference
image is considered, we explicitly jointly consider the left and
right view image, which matches the HVS perception of the ste-
reoscopic image. The prior RR IQAs for stereoscopic image extract
the RR features on single view image, which do not consider the
inter-view image statistical properties for stereoscopic image
quality assessment.

3.2. Proposed reduced reference stereoscopic image quality assess-
ment metric

In this paper, the features extraction and quality analysis
schemes in [26] are employed to predict the perceptual quality of
degraded stereoscopic image. Fig. 4 provides the framework of our
proposed metric.



Fig. 4. The framework of the proposed SIQA metric.
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3.2.1. Feature extraction
In the sender side, the left/right/difference images of original

stereoscopic image are decomposed and reorganized into RDCT
representation as shown in Fig. 2. Afterwards, the following fea-
tures are extracted from the RDCT subbands.

� GGD model parameters: For the three horizontal RDCT subbands,
S1, S4 and S7, the distribution of subband coefficients is fitted by
GGD model. Then, the model parameters α, β and dCBD are
calculated based on Eqs. (2) and (4). Therefore, there are nine
GGD model parameters in total extracted.

� Mutual information (MI): MI features can describe the essential
relationship between the RDCT subbands, which are influenced
by introduced distortion. In this paper, two MI values of the
parent–child correlation between the subband pairs ( )S S,1 4 and
( )S S,4 7 , three MI values of the cousin–child correlation between
the subband pairs ( )S S,1 2 , ( )S S,4 5 and ( )S S,7 8 , and three MI va-
lues of the brother–child correlation between the subband pairs
( )S S,1 3 , ( )S S,4 6 and ( )S S,7 9 are calculated as RR features. Thus,
there are eight MI values in total extracted to represent the
inter-subband dependencies.

� Energy distribution ratio (EDR): EDR is a global feature which can
capture the frequency proportion changes caused by introduced
distortions. The FRD features are defined as

= +
( )EDR

M H
L

, 5

where L, M, H are the sums of absolute DCT coefficient values in
the low frequency ( )S S S S, , ,0 1 2 3 , medium frequency ( )S S S, ,4 5 6

and high frequency ( )S S S, ,7 8 9 RDCT subbands, respectively.

For each image component (left/right/difference image), we em-
ployed three horizontal RDCT subbands for GGD modeling and
CBD calculation. Each RDCT subband requires two GGD modeling
parameters and one CBD parameter. Moreover, eight MI features
are extracted to depict the relationship between horizontal RDCT
subbands and other RDCT subbands. Additionally, one EDR feature
is extracted to globally depict the frequency proportion of the
image. Therefore, in total, we have × + + =3 3 8 1 18 RR features
extracted for each image. For the method with only difference
image, we have 18 RR features. For the method with left view,
right view, and difference image, we have × =18 3 54 RR features.

3.2.2. Quality analysis and pooling
In the receiver side, the extracted features of the original and

distorted stereoscopic image are compared to predict the stereo-
scopic image perceptual quality. First, the following three distance
indexes will be determined to measure the perceptual quality
degradation caused by the introduced distortion.

� CBD: The distance between the RDCT subband m original and
distorted stereoscopic image is defined as

( ) ∑= ( ) − ( )
( )=

d p p p i p i, ,
6

CBD
m v

o
m v

d
m v

i

h

o
m v

d
m v, , ,

1

, ,
L

where po
m v, and pd

m v, are the coefficient distributions of original
and distorted stereoscopic images, and ∈v {left image, right
image, difference image}. Since po

m v, is not available in the re-
ceiver side, the distance can be approximated as

( ) ( ) ( ) ( )= −α β α β 7d p p d p p d p p, , , ,CBD
m v

o
m v

d
m v

CBD
m v

o
m v m v

CBD
m v m v

d
m v, , , , ,

,
, ,

,
, ,

m v m v m v m v, , , ,

where ( )α βd p p,CBD
m v

o
m v m v, ,

,
,

m v m v, ,
is the parameters from the sender

side. α βpm v
,

,
m v m v, ,

is the estimated coefficient distribution of the

original stereoscopic image based on the GGD model para-
meters αm v, and βm v, .� Differences between the MI values: The differences between the
MI values of the original and distorted stereoscopic images are
determined by

( ) = ( ) − ( ) ( )d S S MI S S MI S S, , , , 8MI
v

m v n v o
v

m v n v d
v

m v n v, , , , , ,

where ( )MI S S,o
v

m v n v, , is the MI value of the RDCT subband Sm v,

and Sn v, in the original stereoscopic image, and ( )MI S S,d
v

m v n v, , is
the MI value of the RDCT subband Sm v, and Sn v, in the distorted
stereoscopic image.

