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The general purpose no reference image quality assessment (NR-IQA) is a challenging task, which faces
two hurdles: (1) it is difficult to develop one quality aware feature which works well across different
types of distortion and (2) it is hard to learn a regression model to approximate a complex distribution
for all training samples in the feature space. In this paper, we propose a novel NR-IQA method that
addresses these problems by introducing the multi-domain structural information and piecewise regres-
sion. The main motivation of our method is based on two points. Firstly, we develop a new local image
representation which extracts the structural image information from both the spatial-frequency and spa-
tial domains. This multi-domain description could better capture human vision property. By combining
our local features with a complementary global feature, the discriminative power of each single feature
could be further improved. Secondly, we develop an efficient piecewise regression method to capture the
local distribution of the feature space. Instead of minimizing the fitting error for all training samples, we
train the specific prediction model for each query image by adaptive online learning, which focuses on
approximating the distribution of the current test image’s k-nearest neighbor (KNN). Experimental
results on three benchmark IQA databases (i.e., LIVE II, TID2008 and CSIQ) show that the proposed
method outperforms many representative NR-IQA algorithms.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction The quality aware feature corresponds to an efficient image rep-
No reference image quality assessment (NR-IQA) aims at
designing a computational model to automatically predict the per-
ceptual quality of a test image without its undistorted reference
version [1–3]. In many practical applications, the reference images
are unaccessible, which makes the NR-IQA algorithm more desir-
able in comparison with the full-reference (FR)-IQA [4–7] and the
reduced-reference (RR)-IQA [8–12] metrics. For example, many
denoising algorithms require the manual parameters to obtain a
good result. Since there is no reference image, the NR-IQA is very
desirable for parameter tuning, such as [13]. Similarly, the NR-
IQA based image enhancement applications have also been dis-
cussed in recent works [14,15]. To date, many NR-IQA methods
have been developed, which are usually composed of the quality
aware feature extraction and perceptual quality regression
modules.
resentation, which could capture the variation of the perceptual
image quality caused by the distortion. Many efficient features
have been proposed in existing algorithms. Seo et al. introduce
the visual saliency into the perceptual quality metric in [16]. Gha-
nem et al. [17] utilize the inter/intra-segment interactions to mea-
sure the image quality variation. In [18,19], Moorthy et al. employ
the parametric statistical model to describe the natural scene
statistics (NSS) of an image in the wavelet domain. Meanwhile,
some nonparametric wavelet statistics are also introduced in
[20]. In [21,22], the NSS information from the multi-scale DCT
domain is utilized. In [23], Tang et al. propose the a-stable model
in the wavelet domain to describe the image, and Sang et al. [24]
introduce the singular value curve to measure the image degrada-
tion caused by blur. After extracting the image features, the regres-
sion module is used to map these quality aware features to a
subjective quality score. Many different regression schemes have
been discussed in existing methods, such as, the general regression
neural network (GRNN) [25], the support vector regression (SVR)
[18,19] and the multiple kernel learning (MKL) [20].

Although the aforementioned methods have achieved good
result in capturing the human perception, some important local
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properties in both the image representation and perceptual quality
regression are still underutilized. Firstly, in the feature extraction
module, the NSS is usually extracted from some specific domains
[18–22]. When the transform coefficients are quantized into differ-
ent bins, only the global frequency distribution is reserved and the
local spatial neighboring relationship is lost. In [19,20], the neigh-
boring coefficients’ joint distribution were introduced to address
this issue. However, the similar problem still exists in the coeffi-
cients’ quantization process. Secondly, in the regression module,
the existing methods usually learn a map function by off-line train-
ing, which focuses on minimizing the average fitting error over all
training samples. For some local training data, its performance may
not be very well [26].

Based on these analysis, we develop our method from two
aspects: (1) For the image representation, we introduce a new local
image representation, which is then combined with a widely-used
global image feature. As discussed in [27,28], the visual cortex inte-
grates both the spatial-frequency and spatial information. Most
existing methods don’t consider this characteristic and only extract
the image features from single domain, such as, wavelet domain
[18,19], DCT domain [21,22] or spatial domain [29]. In contrast, we
describe the local image structures from both the spatial-
frequency and spatial domains. Particularly, the spatial-frequency
information is derived from a novel orientation statistics of the gra-
dients in the local patch of each wavelet subband. The spatial infor-
mation is captured with the classic local binary pattern (LBP) [30].
Since the human vision captures both the local and global informa-
tion fromthenatural image [31],we further introduce theglobal dis-
tribution of the wavelet coefficients to compensate our local
features. (2) For the perceptual quality regression, we design an effi-
cient local regression method to further improve the prediction
accuracy. Inspired by our previous work [32], the piecewise regres-
sion criterion [33] is employed in our method. Unlike previous
single-phase regression [33] which uses all training data to learn a
regressor,we try tobuild the appropriate segmenteddata or training
sample subset for each test image. Then, the specific regression
parameters can be learned from these training sample subset by
online training. Experimental results on three IQA databases show
that the proposed method is highly efficient and robust.

