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Global Propagation of Affine Invariant Features for
Robust Matching

Chunhui Cui and King Ngi Ngan, Fellow, IEEE

Abstract— Local invariant features have been successfully used
in image matching to cope with viewpoint change, partial
occlusion, and clutters. However, when these factors become too
strong, there will be a lot of mismatches due to the limited
repeatability and discriminative power of features. In this paper,
we present an efficient approach to remove the false matches and
propagate the correct ones for the affine invariant features which
represent the state-of-the-art local invariance. First, a pair-wise
affine consistency measure is proposed to evaluate the consensus
of the matches of affine invariant regions. The measure takes
into account both the keypoint location and the region shape,
size, and orientation. Based on this measure, a geometric filter
is then presented which can efficiently remove the outliers from
the initial matches, and is robust to severe clutters and non-rigid
deformation. To increase the correct matches, we propose a global
match refinement and propagation method that simultaneously
finds a optimal group of local affine transforms to relate the
features in two images. The global method is capable of producing
a quasi-dense set of matches even for the weakly textured
surfaces that suffer strong rigid transformation or non-rigid
deformation. The strong capability of the proposed method in
dealing with significant viewpoint change, non-rigid deformation,
and low-texture objects is demonstrated in experiments of image
matching, object recognition, and image based rendering.

Index Terms— Image based rendering, match
propagation, mismatch rejection, nonrigid deformation, wide
baseline matching.

I. INTRODUCTION

MANY computer vision tasks rely on the establishing
of adequate and accurate correspondences between

images, for example, stereo vision, object recognition, image
retrieval, camera self-calibration and so forth. Recently, local
invariant features [12], [13] have been widely used to address
this problem because of their robustness to partial occlusion
and viewpoint change. Basically, the local features are first
extracted independently from two images, and then char-
acterized by some appearance descriptors, based on which
the correspondences are finally established. Thanks to the
intense research works done these years, the local features
have been developed to be invariant not just to translation and
rotation, but also to scale change [10] and affine transformation
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[11], [20], making matching under general viewpoint change
become possible. Among various features, the affine invariant
features [13] are particularly significant and in general provide
more useful information. For example, their elliptical support
regions describe different scales in the two principle directions
rather than a single uniform scale indicated by the scale
invariant features like SIFT [10]. The detailed evaluation
and comparison on recently proposed local invariant feature
detectors and descriptors can be found in [12], [13].

In spite of the success of local features, the repeatability
of feature extraction and the correctness of feature matching
remain an issue in the presence of severe clutters and challeng-
ing viewing conditions. Large scale and viewpoint changes
considerably lower the probability of detecting consistent
features in different images (features that capture the same
physical surface but may appear different due to viewpoint
change). Meanwhile extensive clutters may give rise to a large
number of irrelevant features which disturb the matching.
The situation is even worse when the regions of interest
are poorly textured. In this case, the extracted features are
much fewer and are more difficult to be distinguished from
each other because they all look similar. The combination
of these difficulties may result in a correspondence set with
high percentage of mismatches. And any application based on
such a matching result will probably fail. To cope with the
problem, many efforts have been made to remove the outliers
and increase the inliers, which is also the focus of this work.

A. Mismatch Rejection

The limited discriminative power of feature appearance may
result in a large number of mismatches in the initial matching
attempt. Therefore, to reject the outliers while keeping the
inliers, i.e., match filtering, becomes a very important step
in feature-based applications. The rejection of mismatches is
typically based on the spatial geometry of the features, as
opposed to the initial matching where only local appearance
is taken into account. Rejection methods based on global
spatial configuration assumes that all features undergo a rigid
transformation, for example, the Hough clustering [10] and
RANSAC [19]. These global filters, however, have two major
problems: 1) they cannot deal with non-rigid deformation,
and 2) they are sensitive to high number of outliers in the
correspondence set.

To overcome these problems, the use of semi-local geometry
information has been explored in the literature. Schmid and
Mohr [16] use a fixed number of local features around a given
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feature to determine its semi-local structure. A similar method
has been proposed in [3], where a shape context is attached
to each feature to describe the spatial configuration of its
neighbors. Semi-local constraints are also used by Tuytelaars
and Van Gool [20]. They propose an iterative method to reject
mismatches based on homographies between matches of semi-
local features. Carneiro and Jepson [3] also present an efficient
pair-wise grouping method. The pair-wise relation is measured
by the consistency of scale, distance and heading between a
pair of scale invariant matches like SIFT. The three consistency
measures are then combined together to achieve robustness to
the scaling, translation and rotation.