� Similarity between the EDR values: To measure the influence of
the introduced distortion on the HVS-related features. The si-
milarity between the EDR values of the original and distorted
stereoscopic images are defined as

ξ
ξ

ξ
ξ

=
+

<

+
≥

( )

⎧
⎨
⎪⎪

⎩
⎪⎪

d
EDR

EDR EDR
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v
d
v o
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d
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where

ξ = | − | ( )EDR EDR . 10v
o
v

d
v

EDRo
v and EDRd

v are the EDR values of the original and distorted
stereoscopic images, respectively. ξv in the denominator is
employed to scale dEDR

v into the range [0,1]. With such scaling
process, the mutual masking properties have been considered
[58]. The mutual masking effect is determined by the minimum
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value of the thresholds calculated from the original and dis-
torted image. Therefore, the computed EDR value can depict the
texture information of the image. The mutual masking effect of
the HVS perception is modeled as Eq. (9), where the smaller
value of EDRo

v and EDRd
v is employed to model the masking

effect. In this way, only the image is highly textured in both the
reference and distorted images (large EDRo

v and EDRd
v values)

can produce a significant masking effect.

After obtaining the CBD values and the similarity index be-
tween the ERD values, the quality values for image component v is
defined as

∑ ∑= × + × ( ) + ×
( )( )
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In this paper, the parameters c1, c2 and c3 are set as 0.4883, 0.0313
and 0.6719, respectively. To scale the quality values, the quality
values Qv are transformed by a logarithm process:
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D0 is a scale factor to adjust the variation of Qv. In this paper, D0 is
set as 0.0001 for simplicity.

Furthermore, the final perceptual quality of the distorted ste-
reoscopic image is determined as

∑=
( )

Q Q .
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4. Experimental results

In this section, we implement the proposed RR-SIQA metric
and make performance comparison with the state-of-the-art
methods. To validate the robustness of proposed metric, it is ne-
cessary to evaluate the SIQA metrics on different 3D image quality
databases (IQDs). Currently, there are two categories for existing
3D IQDs. One is symmetric IQD [59] where the left/right views of
the stereoscopic image are symmetrically distorted. The other
category is the asymmetric IQD [13] where the left/right views of
the stereoscopic image are degraded with different distortion
types and levels. In this paper, we evaluate the performance on
both symmetric and asymmetric IQDs. The detailed information of
the selected IQDs is described as follows:

� LIVE 3D IQD Phase I (LIVE-Phase-I) [60] consists of 20 outdoor
stereoscopic scenes. Each scene contains one stereoscopic
pairs (left/right view) and the corresponding range maps of
the views. All the reference stereoscopic images are with
resolution 640�360. For each reference stereoscopic image,
its left/right views are symmetrically degraded by five differ-
ent distortion types with different degradation levels. The
distortion types include JPEG compression (denoted as JPEG),
JPEG2000 compression (denoted as JP2K), white noise con-
tamination (denoted as WN), Gaussian blur (denoted as
GBLUR), and fast fading channel distortion of JPEG2000 com-
pressed bitstream (denoted as FF). The database contains 365
subject-rated stereoscopic images (80 each for JP2K, JPEG, WN
and FF; 45 for GBLUR).

