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Online Temporally Consistent Indoor Depth Video
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Lu Sheng, Student Member, IEEE, King Ngi Ngan, Fellow, IEEE,
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Abstract— In this paper, we propose a new method to online
enhance the quality of a depth video based on the intermediary of
a so-called static structure of the captured scene. The static and
dynamic regions of the input depth frame are robustly separated
by a layer assignment procedure, in which the dynamic part
stays in the front while the static part fits and helps to update
this structure by a novel online variational generative model
with added spatial refinement. The dynamic content is enhanced
spatially while the static region is otherwise substituted by the
updated static structure so as to favor the long-range spatio-
temporal enhancement. The proposed method both performs
long-range temporal consistency on the static region and keeps
necessary depth variations in the dynamic content. Thus, it can
produce flicker-free and spatially optimized depth videos with
reduced motion blur and depth distortion. Our experimental
results reveal that the proposed method is effective in both
static and dynamic indoor scenes and is compatible with depth
videos captured by Kinect and time-of-flight camera. We also
demonstrate that excellent performance can be achieved by
the proposed method in comparison with the existing spatio-
temporal approaches. In addition, our enhanced depth videos
and static structures can act as effective cues to improve various
applications, including depth-aided background subtraction and
novel view synthesis, showing satisfactory results with few visual
artifacts.

Index Terms— Static structure, temporally consistent depth
video enhancement, online estimation, layer assignment.

I. INTRODUCTION

ACQUIRING high-quality and well-defined depth data
from real scenes has been a key problem in computer

vision with the prevalence of various 3D applications in
manufacturing and the entertainment industry, in uses that
include virtual reality, 3DTV and free-viewpoint TV, game
controller and robot vision. Recently a variety of systems
have been proposed to obtain depth information of a real
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scene, from passive stereo vision system to active sensors
like real-time structured-light depth sensors (e.g., Kinect),
Time-of-Flight (ToF) cameras or laser scanners. Unfortunately
most systems suffer from low quality of the acquired depth
maps, typically in terms of low resolution, noise and outliers,
and missing depth regions (or holes) without depth
measurements. These shortcomings obstruct the direct usage
of depth information of captured scenes for different
3D applications.

Even though spatial enhancement of depth maps has been
extensively studied in recent years, in area such as energy
minimization methods [1]–[3] or filtering methods based on
high-dimensional filtering [4]–[6], as well as other methods
like patch matching [7], [8] and so on, the temporal
inconsistency problem is nevertheless neglected since the
necessary temporal relationship between adjacent frames has
not been taken into consideration, thus severe flickering
artifacts become an urgent issue to tackle. However, due to
various complex and even unpredictable dynamic contents, as
well as outliers in a depth video, it is not easy to exactly locate
the regions where temporal consistency should be enforced.
Several existing methods [9], [10] employ the temporal texture
similarity to extract 2D motion information, but correct depth
variation cannot always be maintained thus causing severe
motion blur. In addition, typical treatments always apply
temporal consistency over a short-length sequence (usually
2∼3 frames), which is otherwise insufficient to generate stable
and temporally consistent results over hundreds of frames.
Furthermore, over-smoothing around the boundaries between
dynamic objects and static scenes should be eliminated to
produce high quality and well-defined depth video.

In this paper, we present an alternative method to enhance
a depth video both spatially and temporally by addressing
two aspects of these problems: 1) efficiently and effectively
enforcing the temporal consistency where it is necessary,
and 2) enabling online processing. A common fact is that
regions in one frame with various motion patterns (e.g., static,
slowly/fast moving and etc.) belong to different objects or
structures and require temporal consistencies with different
levels. For instance, the static region needs a long-range
temporal enhancement to ensure that it is static over a long
duration, while dynamic regions with slow/rapid motions
expect short-term or no temporal consistency. However, it is
difficult to accurately enhance arbitrary and complex dynamic
contents in the temporal domain without apparent motion blurs
or depth distortions. Thus we propose an intuitive compromise
to cancel the temporal enhancement in the dynamic region
as long as its spatial enhancement is sufficiently satisfactory,
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in which the necessary depth variation will not be distorted
while the temporal artifacts are not as easy as those in the
static region to be perceived. Therefore, we aim at strengthen-
ing long-range temporal consistency around the static region
whilst maintaining necessary depth variation in the dynamic
content. To accurately separate the static and dynamic regions,
we online track and incrementally refine a probabilistic model
called static structure, which acts as a medium to indicate the
region that is static in the current frame. By online fusing
the static region of the current frame into the static structure
with an efficient variational fusion scheme, this structure has
implicitly gathered all the temporal data at and before the
current frame that belong to it. Substituting the static region
by the updated static structure, it is thus temporally consistent
and stable in a long range accordingly. Moreover, it is also
suitable for online processing the streaming depth videos
(3D teleconference, 3DTV and etc.) without the necessity
of storing amounts of adjacent frames, thus is memory and
computationally efficient.

Overall, the temporally consistent depth video enhancement
is performed at two layers: 1) the static region of the input
frame revealing the static structure is enhanced spatially
and temporally by an online fusion technique combining
it with the static structure, and 2) the dynamic content is
enhanced spatially without temporal smoothness. In addition
to the advantages stated aforementioned, enhancing the static
and dynamic regions separately also effectively eliminates
artifacts that frequently occur in conventional depth video
enhancements, like the blurring artifacts or the unreliable
depth propagation, across the boundaries between dynamic
objects and static objects/background. Furthermore, when the
depth video contains severe holes, the static structure can fill
static holes convincingly and leave the rest holes filled by
the dynamic content so as to avoid the inpainting artifacts.
Since fully dynamic depth videos usually have weak temporal
consistency thus our proposed algorithm is relegated to a spa-
tial enhancement approach, which does not force the enhanced
depth video to bear unnecessary temporal smoothness.

Based on the conference version [11] of this work, more
technical details and theoretic analyses about the formulation
of the static structure, effective layer assignment as well
as a sound spatial enhancement of the static structure are
discussed in this paper. Furthermore, a complete framework
about temporally consistent depth video enhancement,
a thorough experimental evaluation as well as discussions
about its applications and limitations are also provided.

The rest of the paper is organized as follows. Section II
reviews existing works in spatial and temporal depth
video enhancement, as well as approaches on static scene
reconstruction, which is indeed related to our formulation
of the static structure. Section III describes our proposed
framework of online estimation of the static structure and
the approach regarding temporally consistent depth video
enhancement. Experimental results and discussions of our
method can be found in Section IV. Discussions about
its limitations and applications are presented in Section V.
Concluding remarks and discussions on future work are given
in Section VI.