In this paper, we present an efficient geometric filter spe-
cially designed for the affine invariant features which represent
the state-of-the-art local invariant features [13]. We propose a
pair-wise affine consistency measure to evaluate the consensus
of feature matches by taking into account both the keypoint
location and the size, shape and orientation information of the
support regions. Based on the affine consistency measure, we
iteratively remove the most unreliable matches and dynam-
ically update the reliabilities of remaining matches. There
are also other geometric filters specially designed for affine
invariant features. Lazebnik et al. [8] propose to measure
the geometric consistency of triples of matches. The local
affine geometry is estimated by keypoint matches, while the
consistency measure takes into account the shape and size
of elliptical regions by examining the variation of major and
minor axes. In comparison, our method makes full use of the
information of keypoints’ location and regions’ size, shape and
orientation to compute both affine geometry and consistency
measure. Besides, compared with our pair-wise measure, the
examination of triples will introduce much more computations
and can only preserve large cluster. The early contraction
proposed in [5] also measures the pair-wise consistency by
making use of the size and shape information. However, this
method is based on the coherence of region overlap and as a
result can only apply to the features whose regions intersect
with each other, e.g., the densely sampled regular features
in their work. In comparison, our method does not demand
the intersection of regions and is applicable for a general
correspondence set of affine invariant features. In addition,
the consistency of region orientation is implicitly imposed in
our measure as an additional clue, while it is not considered
by their metho. Moreover, our method efficiently integrates
the neighborhood correlation into the consistency measure and
enables the features’ neighborhood adaptive to the shape and
size of their support regions.

B. Match Propagation

Feature matches that survive the geometric filter are usu-
ally too sparse for the purpose of recognition or modeling.
Especially for wide baseline case, features are far less likely
to be repeatedly extracted the correctly matched due to sig-
nificant viewpoint change between images. This urges the
need to generate a lot more correct matches from the initial
seed matches. The idea of “growing matches and surfaces”
has been widely used in image matching and modeling.

[15] try to propagate the matches by using the existing affine
transformations to guide the search for further matches. This
method is designed to save more existing features, but not to
generate the new ones that have not been originally extracted.
[18] develop a dense matching algorithm for multiple wide-
baseline images. A sparse set of initial depth estimates is
propagated to dense depth map by an inhomogeneous time
diffusion process. [9] present a pixel-by-pixel greed prop-
agation strategy. The information provided by sparse point
matches is expanded in image space to obtain a regular grid of
quasi-dense correspondences. Because an implicit assumption
is made that the local transformation between patches is a
translation, this method is applicable only in case of narrow
baseline images. [7] further extend this pixel-based propaga-
tion method to wide baseline matching. They use a general
affine model for the local transformation between the patches,
and during the propagation adapt the affine transformation
based on the second order intensity moments together with
the epipolar geometry. The improvement is mainly demon-
strated on scenes composed of planar surfaces. [6] propose
to represent the scene by a dense set of rectangular patches.
Their algorithm starts from a sparse set of matched keypoints,
and repeatedly expands these to nearby pixel correspondences
before using visibility constraint to filter away false matches.

The most relevant previous work is [5], where match
propagation of affine invariant features is successfully applied
to simultaneous object recognition and segmentation. In [4],
Ferrari et al. propose to refine the matches of affine invariant
features by maximizing the similarity function of color and
intensity in the 6D affine space. Later in [5] they use the
initial matches as the propagation attempts and employ the
match refinement to generate more feature correspondences.
The method can expand a single correct initial match to
cover a smooth surface with many correct matches. This
increases the discriminative power to identify the object and
meanwhile suggests the approximate object boundary by the
final set of matches. Besides, it is reported that the method
has good robustness to scale, viewpoint, occlusion, clutter and
non-rigid deformations. However, since the propagation strat-
egy is purely appearance-based, it is best suitable for image
regions that are well textured and sufficiently discriminative.
This also means that it probably fails for uniform or low
texture surfaces which unfortunately are ubiquitous in general
scenes.

In this paper, we present a global match refinement and
propagation approach by taking into account both the appear-
ance similarity and the geometry consistency. By optimizing
a global function, our method is able to simultaneously refine
the whole set of initial matches, as opposed to the local
method [5] where the matches are processed individually.
More importantly the proposed pair-wise affine consistency
is incorporated in the global function for regularization. This
is extraordinarily useful when local regions are poorly tex-
tured and as a result local appearance is much less reli-
able for guiding the matching. Comparative experiments on
image matching demonstrate that the proposed global method
is superior in dealing with weakly textured surfaces and
non-rigid deformation.
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Fig. 1. Local affine transform estimated from a correspondence of affine
invariant features [13].

The rest of this paper is organized as follows. Section II
gives a background introduction of this work. Section III
proposes the pair-wise affine consistency measure and the
outlier filter. Section IV presents the global method to refine
and propagate the affine invariant features. Section V discusses
the application of the proposed method to image matching,
object recognition and image based rendering and Section VI
concludes the paper.

II. BACKGROUND

In this section, we briefly describe some background knowl-
edge which forms the basis of this work.

A. Affine Invariant Features

An affine invariant feature typically has a support
region with elliptical shape [13]. It can be represented by
f = [x, a, b, o, θ, v], where x is the image coordinates of the
feature’s keypoint, a and b are the lengths of the semi-major
and semi-minor axes of the feature’s elliptical region, o indi-
cates the orientation of the major axis, θ represents the region’s
dominant orientation which for instance can be estimated
by gradient histogram [10], and v is the feature descriptor
that summarizes the region appearance. After extracting the
features, feature matching is applied to establish the corre-
spondence set � that associates each feature fR extracted from
the reference image IR with a feature fT detected in the target
image IT. In the initial stage, correspondences of features are
typically established based on some similarity measure of their
descriptors.