� LIVE 3D IQD Phase II (LIVE-Phase-II) [51] aims to build a diverse
database that consists of both symmetrically and asymmetrically
distorted stereoscopic pairs. The distortion types include JPEG, JP2K,
WN, GBLUR and FF. The database consists of 360 subject-rated
stereoscopic images (72 each for JP2K, JPEG, WN, GBLUR and FF).
For fair comparison, both 2DIQA extension model and binocular
vision inspired metric (denoted as SIQA model) are evaluated in
the experiment. Two FR-SIQA models, including FI-PSNR [61] and
MJ3DQA [51] are implemented in the experiment. To verify the
effectiveness of proposed RR-SIQA metric, three different RR-SIQA
metrics, including DNT [39], RDCT [26] and contourlet domain
based model (denoted as CT [27]) are employed as the benchmark.
We proposed two RR quality metrics, specifically the Proposed-I
and Proposed-II. Proposed-I only performs the RR quality analysis
of the difference image, while Proposed-II performs the RR quality
analysis of left view, right view, and the different image.

To remove nonlinearity introduced by the subjective rating
process and facilitate empirical comparison of different IQA me-
trics, the nonlinear least-squares regression function nlinfit of
Matlab is employed to map the objective quality score q to the
predicted subjective quality score DMOSp. The mapping function is
the five parameters logistic function

= −
+ ( ·( − ))

+ · +
( )
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p p

p q p
p q p

2 1 exp
,
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1 1
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where p1, p2, p3, p4 and p5 are the parameters of the logistic
function. Three criteria are employed to evaluate the mapping
performance: (1) correlation coefficient (CC): accuracy of objective
metrics; (2) Spearman's rank order correlation coefficient
(SROCC): monotonicity of objective metrics; and (3) root mean-
squared-error (RMSE). The scatter plots of subjective DMOS against
the predicted DMOSp of RR-SIQA metrics on the 3D IQDs are pro-
vided in Fig. 5. It is easy to observe that the our proposed RDCT-
based RR-SIQA metrics can achieve the best performance on the
entire database for both symmetric and asymmetric IQDs. Detailed
experimental results are provided in Table 1.

The performances of different IQAs over different stereoscopic
image quality databases are illustrated in Table 1 and Fig. 5. It can be
observed that the proposed method can outperform the other RR
and even some FR metrics on both LIVE-Phase-I and LIVE-Phase-II,
with larger LCC/SROCC and smaller RMSE values. We compared
some quality metrics extended from conventional 2D images, such
as PSNR, SSIM, VSNR, and so on. From Table 1, experimental results
demonstrate that PSNR performs badly, although it requires the
whole reference image for perceptual quality analysis. The reason is
that PSNR only measures the pixel absolute differences, which does
not take the HVS property into consideration. For SSIM, the struc-
tural distortions are measured rather than the absolute pixel value
differences, which are sensitive to the HVS perception. Therefore,
SSIM demonstrates a better performance than PSNR. However, SSIM
also requires the whole reference image for quality analysis. For MS-
SSIM, a multi-scale SSIM is applied to the stereoscopic image, which
generates a better performance than SSIM. However, compared the
performance of SSIM and MS-SSIM on LIVE-Phase-I and LIVE-Phase-
II, it can be observed that SSIM and MS-SSIM perform worse on
LIVE-Phase-II. Therefore, SSIM and MS-SSIM are not able to handle
the quality assessment of stereoscopic images with non-symmetric
distortions. For other FR quality metrics extended from 2D images,
such VIF and UQI, as the reference stereoscopic image is available
and complex HVS and image signal properties have been studied,
the performances are much better for both the symmetric and non-
symmetric distortions. For the FR quality metrics specifically de-
signed for stereoscopic image, FI-PSNR and MJ3DQA, the perfor-
mances are not good enough, even worse than the metrics extended
from conventional 2D metrics. The reason may be attributed to that
the mechanism of binocular summation is still an open issue. Thus
the computation model of the rivalry property may not be accurate
enough for assessing the perceptual quality of stereoscopic images.
Consequently, the performances of existing binocular vision inspired
metrics are limited, such as FI-PSNR and MJ3DQA.