The rest of this paper is organized as follows. Sections 2
describes the quality-aware features in our method and Section 3
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Fig. 1. The wavelet subband and
presents the proposed piecewise quality regression model. The
experimental results are shown in Section 4. Finally, we draw the
conclusion in Section 5.

2. Quality aware features

For the image representation, the spatial domain, transform
domain [34,35], saliency [36,37] and segmentation [38–42] infor-
mation have been widely used. Among these analysis tools, the
wavelet transform is particularly popular due to its abilities in
multiresolution analysis and spatial-frequency information repre-
sentation [35]. For clarity, the spatial-frequency structure of four
scales wavelet transform is illustrated in Fig. 1. The label in the
top-right corner of each sub-image denotes its scale and direction
information. The HLx, LHx and HHx represent the horizontal, verti-
cal and diagonal details for the scaled image under the xth level.
The block label in the top-left corner denotes the subbands with
the same frequency from the fine scale to the coarse one. In this
section, we describe the quality aware local and global features
in details.

2.1. Local multi-domain structural information

In order to represent the local spatial-frequency structure in the
wavelet domain, we partition each subband into non-overlapped
cell units and count the distribution of the gradient in some quan-
tized orientations in the form of histogram of oriented gradient
(HOG) [43]. Here, the wavelet coefficient’s gradient is first calcu-
lated by convolving the 1-D derivatives ([�1; 0; 1]) in the horizon-
tal and vertical directions, where gx and gy denote the horizontal
and vertical gradient in each location of a cell. Then, the gradient
orientation Go and the gradient magnitude Gm can be calculated as,

Go ¼ arctanðgy=gxÞ
Gm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
y þ g2

x

q ð1Þ

As shown in Fig. 2, the gradient orientation histogram statistic
is applied in each cell, where the histogram bins indicate the quan-
tized gradient orientation ranging from �180� to 180�. The gradi-
ent magnitude voting scheme is employed in counting the
histogram. In our method, we count the wavelet domain gradient
HL1

HH1

frequency band locations.
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orientation histogram across all of directions and scales. Let hi;j

denote the normalized histogram for the wavelet subband at the
ith direction and jth scale, where i ¼ 1;2;3 denote the directions
in HL, LH and HH. Then, we can obtain the cascaded multiscale his-
togram in each direction, i.e.,

hHL ¼ ½h1;1;h1;2; . . . ;h1;L�
hLH ¼ ½h2;1;h2;2; . . . ; h2;L�
hHH ¼ ½h3;1;h3;2; . . . ; h3;L�

ð2Þ

Since the distortion presents in all color channels [32], we
extract the wavelet domain gradient orientation histogram in the
Y, Cb and Cr channels of a color image. Then, the multi-channel his-
togram feature H can be represented as

HY ¼ hY
HL; h

Y
LH;h

Y
HH

h i
HCb ¼ hCb

HL; h
Cb
LH; h

Cb
HH

h i
HCr ¼ hCr

HL; h
Cr
LH; h

Cr
HH

h i
H ¼ ½HY ;HCb;HCr �

ð3Þ

where HY ; HCb and HCr are the histograms in each color channel.
Fig. 3 shows some samples of the hi;j for the manfishing image

and its associated distortion versions across all distortion types
in the LIVE II database. In these examples, we partition each wave-
let subband into 3� 3 cells and quantize the gradient orientation
into 9 bins in each cell. In this way, we can obtain 81 bins in com-
puting the hi;j. The difference mean opinion score (DMOS) of each
image is labeled in the legend, where 0 corresponds to the undis-
torted image and a larger value represents a severer distortion.

As shown in Fig. 3, the hi;j present significant differences under
different distortion degrees across all of the five distortion types.
Since the JPEG2000 compression will eliminate the small wavelet
coefficients and preserve the large ones, the gradient magnitude
gap will grow in the wavelet domain, i.e., a large gradient will
become larger and vice versa. As shown in Fig. 3(a), when a bin of
hi;j shows high value in the reference image, its valuewould become
higher for the JEPG2000 images. As the distortion level increasing,
Gradient Orientat