B. Local Affine Transform

With a correspondence of affine invariant features, one
can estimate the local affine transform that relates the two
features [13]. Let SR and ST denote the support regions
of two matched features fR and fT , respectively. The two
regions can be centered on (0, 0) by SR − xR and ST − xT ,
where xR and xT are the coordinates of the corresponding
keypoints. Since (aR, bR, oR) and (aT , bT , oT ) are available,
we then can normalize the two elliptical regions into unit
circles by the affine transforms MR and MT , respectively.
As shown in Fig. 1, the two unit circles are now related by
a pure rotation R which can be determined by the dominant
orientations of the two features, i.e., θR and θT . Therefore, the
two regions SR and ST are related by (1). In homogeneous
coordinates, they are actually related by an affine transform
Af (2) which can be estimated once we know fR corresponds
to fT

ST − xT = M−1
T RMR(SR − xR) (1)

Af =
[

A t
0 1

]
, where A = M−1

T RMR , t = xT − AxR (2)

k
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l
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Fig. 2. Normalized spatial distance between two affine invariant features.

III. AFFINE CONSISTENCY AND MISMATCH FILTER

Though the similarity measure based on feature descriptor
is widely used in feature matching [12], it only relies on the
region appearance that may not be sufficiently discriminative
to ensure correct matches. This problem becomes more of an
issue for surfaces with low texture or homogeneous texture,
and probably results in a lot of false matches. In this section,
we propose an efficient geometric filter to remove the mis-
matches from the initial correspondence set by making use
of the remaining information provided by the affine invariant
feature, i.e., (x, a, b, o, θ). We first propose the pair-wise affine
consistency by taking into account both the neighborhood
correlation between features and the consistency of local
affine geometry between matches. We then present an iterative
algorithm to efficiently reject the mismatches based on the
affine consistency.

A. Pair-Wise Affine Consistency

An affine transform is sufficient to locally model the image
distortion arising from viewpoint changes [13]. Suppose that
two neighboring features are located on the same physical
surface that is smooth and approximately planar at the local
scale. The two features’ support regions will undergo very
similar affine transforms when the viewpoint changes. This
holds for deformed objects as well because generally the affine
transform varies slowly and smoothly within the physical
surface. Thus such two features are called affine consistent, and
they will support each other to survive the proposed geometric
filter. We believe that the more supports a match has, the more
reliable it is.

Let (fk
R, fk

T ) ∈ � (k = 1, . . . , N) be one of the N matches in
the correspondence set �. Let Afk denote the affine transform
that relates their support regions Sk

R and Sk
T . Let (f l

R, f l
T ) ∈

� (l �= k) be another match whose support regions are Sl
R

and Sl
T . The pair-wise affine consistency measure AC(k, l)

between the two matches indexed by k and l is defined as

AC(k, l) = exp(−dis(fk
R, f l

R)2/δ) · Sl
T ∩ Afk Sl

R

Sl
T ∪ Afk Sl

R

(3)

The first term of AC(k, l) measures the neighborhood
correlation between the two features fk

R and f l
R in the reference

image. Because the features represent image regions, their
spatial distance should depend on not only the location of
their keypoints, but also the size and shape of their support
regions. Based on this consideration, the normalized spatial
distance between two features fk

R and f l
R is defined in (4) and

is illustrated in Fig. 2

dis(fk
R, f l

R) = ‖xk
R − xl

R‖/(dkl + dlk). (4)
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Here dkl denotes the distance from the keypoint xk
R to the

intersection of the elliptical region and the ray from xk
R and

through xl
R , as illustrated in Fig. 2. It can be easily computed

by (5), where φkl = ori(xl
R −xk

R)−ok
R and ori(·) is the vector

orientation. dlk is similarly defined

dkl =
√

(ak
R cos φkl )2 + (bk

R sin φkl )2. (5)

As we can see in the definition of dis(fk
R, f l

R), the features’
keypoint distance is normalized according to their regions’ size
and shape. If dis(fk

R, f l
R) = 1, the support region of fk

R will
be tangential to that of f l

R , and when dis(fk
R, f l

R) < 1, the two
regions will have overlap. Simply by thresholding the normal-
ized distance, we can determine the neighboring features in a
way adaptive to the size and shape of their support regions.
In general, neighboring features with small dis(fk

R, f l
R) (e.g.

smaller than 1) will have high probability to undergo similar
local affine transform when the viewpoint changes. In (3),
the inverse exponential of dis(fk

R, f l
R) is reasonably used for

measuring to what degree the two reference features fk
R and f l

R
are spatially correlated and accordingly how reliable the two
matches (fk

R, fk
T ) and (f l

R, f l
T ) can support each other to pass

the geometric filter.
The second term of AC(k, l) is to measure the consistency

of the local affine geometry estimated from the two matches.
Ideally, if the two reference features fk

R and f l
R undergo the

same affine transform, we have Afk Sl
R = Af l Sl

R = Sl
T . In

practice, however, the two regions Afk Sl
R and Sl

T will differ
from each other. Thus the difference of the two regions is
employed to measure the inconsistency of the affine transforms
Afk and Af l . Specifically, the difference between Afk Sl

R
and Sl

T is quantified by their overlap in image area. In (3),
Sl

T ∩ Afk Sl
R is the intersection of the two regions, which is

then normalized by their union Sl
T ∪ Afk Sl

R . The overall AC
value is ranged from 0 to 1. A large AC(k, l) value indicates
that the two matches (fk

R, fk
T ) and (f l

R, f l
T ) are not only spatially

correlated but also affine consistent, and hence are very likely
to be a pair of correct matches.