II. RELATED WORK

A. Spatial Enhancement

On the aspect of global optimization, the pioneering work
was done by Diebel and Thrun [1] utilizing the pixel-wise
MRF model with the guidance of texture to denoise the
depth map. Several augmented models were also proposed
to handle inpainting and super-resolution [2], [3], [12]–[14],
with special choices of the data and smoothness terms as well
as additional regularization terms (TV-�1 norm [14], etc.),
enabling a reasonable performance even without texture
information [14]. But the high computational cost of these
methods hinders real-time applications. Another choice is
high-dimensional filtering. One variant is high-dimensional
average filtering [4]–[6], [9], [15], whose weights are defined
by the spatial nearness and feature proximity. The feature
can be texture/depth intensities or patches [6], [16] and other
user-defined ones. The main problems here are edge blurring
and texture mapping. Another variant uses the median of the
depth candidate histogram instead [17], [18], producing more
robust results but also suffering from quantization error and
slower speed. Weighted mode filtering [10], [19] otherwise
looks for the histogram’s global mode, and has similar
artifacts. In addition, spatial enhancement, especially
super-resolution and inpainting, can be performed by
patch matching throughout the depth map, which achieved
satisfactory visual results [7], [8] but with high computational
complexity.

B. Temporal Enhancement

Existing temporal enhancement approaches usually employ
the guidance of temporal texture consistency, especially by
fusing the previous depth frame onto the current one according
to the motion vectors estimated between the corresponding
adjacent color frames [9], [10]. However, the neglect of
additional motion vectors in z-axis reduces the warping
accuracy. 3D motion estimation is typically adopted to solve
the problem in [20]–[22]. Following them, the temporal fusion
between current and warped previous frames are usually based
on weighted average or weighted median filters, and energy
minimization as well [9], [10], [23], [24]. Therefore the
performance, on one hand, relies heavily on the accuracy of
motion estimation, which is difficult to be satisfied. On the
other hand, the temporal continuity is only preserved among
few adjacent frames, which does not meet the demand of
constraining long-range temporal consistency. To fix such an
issue, Lang et al. [25] proposed to offline filter the paths
which are the vectors of all the pixels that correspond to the
motion of one scene point over time. It provides a practical and
remarkable solution to enhance a depth video with long-range
temporal consistency both effectively and efficiently. Our work
is related to, but has essential differences from the layer
denoising and completion proposed by Shen and Cheung [26],
which offline trained background layer models beforehand to
label the foreground and background of the input depth frame,
and no temporal consistency was strengthened. Conversely, our
method estimates the static structure in an online fashion and
there is no need to have a series of depth frames capturing
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purely static scenes. Moreover, the temporal consistency is
maintained where it is required. That aside, only the spatial
enhancement is taken into consideration as presented in [26].

C. Static Scene Reconstruction

The static structure estimation is related to the static scene
reconstruction by fusing a series of depth maps. A majority of
these works are offline methods [27]–[31] which fuse a set of
depth maps to output a single geometric structure, while the
rest are online approaches that receive depth measurements
sequentially and incrementally estimate the current geometric
structure. Offline methods always extract a batch of depth
frames together so that the complexity becomes unbearable
when the number of frames is large. One of the offline
approaches by Zitnick et al. [31] employed the consistency
of both the multiple view colors and disparities, which is
analogous to our constraint of temporal consistency, to reg-
ularize the disparity space distribution so as to bring about
the refined disparity map. Most online methods quantize the
3D space into grids [32]–[35] to reduce the memory and
computational cost. Thus they are always deficient in sub-grid
accuracy, but one additional approach exploits a weighted sum
of truncated signed distance function (TSDF) [33], [34] over
depth measurements. However it is sensitive to outliers and
thus not robust to estimate a static scene containing dynamic
objects and heavy outliers. To robustly estimate the static scene
captured by noisy and cluttered data, some researchers have
proposed a variety of measurement models with parameters
describing the nature of the noise and outliers. Several
methods [32], [36] need parameters learned from ground truth
data or those tuned empirically. One successful model that
requires fewer manually tuned parameters is the generative
model, which has the ability to derive the model of
the noise and clutter characteristics from the input data.
Vogiatzis and Hernández [37] proposed a generative Gaussian
plus uniform model that simultaneously infers the depth and
outlier ratio per pixel using an efficient online variational
scheme, which meets the clutter characteristics of depth maps
generated by stereo. Our static structure estimation is similar
as an online generative model considering both noise and
outliers as well as a special treatment of the dynamic scenes.

III. APPROACH

The static structure can be regarded as an intrinsic depth
structure (and texture structure when the registered color video
is available) underneath the captured scene,1 which always lies
on or behind the surface of the input depth frame. As shown
in Figure 1, any moving or foreground object stays in front
of the static structure whereas the static objects or visible
static background are usually on it, i.e., the depth value of
the static structure at one pixel is always deeper than that of
a dynamic object at the same place. But it is different from
the “background” of a scene, because we focus more on the

1Within the scope of this paper, we assume the target depth video is
captured by a static depth sensor hence the captured scene is static except
the dynamic objects. Although the enhancement of depth video captured by
moving cameras is a more general topic, we will refer it to our future work.

Fig. 1. The illustration of the static structure in comparison with the input
depth frame. (a) shows the input depth frame (in blue curve) lies on the
captured scene, (b) represents the static structure (in black curve). The depth
sensor is above the captured scene. The static structure includes the static
objects as well as the static background.

Fig. 2. Flowchart of the overall framework of the proposed method on the
estimation of static structure and depth video enhancement. Please refer to
the text for the detailed description.

“static” geometric structure rather than the distance from the
camera. Since the temporal consistency around static or slowly
moving regions are required to be enforced, the “static” nature
is more useful than the idea of “background”.

To handle artifacts like noise, outliers and holes as well
as complex dynamic contents in the input depth frame, we
propose a probabilistic generative mixture model to describe
the static structure as well as the characteristics of noise
and outliers (Section III-A). We also define an efficient layer
assignment leveraging dense conditional random fields to
accurately label input depth frame into dynamic and static
regions (Section III-D). For the sake of memory and calcu-
lation efficiency, as well as the ability to process streaming
data, the static structure is online updated (Section III-E) via
a variational approximation (Section III-B) governed by a
first order Markov chain, which effectively fuses the labeled
static region in the current depth frame with the previous
estimated structure. It is further refined spatially to fill holes
and regularize the structure (Section III-E). The updated static
structure in turn substitutes the static region of the input
depth frame, resulting in a temporally consistent depth video
enhancement (Section III-F). The framework of the online
static structure update scheme and temporally consistent depth
video enhancement is referred to in the flowchart in Figure 2.
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Fig. 3. Illustration of three states of input depth measurements with respect
to the static structure on one line-of-sight. The current static structure refers
to the blue stick in the middle. Decision boundaries are marked as blue dot
lines. The depth measurement d is categorized into state-I when it is placed
around the static structure. When d is in front of this structure, we denote it
as state-F. While it is far behind the static structure, the state is state-B.

Notation: The data sequence is denoted as S and formed
by a depth video D = {Dt |t = 1, 2, . . . , T } as S = D, or
as a pair of aligned depth plus color videos as S = {D,I},
where I = {It |t = 1, 2, . . . , T }. The data in each frame is
St = Dt or {Dt , It }. The pixel location is defined as x, and its
depth value at t is dt

x and its corresponding color is It
x. The

parameter set for the probabilistic model at each frame t is
denoted as PS,t , and PS,t

x is defined for each pixel x, whose
elements are defined in detail in the following sections.