Output Spatial Casca

Local Contrast No

Fig. 2. The framework of wavelet dom
this gapwill grow aswell. Since the JPEG compression also suppress
the high frequency information, it induces similar gradient variation
in thewavelet domain,where the largevaluebinswill become larger
and the small valuebinswill further reduceas shown in Fig. 3(b). The
White Noise introduces the high frequency interference to over-
whelm the directional local structure in an image, which results in
more homogeneous gradient distribution across different directions
in the wavelet domain. As shown in Fig. 3(c), it is seen that the hi;j of
the undistorted image presents peaks on some specific gradient ori-
entation bins. However, the noisy images’ hi;j is relatively uniform
across all bins. For the images with higher DMOS, the variations in
their hi;j are more gentle. Since the Blur operation also eliminates
the original image structure, it also makes the wavelet domain gra-
dient distributionmore homogeneous. As shown in Fig. 3(d), we can
find that the hi;j of the distorted images show smaller change across
differentbins than thenatural image. For the Fast Fading, besides the
wavelet domain quantization, there are also some random channel
error, such as, the mismatch of the wavelet subbands. Thus, in
Fig. 3(e), we canfind that the distorted images’ hi;j growshigher than
thenatural images in somebins just like Fig. 3(a).Meanwhile,we can
also find some hi;j peak mismatches. That is, in some bins, the hi;j of
the natural image could reach the peaks, and the distorted images
can’t reach.

Besides the spatial-frequency local structure in the scaled
wavelet subband, we also employ the classic LBP descriptor [30]
to capture the local structure distribution in the original scale spa-
tial domain. It is noted that the LBP feature only preserves the rel-
ative intensities between the center pixel and its neighboring
samples, which is too sensitive for some invisible small LBP differ-
ence in the chroma channels (i.e., Cb and Cr). Thus, we only extract
the LBP feature in the gray image space like [32].
2.2. Global frequency distribution

As discussed in pervious works [18,19], the non-Gaussian prop-
erty of the wavelet coefficients distribution is an important global
clue in measuring the naturalness of an image. The parameterized
models like generalized Gaussian distributions (GGD) [44] and
ion Statistic

ded Histogram

rmalization

ain gradient orientation statistics.
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Gaussian scale mixture (GSM) [45] are often utilized to represent
this non-Gaussianity.

Since the fitting error is inevitable in modeling the wavelet
coefficients distribution, we directly use the margin distribution
of the wavelet coefficients as the global frequency feature. Here,
we only focus on the coefficients’ (e.g., high and low) frequency
distribution. Thus, the margin distribution is counted for the coef-
ficients in the same frequency band as labeled in Fig. 1. Let Ck

denote the coefficient set in the kth frequency band. The probabil-
ity distribution pk in this band can be represented as

pk ¼ norml1ðhistðCkÞÞ ð4Þ
where histð�Þ denotes the histogram statistic operator and norml1ð�Þ
represents the l1 normalization operator.

Similar with the local spatial-frequency structure statistic in the
previous section, we also count the global frequency distribution P
in all of the color channels, i.e.,

PY ¼ pY
1 ; p

Y
2 ; � � � ;pY

2L

� �
PCb ¼ pCb

1 ;pCb
2 ; � � � ;pCb

2L

� �
PCr ¼ pCr

1 ;pCr
2 ; � � � ;pCr

2L

� �
P ¼ PY ; PCb; PCr

h i ð5Þ
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Fig. 3. The normalized histogram of oriented gradient in the wavelet subband under diffe
axis denotes the occurrence frequency of each bin. Legend: the DMOS assigned for the
where PY ; PCb and PCr are the wavelet coefficients probability distri-
bution in each color channel.

Fig. 4 shows some samples of the pk distribution for the man-
fishing image and its associated distortion versions under five dis-
tortion types in the LIVE II database. The DMOS of each image is
also labeled in the legend. It can be seen that the pk shows different
distributions for the images assigned with different perceptual
qualities. For the JPEG2000, JPEG, Blur and Fast Fading distortions,
an important statistical expression is the high frequency loss, i.e.,
the more wavelet coefficients would gather to zero as the distor-
tion degree becoming larger. In contrast, the wavelet coefficients
would prefer distributing to the nonzero values due to the additive
random noise for the white noise.
3. Piecewise regression based prediction model

In existing NR-IQA methods, there are two typical schemes for
training the quality prediction model, i.e., one-step and two-step
schemes. The one-step [21,22] scheme evaluates different distor-
tion types equally and train single quality prediction function for
all test images. In contrast, the two-step [18,19] scheme considers
the differences across various distortion types and evaluates the
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Fig. 4. The marginal distribution of wavelet coefficients in a frequency band under different distortion types. Legend: the DMOS assigned for the images with different
qualities.
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image quality with two operations, i.e., distortion identification
and distortion-specific quality evaluation.

In this paper, we follow the two-step framework to design our
prediction model, whose diagram is shown in Fig. 5. Firstly, a
pre-trained classifier is utilized to identify the distortion type of
an input image. Secondly, the subjective score is generated by a
distortion-specific prediction function whose training data share
the same distortion type with the test image.

It is noted that the conventional two-step scheme [18,19] uses
all training samples to learn the distortion-specific regression
model, which neglects the diversity of the samples under the same
distortion type. To address this issue, we introduce the piecewise
regression [33] which designs different prediction functions on dif-
ferent samples subset within one class of distortion type, i.e.,
f cðx; Hc;acÞ ¼

f cðx1; hcð1ÞÞ; x1 2 acð1Þ;
f cðx2; hcð2ÞÞ; x2 2 acð2Þ;
..
. ..