B. Mismatch Filter Based on Affine Consistency

Given the correspondence set � with N matches, we first
build the N × N AC matrix whose entries are AC(k, l) (k, l ∈
[1, . . . , N]), where AC(k, l) = 0 if k = l. The AC score for
a match indexed by k is calculated by

ACk =
∑

l

AC(k, l) (6)

In general, AC(k, l) �= AC(l, k) due to the asymmetry of the
second term in (3). However, in practice the two values are
very close, thus we empirically assume symmetric AC matrix
to reduce half of the computations. To further save the com-
putations, we only evaluate the AC measures for neighboring
matches with dis(fk

R, f l
R) < th1. As the normalized distance

dis(fk
R, f l

R) is already incorporated in (3), AC measures of far
away match pairs will have very small values and contribute
little to the AC score anyway. In this paper, we empirically set
th1 to 2 and find it works well throughout the experiments.

One may consider increasing th1 only when the initial matches
are too sparse.

Next, we iteratively remove the inconsistent matches from
� and meanwhile update the AC matrix. The algorithm is
outlined as follows.

1) Compute the AC scores for all matches in the current
set � by (6) based on the current AC matrix;

2) Remove from � all the matches (fk
R, fk

T ) whose
ACk = 0, and update the AC matrix by deleting the
corresponding rows and columns;

3) For the remaining matches in �, find the one with the
smallest AC score, i.e., ACmin.

4) If ACmin > th2,1 stop. Otherwise, remove the match and
update the AC matrix accordingly, then go to step 1.

Matches with no support are directly rejected as mismatches
because isolated correct matches are very rare in practice.
Furthermore, the worst match in terms of AC score is the
most probable mismatch in the remaining correspondence set.
Removing this match from the AC matrix will largely reduce
the AC scores of other nearby mismatches with similar wrong
affine transforms, but has little influence on the AC scores of
nearby correct matches. As a result, the nearby mismatches,
as lose the support from the worst match, are more likely to
be filtered out in following iterations.

C. Performance on Image Pairs With Nonrigid Deformation

The affine consistency filter is tested on image pairs that
present significant non-rigid deformation and clutters, which
is much more challenging than the case of rigid transform.
We use Affine Harris and Affine Hessian detectors [11] to
extract the affine invariant features which are described by the
standard SIFT descriptor [10]. The similarity of features is
measured by the Euclidean distance of their SIFT descriptors.
The strategy of nearest neighbor distance ratio [12] is adopted
to generate the initial matches. We then apply the proposed
filter to reject the outliers, resulting in the final correspondence
set.

The results of feature matching for Michelle image set [5]
are visually presented in Fig. 3, where three tests with the same
reference image but different target images are shown in the
three rows, respectively. Fig. 3(a) presents the initial matching
results and Fig. 3(b) shows the the remaining matches that
pass the proposed filter. The red lines in Fig. 3(a) and (b)
indicate the correspondences and the green ellipses show the
features’ support regions. As we can see, all the mismatches
are successfully removed by the proposed filter despite the
significant non-rigid deformation between images. Also note
that there exist a large number of mismatches in the initial
correspondence set, which demonstrates the strong power of
the proposed filter in dealing with extensive clutters.

For comparison, in Fig. 3(c)–(e), we also present the
matching results of Phase and SIFT features filtered by
pairwise grouping, semi-local method and hough transform,
respectively, which are tested on the same image set and
reported in [3]. Several obvious mismatches by pairwise

1th2 is empirically set to 0.1 throughout our experiments.
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(a) (b) (c) (d) (e)

Fig. 3. Apply the proposed filter to the matching results of Affine Harris and Hessian features, on the image set Michelle [5]. (a) Initial matches (a lot
of mismatches). (b) Matches after applying the proposed filter (all correct). (c)–(e) Matching results by pairwise grouping, semi-local method, and Hough
transform reported in [3], respectively, which are tested on the same image set.