A. A Probabilistic Generative Mixture Model

At the very beginning, we only consider the case where
S = D. Denote the sequentially incoming depth samples
of pixel x on and before time t as forming a set
Dt

x = {dτx |τ = 1, 2, . . . , t}. The depth value of the static
structure in the pixel x is Zx, whose noise is conveniently
governed by a Gaussian distribution. We also propose
two individual outlier distributions to describe the outliers
before and after the static structure respectively. Hence, they
do not only describe the depth distribution but also provide
evidence to indicate the state to which the current depth sample
belongs.

1) State Description: The three states � = {I, F, B} are
illustrated in Figure 3 and listed as follows.

a) State-I (fitting the static structure): If dt
x belongs to

the static structure, we assume that it follows a Gaussian
distribution centered at Zx as N (

dt
x|Zx, ξ

2
x
)
, where ξx denotes

the noise standard deviation, and is predefined based on the
systematic error of the depth sensor. For instance, the noise
variance of Kinect is actually related to the depth so it is
appropriate to set ξx depth-dependently.

b) State-F (forward outliers): On the other hand, the
depth measurements from moving objects or outliers in front,
follow a clutter distribution like U f (dt

x|Zx) = U f · 1[dt
x<Zx],

where 1[·] is an indicator function that equals to 1 when the
input argument is true, and 0 otherwise. This state is activated
when dt

x is smaller than Zx, and switched off if it is larger
than Zx. It can be inferred from this state that not only are
the outliers in front, but also the dynamic objects are at the
given location.

c) State-B (backward outliers): Furthermore, it is
possible that the input depth measurements are outliers
lying behind the current estimation of the static structure.
Another similar indicator distribution is introduced as
Ub

(
dt

x|Zx
) = Ub · 1[dt

x>Zx]. It can naturally represent outliers

that have larger depth values than a given structure.
Meanwhile, it provides a cue to infer the risk whether current
static structure estimation is incorrect.

An additional hidden variable mx = [
mI

x,mF
x ,m B

x
]�

is
introduced as the state indicator to represent these states,
where mk

x ∈ {0, 1}, k ∈ � . In this case, only one specific
state mk

x = 1 and the rest are 0s, thus
∑

k∈� mk
x = 1.

2) A Generative Model: The reason to introduce the
generative model is that it can simulate the static structure as
well as its noise and outliers, thus in case there are no observed
measurements at the current frame (e.g., depth holes), we can
still give a reasonable static structure. Moreover, given suitable
parametric forms of these distributions, the generative model
can be online estimated and refined by updating the parameters
with sequentially incoming depth samples.

a) Likelihood: Appending the state indicator mx, the
likelihood of dt

x conditioned on mx and the static structure
Zx is a product of the distributions of the three states as

p(dt
x|mx, Zx) = N (dt

x|Zx, ξ
2
x )

m I
xU f

(
dt

x|Zx
)mF

x Ub(dt
x|Zx)

m B
x .

It equals to one required state distribution by triggering off
this state indicator mk

x = 1, k ∈ � .
b) Prior: Let the prior for Zx also be a Gaussian

distribution with the mean μx and the standard deviation σx,
written as p(Zx) = N (

Zx|μx, σ
2
x
)
. σx is different from ξx

since it represents the possible range of the static structure
rather than its noise level. The prior of the chance to activate
one state is a categorical distribution Cat(mx|ωx) [38], where
ωx = [

ωI
x , ω

F
x , ω

B
x
]�

and
∑

k∈� ωk
x = 1, ωk

x ∈ (0, 1). This
parameter reveals the opportunities to induce these states in
advance of the input depth samples. And ωx is further modeled
by a Dirichlet distribution p(ωx) = Dir (ωx|αx), where
αx = [α I

x , α
F
x , α

B
x ]�, αk

x ∈ R
+ and corresponds to ωk

x .
c) Posterior: Two posteriors are in fact essential for the

static structure estimation. One is p(Zx,ωx|Dt
x), which jointly

presents the depth distribution of the static structure and the
popularity densities of these three states given the current and
all previous depth frames. The other is the posterior of the state
indicator p(mx|Dt

x), which represents the possible states at the
current frame. Based on the estimated posteriors, we can eval-
uate the most probable depth values of the static structure by
calculating the expectation of p(Zx|Dt

x) as Ep(Zx|Dt
x)

[Zx]. The
reliability of current estimation refers to Ep(ωx|Dt

x)

[
ωI

x
]
, which

means that the larger the portion of input depth samples that
agree with the model, the more reliable the estimation is.
The most possible state that dt

x should occupy is calculated
straightforwardly from arg maxmx p(mx|Dt

x).

B. Variational Approximation

However it is almost unfeasible to solve these posteriors
analytically because it is not independent between Zx and ωx
for p(Zx,ωx|Dt

x), and p(Zx|Dt
x) and p(ωx|Dt

x) do not
exactly follow Gaussian and Dirichlet distributions any more.
Therefore, variational approximation [38] of the posteriors
is introduced to provide sufficiently accurate approximated
posteriors efficiently. It minimizes the Kullback-Leibler
divergence between the approximated and the original
posteriors. The variationally approximated posteriors are
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Fig. 4. Variational approximation of the parameter set of the static structure for a 1D depth sequence. The number of frames is T = 500. (a) The expected
depth sequence of the static structure versus the raw depth sequence, where the ideal Zx = 50. (b) The confidence interval of Zt

x, the interval is centered μt
x

and between μt
x ±2σ t

x with 95% confidence. (c) The evolution of the portions (defined by the expected value of ωx at frame t , denoted by [ωI,t
x , ωF,t

x , ωB,t
x ])

of the three states. The ideal portions are ωx = [0.89, 0.1, 0.01]. (d) The estimated distribution qT (dx|PD,T
x ) versus the normalized histogram estimated by

DT
x when T = 500. The estimated depth of the static structure goes to the ideal value only with a few samples. Its confidence interval shrinks rapidly, which

means the uncertainty is reduced very fast. The portion of each state is evolved with the raw depth sequence, and they match their ideal value with enough
depth samples. When T = 500, the estimated data distribution fits the data histogram compactly.

required to own the same parametric forms as the priors
thus they also produce analytical solutions to approximate
Ep(Zx|Dt

x)
[Zx] and Ep(ωx|Dt

x)

[
ωI

x
]
. The approximation starts

from factorizing the posterior p(Zx,ωx|Dt
x) into the product of

independent Gaussian distribution qt (Zx) = N (
Zx|μt

x, (σ
t
x)

2
)

and Dirichlet distribution qt (ωx) = Dir(ωx|αt
x) as

qt (Zx,ωx) = qt(Zx)q
t (ωx) ∼ p(Zx,ωx|Dt

x). (1)

Not only that, but the exact estimation also depends on
all the previous depth samples Dt

x. Too many frames will
bring about unbearable complexity and memory requirement.
We admit a first order Markov chain into our framework so as
to favor the online estimation. It means that we can estimate
the current posterior just based on the current likelihood and
the posterior of the last frame, therefore it is memory- and
computationally efficient. We reformulate the posterior as a
sequential parameter estimation problem

qt (Zx,ωx) ∼ p
(
Zx,ωx|Dt

x
)

∼ p(dt
x|Zx,ωx)q

t−1 (Zx,ωx)/q
t(dt

x)

= Q(Zx,ωx|dt
x), (2)

where the parameters of the left-hand side are estimated
by matching moments between the distributions of left- and
right-hand sides [38]. This only considers the current data
samples and the previous estimated parameters to approximate
the current parameters. We define the parameter set estimated
at t − 1 is PD,t−1

x = {μt−1
x , σ t−1

x ,αt−1
x }, while the required

parameter set is PD,t
x . By matching the first and the second

moments between Q(Zx|dt
x) and qt (Zx) as well as those

between Q(ωx|dt
x) and qt(ωx|dt

x) [39], we can obtain a
closed-form solution for any parameter in PD,t

x . Please refer
to the supplementary materials for their detailed derivations.