.

f cðxn; hcðnÞÞ; xn 2 acðnÞ:

8>>>><
>>>>:

ð6Þ

where f cðx;H;acÞ denotes the parameterized quality prediction
function for the cth class of distortion, x denotes all test images’ fea-
tures, H denotes the parameter set for all of samples subset a in
current distortion type and x ¼ fx1; x2; . . . ; xng;Hc ¼ fhcð1Þ; hcð2Þ;
. . . ; hcðnÞg;ac ¼ facð1Þ;acð2Þ; . . . ;acðnÞg.

In this piecewise quality prediction model, the key task is to
determine the appropriate samples subset partition, which is sim-
ilar with the breakpoints estimation in [46,47]. An ideal samples
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subset partition should satisfy two requirements: (1) complete-
ness, i.e., the number of samples should be large enough for param-
eters regression and (2) homogeneity, i.e., the perception quality
distribution in the feature space should be consistent and homoge-
nous. Here, the clustering is an intuitive idea to implement the
sample partition work. While, there are many difficulties to satisfy
the previous partition requirements by directly using a clustering
method. First, the clustering results are not robust for some repre-
sentative methods like k-means [48] and k-medoid [49]. Second, it
is hard to determine appropriate number of the clusters by hand or
automatically [48]. Thirdly, the completeness is not a natural prop-
erty in the clustering method, which may produce some incom-
plete subsets and reduce the accuracy of the learned model
parameters.

Fortunately, many local learning algorithms provide us the
clues of constituting different sample subsets. In [50–52], it is
reported that the approaches of local learning a particular data
based on its neighbors often outperform those methods using all
training data. Inspired by these works, we develop a simple and
efficient KNN based subset partition method. Fig. 6 shows an
example of piecewise regression for the JPEG2000 compressed
images, where all test images are labeled by Test image-1 to Test
image-n and their distortion types are identified as the JPEG2000.
The candidate sample set is consist of all annotated JPEG2000
images whose DMOS are available. In the quality prediction
process, we first search for the KNN of each test image from the
KNN based training s

(cf
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 ( )cTraing subset n
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 (1)cTraing subset
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Test image n
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Fig. 6. The framework of th
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D
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Fig. 5. The diagram of two
candidate sample set. The selected KNN images could construct
the training sample subsets. For example, the KNN of Test image-
1 construct its training subset acð1Þ. Then, the unique model
parameters hcð1Þ for Test image-1 can be learned from acð1Þ by
online training. The same process would be implemented for all
the other test images. Since the model parameters are designed
for each test image, it can adequately capture the local specificity
of the perception quality distribution in the feature space.

In our experiment, the KNN of a test image are the K samples
which produce the smallest chi-square distances [53] with respect
to this test image in the candidate sample set. Let xi denote the fea-
ture of the ith test image and x̂j denote the feature of the jth can-
didate image. Then, the definition of chi-square distance Dðxi; x̂jÞ
can be given by

Dðxi; x̂jÞ ¼
Y3
m¼1

dðxmi ; x̂mj Þ

dðxmi ; x̂mj Þ ¼
XUm

u¼1

xmi ðuÞ � x̂mj ðuÞ
� �2
xmi ðuÞ þ x̂mj ðuÞ

ð7Þ

where xmi denotes themth feature of xi andm ¼ f1;2;3g correspond
to the H; LBP and P features in Section 2, respectively. xmi ðuÞ denotes
the uth element in the Um dimension feature vector xmi .

Meanwhile, the support vector regression (SVR) [54] is
employed to implement the online training in Fig. 6. In this way,
ubset

Online training

Predicted quality-n

nQ
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the SVR model parameters construct hcðiÞ. As discussed in [54], the
prediction function f cðxi; hcðiÞÞ in kernel methods can be repre-
sented as

f cðxi; hcðiÞÞ ¼
XK
k¼1

akKðxi; x̂kÞ þ b ð8Þ

where ak and b denote the SVR model parameters learned from the
training sample subset and hcðiÞ ¼ fak; bj1 6 i 6 Kg. x̂k represents
the kth sample in the training sample subset, K is the kernel func-
tion which is used to measure the similarity of two samples in the
high dimension feature space. To capture different local distribution
properties, both the polynomial kernel (P-K) and radial basis func-
tion kernel (RBF-K) are used here, i.e.,

KP�Kðxi; x̂kÞ ¼ ðxTi x̂k þ cÞd

KRBF�Kðxi; x̂kÞ ¼ exp �kxi � x̂kk22
2r2

 ! ð9Þ

where c; d and r are the custom parameters for the two kernels.
The kernel selection and custom parameter setting are determined
by cross validation.
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Fig. 7. The scatter plots of the predict
4. Performance evaluation

4.1. Protocol

In our proposed method, the detailed experimental setting is as
follows: (1) For the wavelet domain gradient orientation statistics,
the spatial cell partition is fixed to 3� 3 and the block normaliza-
tion unit is set to 2� 2 cells. In each cell, the gradient orientation is
quantized to 9 bins; (2) For the LBP descriptor, the radius and
neighbor parameters are set to 2 and 16, respectively; (3) For the
global frequency distribution, the wavelet coefficients are quan-
tized to 100 bins in each frequency band; and (4) The LIBSVM tool-
box [55] is used for the distortion type classification and subjective
quality regression.