TABLE I

NUMBER OF CORRECT MATCHES BY DIFFERENT METHODS

Test Proposed (initial) Pairwise Semi-Local Hough

1 55 (286) 39 17 10

2 38 (172) 13 7 10

3 48 (219) 45 35 20

grouping and semi-local method are marked by blue circles
in Fig. 3(c) and (d). Table I summarizes the number of
correct matches found by different methods. The number in
the parenthesis in the “Proposed” column indicates the amount
of initial matches found by Affine Harris and Hessian features.
Note that one-to-one correspondence is imposed in our method
to remove the repetitive matches,2 while Carneiro et al. [3]
allow for many-to-many mapping in their test. Therefore, there
are a few repetitive matches in Fig. 3(c)–(e) that are counted
in Table I columns “Pairwise,” “Semi-local” and “Hough.”
Compared with the methods proposed in [3], the Affine Harris
and Hessian features combined with our filter can produce
more correct matches, especially for test 1 and 2 as shown in
Table I. More importantly, matches found by our method are
able to cover more regions of the object, as marked by orange
ellipses in Fig. 3(b). It is worth noting that besides the absolute
amount of matches, the region coverage of matched features
is also a very important clue that can be used to improve the
precision of object recognition. In addition, the runtime of the
proposed filter (implemented in non-optimized MATLAB code)
measured on a Core Duo T2400 1.83 GHz windows laptop is
around 1.68 s, 0.82 s and 1.02 s when applied to Fig. 3 test
1, 2, and 3, respectively, which is very efficient.

IV. GLOBAL MATCH REFINEMENT AND PROPAGATION

The method of match refinement and propagation [5]
has been successfully applied to recognize and segment the
objects. In practice, however, we found that this method
works well for highly textured regions, but usually fails to

2We only keep the match with the smallest descriptor distance.

(c) (d)(b)(a)

Fig. 4. Some matching examples where the global refinement method out-
performs the local method. (a) Features in the reference image. Corresponding
features in the target image. (b) Initial correspondences. (c) Results by local
refinement [4]. (d) Results by global refinement.

establish correct correspondences for regions with low texture
or homogeneous texture.3 Some examples are shown in Fig. 4,
where the red dots in (a), (b) and (c) indicate the keypoints
detected in the reference image, their initial correspondences
found in the target image and the refined results obtained by
Ferrari’s method [4], respectively. The green ellipses show the
support regions of the features that are not accurately matched
by the individual local refinement. The yellow lines indicate
the regions’ dominant gradient orientations. As we can see,
most of these regions are not well textured. As a consequence,
the local appearance alone is not sufficiently powerful to
guide the correct refinement. In this section, we propose a
global method to refine and propagate the affine invariant
features by incorporating the local appearance with the local
affine geometry. The improved method can successfully handle
the weakly textured regions that occur frequently in general
scenes.

A. Global Function for Match Refinement

The proposed global match refinement is based on the obser-
vation that the surface orientations change smoothly except

3This is also pointed out in [5].
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for the surface discontinuity. This inspires us to impose the
smoothness constraint on the local affine transforms of neigh-
boring matches. The original match refinement method [4]
tries to find the best affine transform for each match individu-
ally. We now attempt to simultaneously find the optimal set of
affine transforms for all the matches by maximizing the global
function defined in (7), where (fk

R, fk
T ) ∈ � (k = 1, . . . , N).

The three terms in (7) are described in the following

F({Afk}) =
N∑

k=1

1 + NCC(Sk
R, Afk Sk

R)

2

+ λ1

N∑
k=1

exp

(
−DL(Sk

R, Afk Sk
R)

γ

)

+ λ2

N∑
k=1

∑
l∈�k

wl AC(k, l). (7)

The first and the second terms are defined similarly as in [4].
They are used to measure the appearance similarity of the two
matched regions Sk

R in IR and Sk
T = Afk Sk

R in IT , which are
related by the affine transform Afk . The first term measures
the intensity similarity and the second term measures the color
similarity. Together they are called the data term. NCC is
the normalized cross-correlation between the regions’ intensity
patterns, and is normalized to [0, 1] in (7). DL is the average
pixel-wise Euclidean distance in the CIE-L*a*b* color space.
The three color bands are normalized independently to achieve
the illumination invariance to some extent. The equivalence
between Euclidean and perceptual distances holds for small
distances only, while the larger distance only indicates that
the colors are perceptually different. By taking into account
this fact we choose the exponential measure ranging from 0
to 1 for the color term.

The major improvement of the global method lies in the
introduction of the third term in (7), i.e., the smoothness
term. In case of a smooth region for which the local appear-
ance is not discriminative enough to guide the correct match
refinement, regularization is necessary and can be achieved by
further maximizing the affine consistency between neighboring
features. To this end, the proposed affine consistency measure
AC(k, l) is employed to regularize the set of affine transforms
{Afk} in the global function. And the normalized spatial
distance dis(fk

R, f l
R) can be efficiently used to determine the

neighboring features in the image domain.
However, choosing all the neighboring features for regu-

larization may result in the over-smooth problem just as in
the dense stereo. Two features around the depth discontinuity
may be close in the image domain, but actually belong to
different physical surfaces. Thus their corresponding affine
transforms from one image to another can be completely
different and uncorrelated. As smoothing across depth dis-
continuity is highly undesired, we need to carefully define
the neighborhood system for regularization. In this paper, the
neighborhood of a match (fk

R, fk
T ) ∈ � is described by its

affinity set �k defined in (8). Basically, �k is a sub-set of
the neighboring matches of (fk

R, fk
T ) with dis(fk

R, f l
R) < th1.