Hence, recall the problem addressed in Section III-A,
the approximated posterior with respect to the state
indicator mx is qt (mk

x = 1|dt
x), k ∈ � , which is a suitable

approximation of p(mx|Dt
x) and also has a closed-form

solution.
Apart from that, the most probable depth value of the static

structure at pixel x and time t is

Zt
x = Ep(Zx|Dt

x)
[Zx] � μt

x, (3)

and the reliability of current estimation of the static structure
is the expectation of ωI

x as

r t
x = Ep(ωx|Dt

x)

[
ωI

x
] � α I,t

x /
∑

k∈�
αk,t

x . (4)

As shown in Figure 4, an example of the variational
approximation of the parameter set for a 1D depth sequence
illustrates the potential of the proposed method to capture the
nature of the input depth sequence.

C. Improvement With Color Video

The above discussion only considers the estimation and
update of the static structure with the depth video. A more
complete treatment is together with the registered color video,
in which case an improved probabilistic generative model can
be formulated as follows.

1) Prior: We introduce another prior over Cx, the color
value of the static structure at x as p(Cx) = N (Cx|Ux,�x)
with two parameters: the mean Ux and the variance �x.

2) Likelihood: The likelihood of input depth and color
samples dt

x and It
x conditioned on mx given Zx and Cx is

p(dt
x, It

x|mx, Zx,Cx) = U f
(
dt

x|Zx
)mF

x Ub
(
dt

x|Zx
)m B

x

·
[
N (

dt
x|Zx, ξ

2
x
)N (

It
x|Cx,�x

)]m I
x
,

(5)

where �x denotes the variance matrix for the color noise.
A step further we have the likelihood of dt

x and It
x conditioned

on Zx and Cx accordingly. This formulation improves the
inference since the input depth sample will belong to the static
structure only when both the depth and color samples agree
with the previous model. Therefore, the risk of false estimation
is reduced.

3) Posterior and Variational Approximation: In a similar
fashion in Section III-B, we can derive the approximated
posterior when color video exists. The parameter set
PS,t

x = {
μt

x, σ
t
x,Ut

x,�
t
x,α

t
x
}
, S = {D,I} can also be

estimated online and analytically. Furthermore, the most
probable depth Zt

x and color Ct
x of the static structure are

achieved based on μt
x and Ut

x. The approximate posteriors
qt(mk

x|dt
x, It

x), k ∈ � are also derived accordingly.
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Fig. 5. One toy example illustrates the layer assignment. The cyan dot line
indicates the current estimated depth structure of the static structure, and the
red solid line is from the input depth frame. If color frames are available,
they provide additional constraints to regularize the assignment, where the
upper line corresponds to the current estimated texture structure of the static
structure, and the lower one refers to the input color frame.

D. Layer Assignment

In this section, we would like to find the static region of the
input depth frame so as to robustly update the model of the
static structure and find the dynamic region. Specifically, we
label the input depth frame in three layers L = {liss , ldyn, locc}:

• liss : agree with estimated static structure;
• ldyn: belong to dynamic objects in its front; or
• locc: refer to the once occluded structure behind it.

The additional label locc is essential because the regions
belonging to the once occluded structure do not fit the current
model, but they reveal the hidden structure behind the cur-
rent estimated static structure. It also points out that current
estimation produces bias at these regions, in which the depth
structure from the input depth frame Dt would be a more
reasonable substitution to rectify the previous estimation.

One toy example is shown in Figure 5, where Dt provides
a different layout from the current static structure. Intuitively,
locc occurs when the input depth frame provides larger depth
values and exposes the hidden static structure. ldyn , on the
contrary, encourages smaller depth values. Furthermore, the
failure of inference due to depth holes, noise and outliers can
be eliminated by the introduction of texture information, which
also provides additional cues to regularize their spatial layout.

To improve the expressive power to label complex structures
that is employed frequently in our case, we exploit a fully con-
nected conditional random field (fully-connected CRF) [40]
to strengthen the spatial long-range relationship. Assume a
random field L = {lx ∈ L | ∀x} conditioned on the input
data St and the previous model parameter set M = PS,t−1.
The Gibbs energy of a label assignment L is

E(L|St ,M) =
∑

x

ψu
(
lx|St ,M) + 1

2

∑

x �=y

ψp
(
lx, ly|St ,M)

,

(6)

where x and y are pixel locations. ψu(·) and ψp(·, ·) indicate
the unary and pairwise potentials. St = Dt or {Dt , It }.

1) Definition of Unary and Pairwise Potentials: We define
the unary potentials and pairwise potentials as follows:

a) Unary potentials: The unary potentials are negative
logarithms of the approximated posteriors qt(mx|St

x),
indicating the chance that the current depth samples should
follow the previous estimation (i.e., liss requires mI

x = 1), or
in its front (i.e., ldyn needs mF

x = 1) or at its back (i.e., locc

refers to m B
x = 1). In detail, we have ψu

(
lx = lk |St ,M) =

− ln qt (mk
x = 1|St

x), and lk and mk
x follow the correspondences

listed above.
b) Pairwise potentials: The pairwise potential between

pixels x and y is a weighted mixture of Gaussian kernels as

ψp(lx, ly|St
x,Mx) = 1[lx �=ly]

·
{
ws exp

( − τα‖x − y‖2/2
)

+wr exp
(
−‖
t fx −
t fy‖2

�β
/2 − τγ ‖x − y‖2/2

)}
.

(7)

We define 
t fx = f I,t−1
x − f t

x to measure the difference
between the features of the static structure and those of the
input data. When St = Dt , f t

x and f I,t−1
x are the normalized

dt
x and Zt−1

x , by a whitening process of the overall variance
(ξ̃ t

x)
2 = (σ t−1

x )2 + ξ2
x . If St = {Dt , It }, let f t

x and f I,t−1
x

be the concatenations of the normalized vectors
[
dt

x; It
x
]

and[
Zt−1

x ; Ct−1
x

]
. The color features are normalized with the

variance �̃
t
x = �x + �t−1

x .
The indicator function 1[lx �=ly] lets the pairwise potentials

be Potts model. It encourages a penalty for nearby pixels that
are assigned different labels but they have similar features.
The first kernel is a smoothness kernel that removes small
isolated regions and is adjusted by τα. The second kernel is a
range kernel trying to force nearby pixels with similar depth
and/or color variation to share the same label, with a given
parameter τγ to set the degree of nearness. ‖
t fx −
t fy‖2

�β
is the Mahalanobis distance between 
t fx and 
t fy, where
the covariance matrix �β encodes the feature proximity. The
weight of the range kernel is set as wr . If we only have the
range kernel, the result tends to be noisy, while if we only have
the smooth kernel, the structure cannot be well regularized.