In our method, there are two elements introduced to improve
the performance of the BIQA, i.e., multi-domain structural informa-
tion and piecewise regression. To evaluate the contribution of each
part, we implement the proposed method with the following four
combinations: global frequency distribution feature + single-phase
regression (referred to as GF-SR); global frequency distribution fea-
ture + piecewise regression (referred to as GF-PR); multi-domain
structural and global frequency features + single-phase regression
(referred to as MSGF-SR); multi-domain structural and global fre-
quency features + piecewise regression (referred to as MSGF-PR).
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ed quality index Q vs. the DMOS.



Table 1
Median PLCC, SROCC, RMSE and MAE across 100 trials on the LIVE II IQA database.

Distortion JPEG2000 JPEG

Metric Type PLCC SROCC RMSE MAE PLCC SROCC RMSE MAE

PSNR FR 0.896 0.890 7.187 5.528 0.860 0.841 8.170 6.380
SSIM FR 0.937 0.932 5.671 4.433 0.928 0.903 5.947 4.485
pLSA NR 0.87 0.85 – – 0.90 0.88 – –
BIQI NR 0.750 0.736 16.540 – 0.630 0.591 24.580 –
BLIINDS NR 0.807 0.805 14.780 – 0.597 0.552 25.320 –
DIIVINE NR 0.922 0.913 9.660 – 0.921 0.910 12.250 –
BLIINDS-II NR 0.963 0.951 – – 0.979 0.942 – –
SF100 NR 0.929 0.924 – – 0.940 0.928 – –
NSS-TS NR 0.947 0.931 5.792 7.169 0.933 0.915 6.333 7.912
GF-SR NR 0.912 0.908 7.060 5.820 0.917 0.885 6.769 5.250
GF-PR NR 0.909 0.902 7.184 5.915 0.933 0.911 6.010 4.281
MSGF-SR NR 0.940 0.929 5.950 4.699 0.925 0.871 6.339 4.723
MSGF-PR NR 0.942 0.935 5.796 4.603 0.939 0.902 5.758 4.154

WN Blur
PSNR FR 0.986 0.985 2.680 2.164 0.783 0.782 9.772 7.743
SSIM FR 0.970 0.963 3.916 3.257 0.874 0.894 7.639 5.760
pLSA NR 0.87 0.80 – – 0.88 0.87 – –
BIQI NR 0.968 0.958 6.930 – 0.800 0.778 11.100 –
BLIINDS NR 0.914 0.890 11.270 – 0.870 0.834 9.080 –
DIIVINE NR 0.988 0.984 4.310 – 0.923 0.921 7.070 –
BLIINDS-II NR 0.985 0.978 – – 0.948 0.944 – –
SF100 NR 0.978 0.962 – – 0.960 0.961 – –
NSS-TS NR 0.963 0.971 4.464 6.018 0.950 0.939 5.481 6.863
GF-SR NR 0.992 0.985 2.199 1.683 0.933 0.915 5.981 4.985
GF-PR NR 0.992 0.985 2.169 1.716 0.935 0.912 5.954 5.041
MSGF-SR NR 0.991 0.985 2.455 1.875 0.953 0.940 5.268 4.326
MSGF-PR NR 0.992 0.986 2.213 1.749 0.956 0.946 4.902 4.002

FF Entire database
PSNR FR 0.890 0.890 7.516 5.800 0.824 0.820 9.124 7.325
SSIM FR 0.943 0.941 5.485 4.297 0.863 0.851 8.126 6.275
pLSA NR 0.84 0.77 – – 0.79 0.80 – –
BIQI NR 0.722 0.700 19.480 – 0.740 0.726 18.360 –
BLIINDS NR 0.743 0.678 18.620 – 0.680 0.663 20.010 –
DIIVINE NR 0.888 0.863 12.930 – 0.917 0.916 10.900 –
BLIINDS-II NR 0.944 0.927 – – 0.923 0.920 – –
SF100 NR 0.888 0.879 – – 0.921 0.920 – –
NSS-TS NR 0.942 0.935 5.232 7.070 0.926 0.930 5.131 6.803
GF-SR NR 0.817 0.824 10.147 7.197 0.907 0.914 7.075 5.106
GF-PR NR 0.828 0.820 9.802 7.175 0.909 0.915 6.919 4.944
MSGF-SR NR 0.926 0.903 6.477 4.981 0.938 0.938 5.718 4.211
MSGF-PR NR 0.922 0.905 6.857 5.169 0.944 0.942 5.525 3.997
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The performance of the proposed algorithms are validated on
three largest publicly available databases, i.e., LIVE II [56],
TID2008 [57] and CSIQ [58]. Here, the LIVE II IQA database consists
of 29 pristine images and their 779 distorted versions under five
distortion types, i.e., JPEG2000, JPEG, additive white noise (WN),
Gaussian Blur and fast fading (FF). The TID2008 IQA database
includes 25 reference images and their 1700 distorted versions
under 17 distortion types with 4 levels. The CSIQ IQA database is
composed of 30 reference images and their 900 distorted versions
under 6 distortion types with 5 levels. Similar with many previous
works [21,22,19,59,60], only 4 common distortion types (i.e.,
JPEG2000, JPEG, WN and Blur) in the TID2008 and CSIQ databases
are involved in our comparison.