By further imposing the constraint AC(k, l)> th2, the matches

in �k should be associated with the affine transforms that are
very similar to Afk , and hence they are called the affinities
of (fk

R, fk
T ). In a word, only the neighboring matches with

similar affine transforms are used for regularization. If two
matches have quite different affine transforms, they are prob-
ably located on surfaces with different orientations or depths

�k={(f l
R, f l

T ) ∈ �(l �= k)|dis(fk
R, f l

R)< th1, AC(k, l)> th2}.
(8)

In order to speed up the optimization, we simply threshold
the AC measure instead of using some cluster algorithms.
Besides, we can further limit the size of �k , since a small
number of reliable affinities are sufficient for the purpose of
regularization. So actually the smoothness term for a match
(fk

R, fk
T ) is composed by the weighted sum of the AC measures

of its affinities. The strategy of choosing the weights wl will
be discussed in the next sub-section. Here note that they are
normalized such that

∑
l∈�k wl = 1. Thus the smoothness

term ranges in [0, 1] as well. Finally, the two parameters λ1
and λ2 in (7) are empirically set to 2 and 1, respectively, such
that the weights for intensity, color and smoothness terms are
1:2:1.

B. Implementation of the Global Optimization

The match refinement is now an expensive global opti-
mization problem over a large set of affine transforms {Afk}
(k = 1, . . . , N). To make this problem tractable, we decom-
pose the global optimization into the iterations of sequential
maximization problems, each of which can be formulated
as the maximization of the function f (Afk) defined in (9)
over the 6D space of a single affine transform Afk , with
the affinities’ transforms {Af l | (f l

R, f l
T ) ∈ �k} fixed. The

value of f (Afk) (ranging from 0 to 4) provides a combined
evaluation of the goodness of a match (fk

R, fk
T ) in terms of both

appearance similarity and geometry consistency. Apparently,
the weight wl in (9) should reflect the confidence of using
the affinity (f l

R, f l
T ) for regularization. Thus, a natural choice

of wl in the current iteration is the goodness of match
(f l

R, f l
T ), i.e., f (Af l) estimated in the last iteration. In the

first iteration the weights are initially set to the data term of
f (Af l) only, because the smoothness term is not available yet.
Then the weights are updated according to the f values every
iteration

f (Afk) = 1 + NCC(Sk
R, Afk Sk

R)

2

+ λ1 exp

(
−DL(Sk

R, Afk Sk
R)

γ

)

+ λ2

∑
l∈�k

wl AC(k, l). (9)

Now the problem is how to maximize f (Afk) over the
6D affine space (tx , ty , sx , sy , θ , h), where (tx , ty) is the
2D translation, (sx , sy) are the scales in x and y directions,
and θ and h are the rotation and shear, respectively. Though
an additional smoothness term is introduced to the f (Afk)
function, its behavior over the affine space is similar to
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Fig. 5. Typical case of f (Afk) over the space of (tx , ty ) with fixed
(sx , sy , θ, h), where the gradient descent algorithm starting from (0, 0) fails
to reach the global maxima at (−8, 12).

the similarity function [4]. Fig. 5 shows a typical case of
f (Afk) over the space of (tx , ty) with (sx , sy , θ, h) fixed. We
can see that the non-convex surface presents frequent and
diverse foldings, which is the reason why Ferrari et al. [4]
proposed to search the affine space step by step instead of
using the gradient ascend.4 In this paper, we employ a step-
wise searching algorithm to do the sequential maximization.
In an iteration, transforms in Afk are sequentially updated for
maximization of F(Afk). For each Afk only one step is made
in the 6D affine space to approach the maxima of f (Afk),
that is, we only update one of the six parameters which brings
the greatest ascent to f (Afk). Note that it is unnecessary to
fully maximize Afk in one iteration because the affinities of
Afk may also change through iterations. In practice, we find
that this step-wise algorithm performs much better than the
gradient descent and generally produces satisfactory results.

The order of the sequential maximization of f (Afk)
(k = 1, . . . , N) may play a crucial role in the behavior of
the global optimization due to the imposed smoothness term.
Matches with small f values should have higher priority,
because they are more likely to be inaccurate matches that
badly need regularization. On the other hand, matches with
high f values are probably correct and accurate, and as a
result can be more reliably used to regularize other features.
Therefore the matches whose affinities have high f values
should also be given preference in the sequential maximiza-
tion. Based on these considerations, the priority of a match in
the sequential maximization is quantified by the mean f value
of its affinities with respect to its own f value, as defined
in (10). At the end of an iteration, the matches’ priorities
are updated according to the current f values, and a new
order is determined for the sequential maximization in the
next iteration. Besides, in order to guarantee and accelerate
the convergence, we stop examining a match (fk

R, fk
T ) in

following iterations if its associated transform Afk makes no
change in one maximization attempt. Such a match is called

4Actually, we have tried an inverse compositional algorithm (a gradient
ascend implementation) [1] to do the maximization, but unfortunately it
frequently gets stuck in undesired local maxima.

a stable match

priori ty(Afk) = f (Af l)/ f (Afk) (l ∈ �k) (10)

Fig. 6(a) and (b) present the performance comparison of
the global optimization with and without the priority update.
The results are obtained by applying the global refinement
to the 87 initial matches shown in Fig. 4(a) and (b). From
Fig. 6(a) and (b), we can see that a reasonable order of
sequential maximization can benefit the global optimization
in terms of both the convergence speed and the convergence
value. One may also note that the differences are not that
obvious, which means that the algorithm is not very sensitive
to the sequential order. In Fig. 4(c) and (d), we select some
features to visually compare the performances of the local and
the global refinement. We can clearly observe the improvement
achieved by the global method in terms of the accuracy of
features’ keypoints and support regions.