2) Inference: We exploit an efficient mean field inference
method for fully-connected CRF when the pairwise potentials
are Gaussian [40]. It turns out to be an iterative estimation
process convolving several runs of real-time high dimensional
filtering characterized by the pairwise potentials (7).

E. Online Static Structure Update Scheme

The online static structure updating scheme is actually a
sequential variational parameter estimation problem with a
layer assignment to exclude the dynamic objects and include
the once occluded static structure. A spatial enhancement is
appended to regularize the spatial layout of the structure. The
sketch of the algorithm is given in Algorithm 1.

An initialization of the parameter set PS is necessary.
We set the initial μ0

x = d0
x , where d0

x ∈ D0 from the
first frame of the depth video. Similarly, let U0

x = I0
x,

where I0
x ∈ I0 from the color video. The noise parame-

ters ξx and �x are user-specified constants which should
be large enough to enable sufficient variance of input data.
σ 0

x and �0
x will be initialized as large values as well. The

parameters of ωx are also set up with given constants α0
x.

A convenient setup is α I,0
x = αF,0

x = αB,0
x . The user-

given initialization parameter set is PS
init = {ξx, σ

0
x ,α

0
x | ∀x}

when S = D and PS
init = {ξx, σ

0
x ,�x,�

0
x,α

0
x | ∀x} when
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Algorithm 1 Online Static Structure Update Scheme

S = {D,I}. In addition, the layer assignment is not applied
in the initialization step.

At the t th frame, the layer assignment is applied at first
based on the previous parameter set PS,t−1 and the input
data S t . The region in which lx = liss will perform the
variational parameter estimation to obtain a renewed PS,t

x .
If lx = ldyn , it belongs to a dynamic object so that
PS,t

x = PS,t−1
x . But on the other hand, if lx = locc, the

parameter set of this pixel is re-initialized as in the initializa-
tion step, but μt

x = dt
x, Ut

x = It
x. Furthermore, it is a common

phenomenon that the input depth frames contain holes without
depth measurements. In this case, μt

x and λt
x will not be

updated in these special regions.
The spatial enhancement, including hole filling, smoothing

and regularization, is necessary to generate a spatially refined
static structure. It is performed after the parameter estimation
in each frame, where we have obtained the most probable
depth map Zt (Zt

x ∈ Zt ). A variational inpainting method
incorporating a TV-Huber norm and a data term by
Mahalanobis distance with the variance (ξ̃ t

x)
2 is employed

for spatial enhancement, which is iteratively solved by a
primal-dual approach [14]. Since the solver requires hundreds
of runs to converge, a trade-off between speed and accuracy
is adopted by fixing the number of iterations and borrowing
the spatially enhanced result in the last frame Z̃t−1 as the
initialization. To reduce error propagation, unreliable pixels in
the input depth map Zt are deleted according to the reliability
check r t

x > 0.5 (c.f., equation (4)). Given the most probable
color image of the current static structure Ct , the spatial
enhancement in Zt can absorb the texture information to guide
the propagation of the local structures. In the end, the enhanced
depth map Z̃ t

x will substitute μt
x in PS,t

x .

F. Temporally Consistent Depth Video Enhancement

Apart from spatial enhancement, it is preferred to employ
temporal enhancement to produce a flicker-free depth video.
To enable long-range temporal consistency and allow online
processing, we exploit the static structure of the captured

scene as a medium to find the region in the input frame
exhibiting long-range temporal connection. The static region
is enhanced by fusing the input depth measurements with
the static structure according to the online static structure
update scheme in Section III-E. Thus the static regions are
well-preserved and incrementally refined over time. The idea
behind this is that we restrict the temporal consistency to be
enforced only around static region or slowly moving objects.
This assumption is somewhat restrictive but is still suitable to
process normal depth videos. One additional advantage of the
proposed method is that it can prevent bleeding artifacts that
propagate depth values from moving objects into the static
background as long as the layer assignment is robust.

Given the resulting layer assignment of the current frame,
the static region is where lx ∈ {liss , locc}, including the regions
referring to the static structure and those belonging to the once
occluded static structure. They both expose the current visible
static structure of the captured scene, thus shall be enhanced
separately from the dynamic objects. The enhanced version is
obtained by substituting it with its counterpart in the static
structure, which has already been updated in the temporal
domain and enhanced in the spatial domain (see Section III-E).
The dynamic region can be enhanced by various approaches
explored in the literature, while in this paper we exploit a
conventional joint bilateral filter, both to fill holes and to
perform edge-preserving filtering in the dynamic region.

The proposed method is both memory- and computationally
efficient. The memory requested for the proposed method
only goes to storing the parameter set for each pixel, thus
is efficient to process streaming videos or long sequences of
high quality. Excepting the cost of the spatial enhancement,
the complexity for temporal enhancement hinges on that of
the online static structure update scheme, in which all the
required parameters have analytical solutions whilst the layer
assignment is efficient thanks to the constant-time implemen-
tations in solving the fully-connected CRF model. Provided
with an efficient spatial enhancement approach, for example,
the domain transform filter [41] or the proposed one with the
help of multi-thread techniques or GPGPUs [42], the entire
temporally consistent depth video enhancement procedure can
be achieved in real-time.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we present our experiments on synthetic and
real data to demonstrate the effectiveness and robustness of our
static structure estimation and depth video enhancement.

Section IV-A numerically evaluates the performance of our
method for static structure estimation using synthetic depth
videos2 generated from the Middlebury dataset [43], [44].
Our method is not sensitive to the user-given parameters,
and outperforms various methods about static scene estimation
with running time comparable to temporal median filtering.

In Section IV-B, we evaluate the performance on real data
captured by Kinect and ToF cameras. Both static and dynamic
indoor scenes are taken into consideration. Apart from

2The depth of one pixel in the depth frame is proportional to the reciprocal
of the disparity at the same place in the corresponding disparity frame.
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Fig. 6. Sample frames of the input depth video with two types of noise and
outliers. (a) is the sample color frame, (b) and (c) are the contaminated depth
frames with σn = 2 and ωn = 10−2. (b) is type-I but (c) is type-II. Type-II
error is worse than type-I error with the same parameters.

the estimation of static structure, we also evaluate the
performance of the static scene reconstruction and most impor-
tantly, the temporally consistent depth video enhancement
in Section IV-C.

Initial parameters are simply set as α0
x = [1, 1, 1]�, σ 0

x is
the 10% of the depth range of the input scene. And initial
parameter �0

x is a diagonal matrix with each diagonal entity
the square of 10% of the color range.