Fig. 5. Scatter plots of subjective DMOS vs. predicted DMOSq of SIQA metrics on the 3D IQDs. (a)–(e) Results on the LIVE-Phase-I database. (f)–(j) Results on the LIVE-Phase-II database.
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For the RR quality metrics, we compare our proposed method
with DNT [39], RDCT [26], and CT [27], which are extended from
the conventional 2D RR metrics. These RR metrics will perform the
quality analysis for the left and right view image independently.
Then the average quality index is regarded as the perceptual
quality of the stereoscopic image. RDCT tries to depict the coeffi-
cient distribution in the RDCT domain as the RR features. As
shown in Fig. 2, RDCT presents similar signal decomposition



Table 1
Performance of the SIQA metrics for LIVE-Phase-I and LIVE-Phase-II databases in terms of CC, SROCC and RMSE.

Criteria Type Metric LIVE-Phase-I [60] LIVE-Phase-II [51]

JP2K JPEG WN GBLUR FF ALL JP2K JPEG WN GBLUR FF ALL

CC FR PSNR 0.7878 0.1190 0.9352 0.7694 0.7107 0.8355 0.4726 0.6696 0.4161 0.9280 0.7743 0.7317
SSIM 0.8753 0.4893 0.9421 0.9180 0.7238 0.8766 0.9301 0.7253 0.6659 0.8421 0.8669 0.8024
MS-SSIM 0.9335 0.6663 0.9522 0.9449 0.8083 0.9297 0.9510 0.8389 0.8324 0.7995 0.8740 0.7938
VSNR 0.8905 0.4118 0.9109 0.9015 0.7870 0.8904 0.6942 0.6567 0.4308 0.9710 0.8717 0.7768
VIF 0.9381 0.6820 0.9318 0.9652 0.8616 0.9253 0.8265 0.8322 0.8237 0.9871 0.9466 0.8408
UQI 0.9510 0.7737 0.9270 0.9568 0.8791 0.9418 0.8509 0.8345 0.7984 0.9803 0.9615 0.8639
FI-PSNR [61] 0.8575 0.3266 0.9289 0.8191 0.7096 0.8733 0.9247 0.7751 0.6677 0.7384 0.7157 0.6450
MJ3DQA [51] 0.8615 0.2914 0.9502 0.9086 0.6783 0.8791 0.9612 0.8218 0.7467 0.9558 0.8888 0.8837

RR DNT [39] 0.9380 0.6903 0.9231 0.9636 0.8589 0.8608 0.9393 0.8919 0.8626 0.9701 0.9085 0.5417
RDCT [26] 0.9157 0.7228 0.9118 0.9204 0.8073 0.9042 0.7468 0.7547 0.8243 0.9694 0.8925 0.8004
CT[27] 0.9252 0.5574 0.9196 0.9596 0.8339 0.8998 0.9524 0.8971 0.7738 0.9433 0.9030 0.5216
DWT-I 0.9177 0.6592 0.8927 0.9284 0.7924 0.7061 0.8639 0.7633 0.7826 0.9752 0.9296 0.7161
DWT-II 0.9187 0.6667 0.888 0.9226 0.7947 0.6629 0.7856 0.7559 0.7993 0.9614 0.9078 0.6743
Proposed-I 0.9216 0.7179 0.9127 0.9311 0.7966 0.9033 0.8966 0.7478 0.8098 0.9690 0.9100 0.8431
Proposed-II 0.9182 0.7222 0.9131 0.9247 0.8068 0.9056 0.8094 0.7544 0.8220 0.9721 0.9016 0.8179

SROCC FR PSNR 0.7993 0.1212 0.9316 0.9020 0.5875 0.8341 0.7098 0.6557 0.5234 0.8650 0.7660 0.7184
SSIM 0.8584 0.4361 0.9379 0.8793 0.5861 0.8765 0.9206 0.7027 0.6789 0.8358 0.8348 0.7925
MS-SSIM 0.8978 0.5985 0.9423 0.9282 0.7349 0.9225 0.9473 0.8172 0.8271 0.8010 0.8304 0.7719
VSNR 0.8318 0.4063 0.9049 0.8306 0.7295 0.8818 0.6542 0.7577 0.6244 0.8952 0.8348 0.7355
VIF 0.9022 0.5834 0.9325 0.9312 0.8037 0.9205 0.8196 0.8258 0.7782 0.9501 0.9330 0.8171
UQI 0.9077 0.7374 0.9255 0.9274 0.8329 0.9373 0.8509 0.8345 0.7984 0.9803 0.9615 0.8639
FI-PSNR [61] 0.8522 0.2568 0.9297 0.9394 0.6599 0.8644 0.9148 0.7437 0.6681 0.7088 0.6945 0.6456
MJ3DQA [51] 0.8199 0.2462 0.9327 0.9004 0.6446 0.8603 0.9427 0.8159 0.7583 0.8901 0.8497 0.8775