C. Global Match Propagation

Match propagation aims to generate more feature correspon-
dences from the initial seed matches. Let 	 be the set of
seed matches and 
R be a set of newly added features in the
reference image IR . Recall that each match (fk

R, fk
T ) ∈ 	 is

associated with an affine transform Afk . Thus, [5] proposed to
choose for each new feature fn

R ∈ 
R the best affine transform
Afk from the seed matches 	 in terms of the similarity
function, which is called the best propagation attempt and
is used to generate the initial correspondence of fn

R , i.e.,
fn
T ∈ 
T in the target image IT with Sn

T = Afk Sn
R . Then

this initial match (fn
R, fn

T ) is further refined to achieve better
accuracy.

In this paper, the new features are uniformly sampled within
the object in the reference image. They have circular support
regions of radius r and are spaced by r so that they can densely
cover the object. The odd and even rows offset one other
by r as well, as shown in Fig. 8. Here, the choice of the
sampling parameter r trades the precision for computational
cost. It could be adaptively selected according to the scene
complexity or simply specified by the users.

As mentioned before, smooth regions are ubiquitous for
general objects, for which the local refinement method usually
fails to produce accurate matches because the local appearance
is not sufficiently discriminative. To address the problem, we
employ the proposed measure f (Afk) (9) to select the best
propagation attempt instead of using the purely appearance-
based similarity measure [4]. Then, to refine the initial matches
of new features, we apply the proposed global refinement
method by taking into account both the appearance likelihood
and geometry consistency. The detailed algorithm of global
propagation is described as follows:

1) Initialization: For each new feature fn
R ∈ 
R , initialize

its match fn
T ∈ 
T by following three steps:

1) Find the nearby seed matches as the candidates. Specif-
ically the candidate set is defined as

�n =
{
(fk

R, fk
T ) ∈ 	 | dis(fk

R, fn
R) < th1

}
(11)
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Fig. 6. Performances of global optimizations using different order strategies. (a) Number of unstable matches decreases through iterations. (b) Global function
value increases through iterations.

(a) (b) (a) (b) (a) (b) (a) (b)
(i) (ii) (iii) (iv)

Fig. 7. Image pairs used for the test of match refinement and propagation. (i): (a) Bowel, (b) Face. (ii): (a) Y oga, (b) Girl. (iii): (a) Michelle, (b) Blonde.
(iv): (a) Ovo, (b) Church.

2) For each candidate match (fk
R, fk

T ) ∈ �n , define an
propagation attempt (fn

R, fnk
T ) with Snk

T = Afk Sn
R . Then

evaluate the quality of (fn
R, fnk

T ) by f (Sn
R, Afk Sn

R)), i.e.
f (Afk) in (9), where the affinity set �k (8) is selected
from the seed matches 	 only;

3) Find the best propagation attempt as the initialization of
match (fn

R, fn
T ).

(fn
R, fn

T ) = arg maxk f (fn
R, fnk

T ) (12)

2) Refinement:

1) Simultaneously Refine all new matches (fn
R, fn

T ) by max-
imizing the global function F({Afk}) (7);

2) Apply the affine consistency filter (Section III) to remove
the outliers from the whole set of matches.

V. EXPERIMENTAL RESULTS

A. Image Matching

In this section, we intend to demonstrate the efficiency of the
proposed global match refinement and propagation method. To
this end, we compare the image matching results obtained by
the global method with those produced by the local method
[5]. The image pairs used for this evaluation are shown in
Fig. 7, each contains a reference image with a well defined
object and a target image where the object is transformed
or deformed and possibly with clutters. According to the
degree of texture and the transform between the reference
and target images, the eight image pairs are classified into

four categories: (i) weakly textured+non-rigid deformation
(bowel, f ace); (ii) weakly textured+rigid transformation
(yoga, girl); (iii) highly textured+non-rigid deformation
(michelle, blonde); (iv) highly textured+rigid transformation
(ovo, church). Thus this experiment could also give us an
indication how these two factors, texture and image transform,
will affect the performance of match refinement and propaga-
tion.

To provide a fair comparison, both local and global methods
start with the same initial matches of Harris and Hessian
Affine features (refer to Section III-C for details). Besides, the
search range in the affine space (tx , ty , sx , sy , θ , h) and the
parameter r used to sample new features are set the same for
both methods. The differences of the two lie in that the local
method will first locally refine each initial match to produce a
seed match, and then propagate the new features individually
based on the seed matches, whereas the global method will
apply the proposed global optimization to both the refinement
of initial matches and the propagation of new features.