A. Numerical Evaluation of the Static Structure
Estimation by Synthesized Data

We used two types of noise and outliers, which are
illustrated in Figure 6, to contaminate the depth video so
that we could evaluate the performance of our method with
respect to different kinds of errors from different types of
depth sensors.

Type-I: We contaminated the depth map via
p(dx|Zx) = (1 −ωn)N

(
dx|Zx, σ

2
n

) +ωnU (dx), where U(dx)
is the reciprocal of the depth range. It is a general model of
noise and outliers.

Type-II: We damaged the disparity map by

p(ddisp
x |Zdisp

x ) = (1 − ωn)N (ddisp
x |Zdisp

x , σ 2
n ) + ωnU(ddisp

x )
and rounded it. The disparity map was transformed into the
depth map. U(ddisp

x ) was the reciprocal of the disparity range.
It mimicked the outliers in common depth videos captured
by stereo or Kinect.

1) Analysis of User-Given Parameters: We first evaluated
the user-given parameters for the outlier parameters U f , Ub

and the noise standard deviation ξx. In case-I, we set ξx = σ
as a constant throughout the pixel domain. For case-II,
the choice of ξx should be suitable to dispose of the
non-uniform quantization error due to disparity-depth

conversion as ξx = σ
d2

x
f B .3 Meanwhile, we set U f = Ub = u.

The experiments were evaluated by the RMSE score with
varying u and σ under different levels of noise (σd ) and
outliers (ωd ). The results are shown in Figure 7, where
the test video had 100 frames. We set σ ∈ [0, 20] and
u ∈ [10−5, 10−1]. Notice that the tested scene was static thus
there was NO need to perform layer assignment. The spatial
enhancement was also skipped.

3f is the focal length and B is the baseline, both of which are provided
in the Middlebury dataset. The conversion relationship is derived in the
supplementary materials.

Fig. 7. RMSE maps with varying u and σ under different noise and
outlier parameter pairs (ωn, σn). (a)-(c) were contaminated by type-I, while
(d)-(e) were contaminated by type-II. Best viewed in color.

Fig. 8. Performance comparisons between the constant and depth-dependent
ξx under different type-II noise and outlier parameter pairs (ωn, σn). The red
curve is by depth-dependent ξx , and the blue curve is by constant ξx . Each
curve is obtained at its own optimal parameter pair (u, σ ), as shown in the
legends. (a) (10−1, 4). (b) (10−2, 2). (c) (10−3, 1). Best viewed in color.

The proposed method achieves satisfactory performances
and is insensitive to ξx, but a slightly bigger ξx turns out to be
more robust. On the other hand, we obtain low RMSE scores
when u is around or smaller than the reciprocal of the depth
range (≤ 10−3 in the test depth videos). Although smaller
u can still achieve good performance, its range tends to be
narrower when noise level is increased. In practice, setting the
U f and Ub to be the reciprocal of the depth range is sufficient
and convenient, since it actually means that the outliers may
uniformly occur inside the depth range.

In addition, the depth-dependent noise parameter ξx per-
forms superior to the constant ξx in dealing with type-II
error. A shown in Figure 8, comparisons of the results by
optimal parameter pairs (u, σ ) of both cases4 reveal that a
larger constant ξx is required to catch severer noise presented
at larger depth values due to the property of type-II error.
In comparison with the depth-dependent noise, constant ξx
might be sufficient for slightly noisy depth videos as shown
in Figure 8(c), but lacks capability to catch severe noise, as
shown in Figure 8(a) and (b).

2) Comparison of Synthetic Static Scenes: As some online
3D scene reconstruction methods can also successfully
perform the static scene estimation in an online fashion,
we numerically compared several state-of-the-art candidates,
i.e., the truncated signed distance function (TSDF) [33], [34]

4The optimal results were obtained by exhaustive search of 400 uniformly-
sampled parameter pairs in the range σ ∈ [0, 20] and u ∈ [10−5, 10−1].
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Fig. 9. Comparison with other methods on static structure estimation of
the synthetic static scenes. Three levels of noise and outlier parameter pairs
(ωn, σn ) were tested. (a), (c) and (e) were of type-I. (b), (d) and (f) were of
type-II. The x-axis marks the frame order, and y-axis is the RMSE score.

in KinectFusion, the temporal median filter (t-MF) and the
generative model for depth fusion (g-DF) [35], with our
method. The grid number per pixel was set as 100, for
both TSDF and g-DF. The temporal window size of t-MF
was 5 in our experiments. As shown in Figure 9, as with
all other methods, our methods tend to decrease the RMSE
progressively with more frames included. However, our
method is robust to the noise and outliers for both the
type-I and type-II errors, and has a faster rate, i.e., uses a
smaller number of frames to converge and achieve a stable
performance. The severer the noise is, the more superior the
proposed method can be. Because TSDF is always slower to
converge and g-DF suffers from quantization errors, they can-
not usually achieve the same performance our method was able
to achieve. In fact with a very large window size, t-MF might
obtain RMSE scores lower even than those of our method,
but would require more memory and will tend to be slower.
Furthermore, t-MF does not provide confidence of its output
as our method does. Due to the quantization artifact of g-DF,
even in an optimal setting, g-DF will generally exhibit a lower
performance than that of the proposed method. The occupancy
grid forbids g-DF to obtain a sub-grid accuracy [35].

The per-frame running time comparison is listed in table I,
where our method is comparable with t-MF. The t-MF with
window size 5 has a slightly smaller computational cost, but
when the window size is 10, its running time exceeds that
of our method. g-DF and TSDF require much more time to
process a single frame, but their performances are still not
comparable to our method.

TABLE I

PER-FRAME RUNNING TIME COMPARISON (MATLAB PLATFORM)

B. Evaluation of the Static Structure
Estimation by Real Data

To validate our algorithm with the real data, we picked
several depth video sequences captured by Kinect and
ToF cameras. Both static and dynamic scene were tested.

1) Static Scenes: Figure 10 shows the results of two real
indoor scenes captured by Kinect. The first row shows the
raw depth and color video sequences. Notice that there
are severe holes presented, and fine details of the scene
are susceptible to be missed or in fault depth values.
Nevertheless, their corresponding color frames are always
well-defined everywhere to provide enough cues to regularize
the structures.

We first estimate the static structure just by raw depth
frames without spatial enhancement. See the second row
in Figure 10. Our method can robustly fill holes as long
as sufficient depth samples in previous frames are available.
In the case where only depth video is applicable, spatial
enhancement is only constrained by the depth information.
Even though the results are more spatially regular than
those without spatial enhancement, the inpainting artifacts
occur inside sufficient large holes, and edges are blurred.
Furthermore, wrong measurements in the depth frames will
be retained in the static structure and cannot be eliminated.
As illustrated in the last row of Figure 10, spatial enhancement
based on both depth and texture information produces refined
static structures which are both reliable and user-acceptable.
The results in green boxes show the differences between
two types of spatial enhancements.

Directly employing spatial enhancement in raw depth
frames cannot obtain stable results since randomly occurring
holes and outliers destroy the consistency between frames and
prevent the regularizing of the depth map into a temporally
stable one. The static structure, in contrast, enforces the long-
range temporal connection and incrementally refines the static
scene. As shown in red circles in Figure 10, the missed
structures cannot be inferred satisfactorily just by conventional
methods, but they are refined and converged as time goes on.