Following the same cross-validation criterion in [21,22,18,19],
we randomly split the images of the LIVE II database into two
non-overlapped sets in terms of the content, i.e., the training set
and test set. The training set is composed of 80% reference images
and their associated distorted versions. The rest 20% data is used
for the test set. In addition, to determine an appropriate neighbor
number for collecting the local training samples, we further divide
the training set into the non-overlapped annotated set and valida-
tion set, which contain the 60% and 20% images in the LIVE II data-
base. Here, the neighbor number can range from 5 to 100 at the
interval of 5. For each distortion type, we search the optimal neigh-
bor parameter by the cross validation, which achieves the best per-
formance on the validation set. We conduct the random splitting
evaluation 100 times on the LIVE II database. The median of the
indexes across the 100 trials are reported here.

In this section, we employ four indices to measure the perfor-
mance of different NR-IQA methods: the Pearson’s linear correla-
tion coefficient (PLCC) [61], the Spearman’s rank ordered
correlation coefficient (SROCC) [61], the root-mean-square error
(RMSE) and mean absolute error (MAE) between the predicted
quality Q and the ground truth DMOS.

4.2. Consistency experiment

In the consistency experiment, the LIVE II IQA database is used
as the benchmark database. Here, we compare the proposed meth-
ods with some representative full-reference (i.e., PSNR, SSIM [62],
VIF [63]) and no-reference (i.e., pLSA [64], BIQI [18], BLIINDS
[21], BLIINDS-II [22], DIIVINE [19] and SFk [59]) IQA metrics.

Before giving the quantitative comparison results, the intuitive
scatter plots of our proposed methods are first shown in Fig. 7.
Here, the x-coordinate denotes the DMOS value and the y-
coordinate denotes the predicted quality index Q. The red line rep-
resents the ideal linear correlation line ‘‘Q = DMOS”. It can be seen
that most samples compactly gather around the ideal linear corre-



Table 4
Median classification accuracy (%) across 100 train-test trials on the LIVE II IQA
database.

JPEG2000 JPEG WN Blur FF All

DIIVINE 80.00 81.10 100.00 90.00 73.30 83.75
GF 88.89 94.60 100.00 93.33 80.00 90.38
MSGF 86.11 100.00 100.00 96.67 90.00 94.12

Table 5
Standard derivation of the classification accuracy across 100 train-test trials on the
LIVE II IQA database.

JPEG2000 JPEG WN Blur FF All

GF 9.80 5.81 0.00 6.40 12.04 3.35
MSGF 10.00 2.31 0.00 2.46 7.91 2.71
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lation line for each plot. This demonstrates that the predicted qual-
ities of all our proposed methods are highly consistent with the
human perception.

In the following, the detailed quantitative comparison on the
five distortion types (i.e., JPEG2000, JPEG, WN, Blur and FF) and
the entire database in shown in Table 1. For clarity, the best NR-
IQA metrics in terms of PLCC and SROCC have been highlighted
in boldface for each distortion type and the entire database. It
can be seen that the proposed methods work well on the LIVE II
database. For the WN, the MSGF-PR achieves the best performance
whose PLCC and SROCC can be up to 0.992 and 0.986, respectively.
For the Blur, the MSGF-PR achieves the suboptimal result in terms
of the PLCC and SROCC. For the JPEG2000, the MSGF-PR achieves
the second best performance in terms of the SROCC. For the JPEG
and FF, the MSGF-PR performs as the third best in terms of PLCC
and SROCC, respectively.

From the perspective of universal IQA, an efficient metric
should work well across all distortion types. Based on this crite-
rion, our MSGF-PR method outperforms all the other NR-IQA met-
rics, whose PLCC and SROCC reaches up to 0.944 and 0.942 in the
entire database comparison. In addition, it is noted that the perfor-
mances of our proposed four combinations are gradually improved
by capturing local properties in the image representation and per-
ceptual quality regression modules.