RR DNT [39] 0.9029 0.6597 0.9233 0.9389 0.8224 0.8592 0.9251 0.8859 0.8246 0.9138 0.8622 0.5729
RDCT [26] 0.8853 0.6217 0.9133 0.8692 0.6943 0.9042 0.7419 0.7291 0.7567 0.8822 0.8845 0.7698
CT [27] 0.8881 0.5025 0.9149 0.9290 0.7858 0.8922 0.9496 0.8897 0.7709 0.8929 0.8524 0.6123
DWT-I 0.8783 0.6093 0.8899 0.8867 0.6722 0.7072 0.8532 0.7243 0.6928 0.9059 0.9205 0.7083
DWT-II 0.8753 0.6198 0.8832 0.8838 0.6722 0.6576 0.7712 0.7164 0.7286 0.895 0.8922 0.6551
Proposed-I 0.8918 0.6088 0.9132 0.8954 0.6636 0.9034 0.8788 0.7373 0.7319 0.8785 0.8954 0.8093
Proposed-II 0.8866 0.6163 0.9124 0.8791 0.6964 0.9052 0.7939 0.7288 0.7492 0.8868 0.8886 0.7938

RMSE FR PSNR 7.9761 6.4927 5.8916 11.9144 8.7411 9.0104 9.4414 7.2909 8.5860 5.1877 7.2821 7.6936
SSIM 6.2617 5.7029 5.5775 5.7395 8.5734 7.8913 3.9343 6.7580 5.4725 7.5093 5.7364 6.7366
MS-SSIM 4.6426 4.8762 5.0822 4.7386 7.3159 6.0398 3.3132 5.3428 4.0621 8.3631 5.5908 6.8644
VSNR 5.8928 5.9589 6.8631 6.2635 7.6663 7.4643 7.7113 7.4034 6.6151 3.3265 5.6396 7.1083
VIF 4.4845 4.7822 6.0380 3.7836 6.3072 6.2197 6.0305 5.4424 4.1569 2.2314 3.7104 6.1099
UQI 4.0033 4.1432 6.2409 4.2087 5.9226 5.5143 5.6283 5.4093 4.4133 2.7495 3.1621 5.6845
FI-PSNR [61] 6.6623 6.2512 6.1612 8.3026 8.7545 7.9886 4.0781 6.2027 5.4572 9.3891 8.0362 8.6255
MJ3DQA [51] 6.5771 6.2554 5.1833 6.0463 9.1304 7.8164 2.9538 5.5931 4.8761 4.0949 5.2733 5.2841

RR DNT [39] 4.4889 4.7310 6.3973 3.8672 6.3629 8.3455 3.6752 4.4403 3.7077 3.3802 4.8095 9.4876
RDCT [26] 5.2058 4.5188 6.8307 5.6601 7.3330 7.0050 7.1243 6.4401 4.1501 3.4178 5.1904 6.7659
CT [27] 4.9133 5.4292 6.5350 4.0748 6.8571 7.1557 3.2670 4.3369 4.6433 4.6228 4.9448 9.6303
DWT-I 5.1449 4.9174 7.4954 5.3799 7.5856 11.611 5.3949 6.3417 4.5633 3.0791 4.2417 7.8783
DWT-II 5.1145 4.874 7.6512 5.5823 7.5432 12.277 6.6285 6.4265 4.4052 3.8313 4.8265 8.3353
Proposed-I 5.0268 4.5525 6.7969 5.2794 7.5119 7.0353 4.7441 6.5176 4.3004 3.4379 4.7700 6.0694
Proposed-II 5.1294 4.5229 6.7843 5.5105 7.3411 6.9542 6.2906 6.4439 4.1743 3.2635 4.9779 6.4939
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property with wavelet transform. Therefore, in order to further
demonstrate the effectiveness of the proposed RDCT, we compare
the performance of RDCT with discrete wavelet transform (DWT)
of the RR IQA for stereoscopic images. For fair performance com-
parison, only RDCT is replaced by DWT, while the other processes
of the proposed RR IQA remain unchanged. The experimental re-
sults are also illustrated in Table 1. It can be observed that the
proposed method using RDCT can significantly outperform the one
using DWT. Therefore, the RDCT is more suitable for GGD mod-
eling and CBD calculation, which can further benefit the perfor-
mance improvement, compared with DWT. Moreover, it can be
observed that RDCT performs better than DNT and CT. DNT and CT
are also designed by depicting the coefficient distribution in the
wavelet domain. Therefore, the RDCT coefficient distribution is
demonstrated to benefit more for the RR quality analysis than the
wavelet coefficient distribution.