The reliability of the estimated static structure (shown
in Figure 11) is measured by the proportion of samples that
agree with the static structure as per equation (4), which
indicates that flat or smooth surfaces in the static structure
are of high reliability. Simply marking unreliable pixels by
r t

x ≤ 0.5, many unreliable pixels are around discontinuities
or occlusions. It is reasonable that measurements around such
regions tend to be unreliable due to the systematic limitations
of Kinect and related depth sensors. The static structure can be
spatially regularized further in conjunction with the reliability
map by reducing the data confidence in the unreliable region.
Our reliability map is data-driven unlike those by heuristic
methods [15] that need user-tuned parameters.

2) Dynamic Scenes: Our method can effectively extract the
dynamic content from a static scene and further estimate and
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Fig. 10. Visual evaluation on real indoor static scenes. (a) and (b) are the results of two sequences Indoor_Scene_1 and Indoor_Scene_2, captured
from two real indoor scenes. The first row shows the raw depth sequences and color sequences. The second row is the selected results of the estimated static
structures without spatial enhancement at frame t = 0, 5, 10 respectively. The third row shows corresponding spatially enhanced static structure without texture
information, while the last row exhibits the results with the guidance of texture information. The yellow color in the second row marks missed depth values
(holes). Gray represents depth value, lighter meaning a nearer distance from the camera. Best viewed in color.

Fig. 11. Reliability maps of two test sequences of indoor static scenes.
(a) Indoor_Scene_1. (b) Indoor_Scene_2. Best viewed in color.

refine the static structure in the static region. Two videos were
evaluated. One was captured by Kinect, a real indoor scene
with people moving around (dyn_kinect_tl). The second
was a hand sequence by a ToF camera (dyn_tof_tl).

a) Kinect sequence: dyn_kinect_tl is a time-lapse
(30×) Kinect sequence. Figure 12 shows the results of the
first five frames. The parameter set for layer assignment:
wr = 5, ws = 10, τα = 16−2, τγ = 3−2,�β = I.
Our proposed method can rapidly capture the static structure
(both the depth and color) with very few frames. The artifact
in Figure 12(d) is partially due to unreliable initialization,
and partially because of the limited number of iterations of
hole filling in the spatial enhancement. The latter one can
be solved gradually after a few frames, as shown in the
3rd and 4th frames in (d). The former problem will be relieved
by deleting unreliable area in the future frames according to
the reliability map.

b) ToF sequence: The ToF sequence dyn_tof_tl [9]
is time-lapse (10×) and has no color sequence embedded,

Fig. 12. Static structure estimation on dyn_kinect_tl. (a) and (b) are the
first five frames of the input sequence. (c) shows the layer assignment results.
Red, green, blue denote liss , ldyn , locc , respectively. (d) represents the depth
map of the static structure, and (e) shows the corresponding color map. The
first frame is for initialization.

as shown in Figure 13. The parameter set for layer assignment:
wr = 20, ws = 10, τα = 5−2, τγ = 1−2,�β = I. Similar to
the results from dyn_kinect_tl, the layer assignment can
effectively exclude depth values from dynamic foregrounds
(lx = ldyn) and include those from once occluded static struc-
tures (lx = locc). Nevertheless, the blurs around boundaries and
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Fig. 13. Static structure estimation on dyn_tof_tl. (a) shows the first
5 frames of the input sequence. (b) shows the layer assignment results. Red,
green, blue denote liss , ldyn , locc , respectively. (c) represents the depth map
of the static structure. The first frame is for initialization.

high noise level in the raw depth frames lead to halo artifacts
in the resultant static structures at the first few frames, because
in this case the layer assignment cannot definitively point
out the exact boundaries between layers. Fortunately later
frames provide more reliable depth samples in such regions,
thus eliminating these artifacts. See the difference from the
3rd to the 5th frame in Figure 13 (c).

C. Temporally Consistent Depth Video Enhancement

Our depth video enhancement works in conjunction with
the online static structure update scheme. The quality of the
static structure determines the resulting performance from
enhancing the tested frame spatially and temporally. Thanks to
the robustness and effectiveness of our proposed method, this
temporally consistent enhancement outperforms most existing
representative approaches and shows comparable results with
current state-of-the-art long-range temporally consistent depth
video enhancement [25]. We tested several RGB-D sequences
to verify our conclusion and highlight the advantages of
the proposed method. These videos and their results by the
proposed method and the reference approaches are available
in the supplementary materials.

As shown in Figure 14, the selected frames from the
sequence dyn_kinect_1 are 113th, 133rd, 153rd, 173rd,
193rd and 213th, from left to right. Severe holes occurring in
each frame are partially because of occlusion and partially due
to the absorbent or reflecting materials in the captured scene.
Worse still, the depth values around the boundaries of captured
objects tend to be erratic. The raw depth and color frames are
shown in Figure 14(a) and (b). The reference methods are the
coherent spatio-temporal filtering [9] (CSTF), the weighted
mode filtering [10] (WMF) and temporally consistent depth
upsampling by Lang et al. [25]. Their parameters were set up
as their default values as shown in their papers. The reference
results are shown in (c), (d) and (e) of Figure 14 and the results
of the proposed method are listed in Figure 14(f).

CSTF is inclined to be more blurring than the rest of the
methods, especially inside the holes around the boundaries
between the foreground objects and the background scene.
WMF needs to quantize the depth frame into finite bins
(in this experiment, 256 bins were applied), thus result-
ing in quantization artifacts even though it encourages

sharper boundaries without blurring. Referring to any frame
in Figure 14(c) and Figure 14(d), neither of these two methods
can fill the depth holes with satisfactory accuracy, and the
latter one performs worse in stabilizing these holes. On one
hand, the reason is that they are not able to fill large holes
without propagating wrong depth structure when the texture is
less informative. On the other hand, the temporal consistency
is enhanced only within a small temporal window, thus the
structure insides the holes cannot be preserved over a
long time.

A recent practical and remarkable improvement attributable
to Lang et al. [25] is a practical long-range temporal
consistency enhancement. Its results shown in Figure 14(e)
present its superiority both in structure regularization as well
as temporal stabilization over the previous two reference
methods. Not only does the method by Lang et al. tem-
porally stabilize the static objects and/or background, but
also enforces the long-range temporal consistency of the
dynamic objects. In comparison with it, the proposed method
cannot preserve the temporal consistency inside the dynamic
objects. However, the bleeding artifacts in the hole regions
still cannot be eliminated immediately and are vulnerable to
be propagated over the adjacent frames. Although this method
is efficient in calculation thanks to the approximation solver
by constant-time domain transform filtering [41], this method
is globally optimized thus it often requires to store all frames
into memory.