Firstly, under the same regression method, the perceptual cor-
relation indexes raise by adding our MSGF feature. More particu-
larly, the PLCC of MSGF-SR is 0.031 higher than the GF-SR, and
the PLCC of MSGF-PR is 0.035 higher than the GF-PR. Secondly,
under the same features, the perceptual correlation performance
will also be improved by introducing the piecewise regression.
For instance, the PLCC of GF-PR is 0.002 higher than GF-SR, and
the PLCC of MSGF-PR is 0.009 higher than MSGF-SR. It proves that
both our proposed MSGF features and the piecewise regression
improve the performance of the NR-IQA metric.

To verify that the robustness of the proposed method, we fur-
ther investigate the standard deviation of each measurement index
across 100 trials as shown in Tables 2 and 3. It can be seen that the
standard deviations for all of the proposed methods are very small,
which indicates that the performance variation of our methods are
very little across the 100 train-test trials.
Table 2
Standard derivation of the GF-SR/PR’s performances across 100 train-test trials on the LIV

GF-SR

PLCC SROCC RMSE MA

JPEG2000 0.027 0.028 1.055 0.8
JPEG 0.025 0.035 1.249 1.0
WN 0.002 0.005 0.321 0.2
Blur 0.026 0.037 1.089 0.8
FF 0.175 0.068 3.518 2.2
All 0.140 0.017 1.164 1.3

Table 3
Standard derivation of the MSGF-SR/PR’s performances across 100 train-test trials on the

MSGF-SR

PLCC SROCC RMSE MA

JPEG2000 0.022 0.022 0.866 0.6
JPEG 0.022 0.034 1.155 0.7
WN 0.003 0.005 0.342 0.2
Blur 0.022 0.025 0.955 0.7
FF 0.036 0.039 1.382 0.9
All 0.009 0.009 0.533 0.3
4.3. Classification accuracy

Since we follow the two-step framework, the distortion type
classification also plays an important role in our MSGF-PR method.
To quantitatively evaluate the classification performance, we show
the median classification accuracies of each individual distortion
type and the entire test set across the 100 trials in Table 4. It can
be seen that with the help of our MSGF features, the proposed
MSGF-PR method achieves very high classification accuracy, which
is better than the DIIVINE metric across all distortion types. Here,
Table 5 shows the standard deviation of the our classification accu-
racies across the 100 train-test trials. It can be seen that the values
in Table 5 are very small, which verifies that the results reported in
Table 4 are robust and stable.
4.4. Database independence

To verify that the proposed method doesn’t depend on some
specific databases, we further conduct the data independency
investigation in this section. Follow the protocol in [22,19], all
the subject-rated images in the LIVE II database are used as the
candidate training data for our piecewise regression. Both the
TID2008 and CSIQ databases are used as the test sets.
E II IQA database.

GF-PR

E PLCC SROCC RMSE MAE

93 0.028 0.028 0.987 0.853
27 0.022 0.027 1.136 0.843
85 0.002 0.006 0.285 0.239
84 0.027 0.046 1.038 0.849
91 0.170 0.081 2.965 2.558
72 0.126 0.017 1.009 0.858

LIVE II IQA database.

MSGF-PR

E PLCC SROCC RMSE MAE

52 0.023 0.024 0.867 0.639
79 0.019 0.034 1.140 0.829
59 0.002 0.005 0.230 0.207
92 0.016 0.022 0.763 0.652
18 0.038 0.048 1.540 1.011
58 0.011 0.010 0.588 0.403



Table 6
SROCC between the predicted quality index and MOS on the TID2008 database.

Metric Type JPEG2000 JPEG WN Blur All

PSNR FR 0.825 0.876 0.918 0.934 0.870
SSIM FR 0.963 0.935 0.817 0.960 0.902
DIIVINE NR 0.924 0.866 0.851 0.862 0.889
BLIINDS-II NR 0.915 0.889 0.696 0.857 0.854
GF-SR NR 0.776 0.781 0.883 0.835 0.808
GF-PR NR 0.795 0.796 0.911 0.876 0.809
MSGF-SR NR 0.842 0.800 0.885 0.884 0.845
MSGF-PR NR 0.846 0.840 0.864 0.893 0.860

Table 7
SROCC between the predicted quality index and DMOS on the CSIQ database.