Moreover, RDCT performs comparatively with the methods of
Proposed-I and Proposed-II on LIVE-Phase-I. However, the perfor-
mance of Proposed-I and Proposed-II on LIVE-Phase-II is much worse
than that on LIVE-Phase-I. The difference of the two databases is the
symmetric property of the distortions, which introduced different
distortion levels to the left and right view image, respectively. For
LIVE-Phase-I, the distortions introduced in left and right view image
are the same. No perceptual quality difference exists between the left
and right view images. The two view images will be perceived and
contributed equally to the final stereoscopic image quality percep-
tion. However, for the non-symmetric distortions, the left and right
view images present different distortions. The HVS perception of
such stereoscopic images will be significantly affected. There exist
complicated binocular perception properties of stereoscopic images,
such as the binocular masking effect and error tolerance effect be-
tween the two view images. As such, the simple averaging process of
the quality values of left and right view image cannot well depict the
real quality perception behavior of HVS. Therefore, we cannot make
sure a good performance of proposed RR IQA on LIVE-Phase-II. It is
also the main reason why the other RR and FR metrics perform quite
well on LIVE-Phase-I but poorly on LIVE-Phase-II. Therefore, we think
that the perceptual qualities of the left and right view image need to
be jointly analyzed to match the HVS perception behavior for the
non-symmetric distortions. In this paper, we proposed to employ the
difference image to depict the stereoscopic image quality. The dis-
tortion difference between left and right view image can be more
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clearly depicted, which will help more accurately analyze the de-
gradation level of the stereoscopic image. However, this joint con-
sideration is simple and straightforward. In the future, we will con-
sider more accurately modeling the relationship between the left and
right view image to derive better RR IQAs for stereoscopic images.

Besides, the performance of Proposed-I is slightly worse than
that of Proposed-II on LIVE-Phase-I, while better than that of Pro-
posed-II on LIVE-Phase-II. It means that the difference image is
capable to capture the introduced distortions, specifically for the
non-symmetric distortions. However, the performance of RDCT
demonstrates that the qualities of the left and right view images are
also helpful for SIQA. It arises an open question that how we can
joint consider the left, right view, and difference images to generate
a better RR SIQA. By considering the Proposed-I and Proposed-II, the
difference image is most important for quality analysis. The pro-
posed RR SIQA metric can thus be viewed as a scalable approach. If
only a few RR features are constrained, we only extract the RR
features from the difference image for quality analysis. If more RR
features are tolerant, we can extract all the RR features from the
images, including the left view, right view, and difference image for
quality analysis. Such process can help to improve the performances
of the stereoscopic images with symmetric distortions.
5. Conclusion

In this paper, we propose a novel RR-SIQA metric based on the
natural image statistics in RDCT domain. For the coefficient in the
RDCT subband of luminance image and difference image of the
stereoscopic images, the marginal distribution of the coefficients is
approximately GGD distributed. For each RDCT subband of the
luminance image and difference map of the stereoscopic images,
the model parameters and fitting error of the GGD distribution, MI
and ERD values are extracted as feature parameters. At the receiver
side, the 3D visual quality is predicted by measuring the distance
between the features. Experiments show that the proposed metric
has good consistency with 3D subjective perception of human.
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