In comparison with the prior arts, the proposed method
outperforms CSTF and WMF both spatially and temporally.
Furthermore, it generally has a performance comparable to that
of Lang et al., sometimes even superior around static holes
between dynamic objects and the static background, and in
stabilizing the static region of each frame. Figure 14(g) com-
pares the results of the enlarged sub-regions denoted by the
red boxes in the original frames, in which our method features
superior performance in regularizing these depth structures.
In addition, by observing the static background behind the
moving people, the proposed method offers much more stable
results around regions where there were large holes, e.g., the
black computer cases and monitors placed on and under
the white tables. It both preserves the long-range stability
of the depth structure in the holes of the static region
and at the same time prevents depth propagation from the
dynamic objects to the static background. Meanwhile, the
spatially enhanced static structure by the proposed method
can incrementally refine itself by following the guidance of
the corresponding color map, and gradually converges to a
stable output, just as discussed in Section IV-B1.

Two additional results by the proposed method and
Lang et al. [25] are presented in Figure 15, in which the
proposed method provides comparable quality while encour-
ages even more delicate details around the hands and heads,
as well as blur-free boundaries between the human and the
background, owing to the success of layer assignment in
Section III-D. However, because the proposed method cannot
extract a static foreground object from the static background,
blurring artifacts or false depth propagation may happen
around their boundaries, just as with the aforementioned
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Fig. 14. Comparison on depth video enhancement. (a) and (b) are selected frames from the test RGB-D video sequences. From left to right: the
113rd, 133th, 153th, 173th, 193th and 213th frame. (c) shows the results by CSTF [9], and (d) by WMF [10]. (e) by Lang et al. [25] (f) is generated by
the proposed method. (g) compares the performances among these methods in the enlarged sub-regions (shown in raster-scan order). Best viewed in color.

state-of-the-art method by Lang et al. and the filtering-based
approaches like CSTF and WMF. As referring to the standing
person near the background in Figure 15(b): both the proposed
method and that by Lang et al. falsely propagated the depth
values from his left arm into the computer case in the
background.

V. LIMITATIONS AND APPLICATIONS

A. Limitations

One limitation is that the proposed method has only been
tested with indoor Kinect and ToF depth videos. To verify the
reliability and generality of the proposed method, more diverse
sources of depth data, e.g., depth videos capturing indoor or
outdoor scenes, by Kinect, ToF or laser scanners, as well as
stereo vision, should be evaluated thoroughly.

For RGB-D video enhancement, the proposed method is
constrained by the assumption that the static structure is

“static” both in the depth and color channels. The static
structure estimation may thus fail if the captured scene
has varying illumination, in which case, the spatio-temporal
enhancement turns into a conventional spatial enhancement
approach. Another possible drawback of the proposed method
is that the false estimation in the static structure cannot be
eliminated if future frames cannot provide enough reliable
depth samples at the same location. For example, the artifacts
marked by the red dotted boxes in the enhanced depth frames
(c.f. Figure 16) correspond to the holes in the input depth
frames. The input depth frames cannot provide effective and
reliable depth samples at these regions thus the artifacts cannot
explicitly be detected by the proposed model. One possible
improvement might heuristically define a threshold to delete
such regions from the static structure when no reliable depth
samples are received within a sufficient long time.

The proposed method only models the captured scene with
dynamic and static layers, and is not capable to immediately
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Fig. 15. Comparison of depth video enhancement. (a) and (b) are selected frames from two different RGB-D video sequences. From top to bottom: the RGB
frames, the raw depth frames, results by Lang et al. [25] and results by the proposed method. Best viewed in color.

Fig. 16. Failure cases of the proposed method. (a) and (b) are two
representative results. From left to right: color frame, raw depth frame and
the enhanced depth frame. Artifacts are bounded by the red dot boxes.

extend to multiple (e.g., more than 3) layers. Although it is a
tough question to define and model these layers properly, we
believe that more accurate results are possible by introducing
such extension. For instance, the relationship between different
dynamic objects can be well-defined if multiple dynamic
layers compactly represent the local statistics of these objects.
In this case, the spatial enhancement of each object can be
handled separately and/or hierarchically, while the temporal
enhancement can be adjusted to fit their distinctive motion
patterns. Therefore, this meaningful extension is worthy being
explored in depth as a future topic.

B. Applications

A high quality depth video improves various applications
in the fields of image and graphics processing, and computer
vision as well. In the following two successful applications,
the enhanced depth videos by the proposed method act as an
effective cue to improve their performances.

1) Background Subtraction: We can use the processed
RGB-D videos to improve the segmenting of the foreground

Fig. 17. Examples of the background subtraction. Best viewed in color.
(a) RGB frame. (b) Raw depth frame. (c) Ours. (d) Lang et al. [25].
(e) CSTF [9]. (f) WMF [10].

objects from the background. As shown in Figure 17, we tested
one pair of RGB-D frames for background subtraction by
simply extracting the region with depth values smaller than
a constant threshold (in this case, we set the threshold as
1500mm) and replacing the background by blue color. Note
that there was no boundary matting applied in all the cases.
The proposed method (c.f. Figure 17(c)) shows a much more
refined and complete foreground segment than those by the
reference methods.

2) Novel View Synthesis: A variant of novel view synthesis,
named depth image-based rendering (DIBR) [45] applies the
depth information to guide the warping of the texture map of
one view to another synthesized view. It is a popular technique
for immersive telecommunication or 3D and freeview TVs.
However, the performance is hampered by the quality of
the depth video. As presented in Figure 18, the novel view
generated by the raw depth frame and the registered
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Fig. 18. Examples of the novel view synthesis. (a) and (b) are the input
RGB and depth frames. (c) is the enhanced depth frame by the proposed
method. (d) is the synthesized view by the raw depth frame and the
RGB frame. Image holes in (d) is filled by the static structure, as shown in (e).
(f) is the synthesized view based on the enhanced depth frame and the image
holes are also filled by the estimated static structure. Best viewed in color.

RGB frame contains severe holes and cracks, as well as
structure distortion. The static structure is appropriate to fill
the image holes, but it may replace the structure of the
foreground objects by mistake. The enhanced depth frame
by the proposed method can preserve the depth structures
well so that less structure distortion occurs in its synthesized
view. Thus the synthesized view is visually plausible without
apparent artifacts.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a novel method for robust
temporally consistent depth enhancement by introducing the
static structure of the captured scene, which is estimated online
by a probabilistic generative mixture model with efficient
parameter estimation, spatial enhancement and update
scheme. After segmenting the input frame with an efficient
fully-connected CRF model, the dynamic region is enhanced
spatially while the static region is substituted by the updated
static structure so as to favor a long-range spatio-temporal
enhancement. Quantitative evaluation shows the robustness of
the parameters estimation on the static structure and illustrates
a superior performance in comparison to various static scene
estimation approaches. Qualitative evaluation demonstrates
that our method operates well on various indoor scenes and
two kinds of sources (Kinect and ToF camera), and proves that
the proposed temporally consistent depth video enhancement
works satisfactory in comparison with existing methods.

As our future work, an extension to deal with moving
cameras will be a meaningful topic for study. Furthermore,
we will improve the algorithm to reduce the effect of wrong
estimation and design an efficient reliability check to increase
the accuracy of the estimated static structure. Last but not
the least, a more general probabilistic framework to handle
multiple dynamic and static layers is necessary to explore for
inherently increasing the performance of the proposed method.
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