Metric Type JPEG2000 JPEG WN Blur All

PSNR FR 0.936 0.888 0.936 0.925 0.921
SSIM FR 0.958 0.944 0.898 0.958 0.926
DIIVINE NR 0.830 0.704 0.797 0.871 0.828
BLIINDS-II NR 0.884 0.881 0.886 0.870 0.873
GF-SR NR 0.840 0.891 0.940 0.859 0.868
GF-PR NR 0.846 0.900 0.946 0.889 0.870
MSGF-SR NR 0.900 0.915 0.926 0.831 0.867
MSGF-PR NR 0.899 0.923 0.952 0.871 0.881

(a) QP=30,Q=38.36 (b) QP=36,Q=45.66

(c) QP=42,Q=50.19 (d) QP=48,Q=52.50

Fig. 8. The subjective results of the images compressed by HEVC. QP is the quantization parameter in HEVC, and Q is the predicted subjective score of the proposed method.
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Tables 6 and 7 show the SROCC values between our predicted
quality and the actual subjective score (i.e., MOS in TID2008 and
DMOS in CSIQ) for the TID2008 and CSIQ databases, respectively.
For comparison, the performances of two FR-IQAmetrics (i.e., PSNR
and SSIM) and two NR-IQA metrics (i.e., DIIVINE and BLIINDS-II)
are also listed in Tables 6 and 7. For clarity, the highest SROCC
results across all NR-IQA metrics have been highlighted in
boldface.

It can be seen that all of the proposed methods perform well in
the data independence experiment. In Tables 6 and 7, the MSGF-PR
achieves comparable performance relative to the FR-IQA metrics.
For the TID2008 database, the MSGF-PR is inferior to the DIIVINE
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and superior to the BLIINDS-II. For the CSIQ database, our MSGF-PR
method outperforms both of the NR-IQA metrics. In addition, the
relative performances of the proposed methods still hold in both
the TID2008 and CSIQ databases, i.e., GF-PR is superior to GF-SR,
and MSGF-PR is better than MSGF-SR. It verifies that the superior-
ities of the MSGF features and the piecewise regression don’t
depend on specific datasets.

4.5. Investigation on HEVC still image profile

In this section, we further investigate the performance of the
proposed method on the up-to-date HEVC compression distortion.
Particularly, we select four standard color images, i.e., Lena, Blonde
Woman, Baboon and Avion from USC-SIPI database1 for testing. The
resolutions of these test images are all 512 � 512. In our experiment,
the HEVC reference software (HM13.0)2 is used to encode each test
image. Here, the intra main profile is used for coding and four distor-
tion levels are generated under the setting of QP = {30, 36, 42, 48}.
Similar with Section 4.4, we utilize all annotated images of LIVE II
database [56] as the candidate training data for our piecewise
regression.

For each test image, we compute the SROCC between the pre-
dicted scores of its four compressed versions and the QP for evalu-
ation. Experimental results show that the SROCC of all test images
are 1. That is, the proposed method could efficiently capture the
monotonic decrease of perceptual quality when QP is increasing.
For clarity, the four compressed versions of Lena and our predicted
subjective scores are shown in Fig. 8. It can be seen that the pre-
dicted scores increase as the perceptual image qualities decrease
from Fig. 8(a)–(d). Here, the predicted score corresponding to the
DMOS value and a higher score indicates a wore subjective quality.
5. Discussion

Similar with most existing NR-IQA algorithms
[18,21,19,22,59,20], the proposed method follows a supervised
learning framework, which requires the human rated images to
train a parametric quality prediction function. Although this
framework could deliver high prediction accuracy, its flexibility
is limited by the training procedure. That is, when some new train-
ing samples are present, the prediction function needs to be re-
trained. To overcome this limitation of flexibility, we could incor-
porate the proposed quality-aware features into an unsupervised
method. Some possible solutions have been discussed in [64,29].
For example, we can compute our MSGF features for some undis-
torted natural images and the test images. Then, the mean feature
distance between a test image and all natural images could be used
as the predicted quality. Or, a natural fitting model (NFM) [29]
could be first trained with a large number of natural images. Then,
the MSGF feature similarity between the test image and the off-
line trained NFM is used as the estimated quality. In our future
work, some more flexible unsupervised method would be studied
to extend our MSGF-PR method.
6. Conclusion

In this paper, we propose an efficient universal NR-IQA metric
which tries to capture the local properties of the image representa-
tion and subjective quality regression. In the feature extraction
module, both the spatial local binary pattern distribution and the
frequency oriented gradient statistic are utilized to describe the
image local structure, which is referred to as multi-domain struc-
1 http://sipi.usc.edu/database/.
2 https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-13.0/.
tural information. In the perceptual quality prediction module,
the piecewise regression scheme is used to simplify the complex
global approximating task. Instead of training the single prediction
model to fit all data’s distribution, we learn a specific model for
each test image, where the training set is composed of the local
neighbors of the test image in the feature space. Since the distribu-
tion of the subjective scores is usually more homogeneous in the
local region of the feature space, the piecewise regression could
achieve more accurate approximating result. Through the exten-
sive experiments on LIVE II, TID2008 and CSIQ databases, it is
demonstrated that the proposed method is highly consistent with
the human perception. Meanwhile, our proposed method also
achieves comparable performance with respect to some FR-IQA
metrics and outperforms many representative NR-IQA methods.

In our future work, we would try to develop more efficient local
descriptor. In addition, a robust unsupervised grouping method for
piecewise regression will also be studied.
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