Two different measures are used to quantify the performance
of the local and global approaches. The first one, called
ratio of correct matches, measures the success rate of match
propagation. It is computed by the number of the new features
that are correctly matched to the target image with respect to
the total number of new features sampled in the reference
image (do not include those with empty candidate set �n

(11)). It is difficult to define the ground truth of feature
matches especially for the case of non-rigid deformation.
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(a) (b)

(c) (d)

Fig. 8. Feature matching results by match propagation. (a) Bowel image pair, by local method. (b) Bowel image pair, by global method. (c) Girl image
pair, by local method. (d) Girl image pair, by global method.

In this experiment, the correctness of a match is visually
judged in terms of the consistency of its corresponding key-
points and support regions. To alleviate possible bias and errors
in this judgement, we ask 10 persons to tell the correctness
individually and only one match is shown at one time for
the ease of observation. Then a match with at least 6 votes
from the 10 persons are deemed as a correct one. Besides, for
the rigid cases (ii) and (iv) an initial epipolar filter is applied
to help identify the false matches. We first manually mark a
few point matches as ground truth to estimate the fundamental
matrix. Then a propagated match that violates the estimated
epipolar geometry, i.e., one pixel deviated from the epipolar
line, is automatically detected as a false match before the
subjective judgement.

The second measure region coverage is introduced because
we are not only concerned with the number of correct matches,
but also interested in to what extent the object region in the
target image is covered by the correctly propagated features.
For this purpose, we first manually mark in the target image
the ground truth region Rg that should have correspondence
in the reference image. We then measure the region Rp which
is composed by superimposing the support regions of all
correctly propagated features. Thus region coverage is defined
by (13), where Rg ∩ Rp and Rg ∪ Rp represent the intersection
and union of the two regions, respectively. This measure will
favor the case that Rp mostly conforms to Rg

region coverage = Rg ∩ Rp

Rg ∪ Rp
(13)

Experimental results in terms of ratio of correct matches
and region coverage are summarized in Table II. The global
method consistently outperforms the local method in terms
of both measures, especially for the weakly textured image
pairs, including bowel, f ace, yoga and girl. While for highly
textured image pairs, i.e., michelle, blonde, ovo and church,
the two have close performance. In average, the global method
achieves nearly 10 percent better in terms of both measures.

TABLE II

PERFORMANCE OF MATCH REFINEMENT AND PROPAGATION

Image Rcorrectmatch Rcoverage

Pairs Local Global Local Global

Bowel 0.812 0.948 0.704 0.865
Face 0.747 0.892 0.659 0.819

Y oga 0.761 0.937 0.734 0.887
Girl 0.802 0.955 0.775 0.894

Michelle 0.908 0.936 0.816 0.882
Blonde 0.914 0.943 0.827 0.876

Ovo 0.971 0.979 0.890 0.901
Church 0.868 0.922 0.797 0.848

Average 0.847 0.939 0.775 0.871

As expected, the proposed affine consistency does help
regularize match propagation especially when local appearance
is less reliable. This can be observed as well in Fig. 8,
where the matching results of bowel and girl image pairs
are visually displayed. In Fig. 8 the green ellipses represent
the correctly matched features and the red ellipses show the
false ones. We can see that the features propagated by the
global method have better accuracy of keypoints and support
regions, and in general present more smoothly changing facets
due to the affine consistency imposed. Another observation is
that mismatches produced by the local method mostly come
from low texture surfaces, while most mismatches yield by
the global method (and some by the local method) are due to
the fact that the features’ support regions are two complex to
be modeled by planar surfaces.5 Fig. 8 also shows the region
coverage results in bowel and girl target images. The area
included by the white-red boundary indicates the intersection
of regions Rg ∩ Rp . It can be clearly observed that the features
propagated by the global method are able to cover more object
surfaces. Regarding the factor of image transform, no clear
distinction in performance can be observed in Table II. Both

5Specifically, the regions may contain strong surface discontinuity or be
partially occluded in the target image



CUI AND NGAN: GLOBAL PROPAGATION OF AFFINE INVARIANT FEATURES FOR ROBUST MATCHING 2885

methods work well for highly textured scenes either with rigid
transformation or non-rigid deformation. Whereas our global
method is apparently superior for low texture scenes due to
the regularization by affine consistency.

B. Object Recognition

In the most related work [5], Ferrari et al. applied their
contraction and expansion (referred to as local propagation
in this paper) method to simultaneous object recognition and
segmentation, and demonstrated its success for highly textured
objects. However, they also mentioned that their method may
not be suitable for objects with weak texture. In comparison,
we have shown in Section V-A that our method is able to
handle both highly and weakly textured objects, and overall
achieves better performance in the image matching experi-
ment. In this section, the capability of our method to deal
with low-texture and non-rigid objects is further demonstrated
by an experiment of leaf recognition.

The model and test images are selected from the database
used in the Smithsonian project.6 There are four classes
A, B, C and D, each with a single model image and five
test images, as shown in Fig. 9. The leaf samples in these
images are typically non-rigid and weakly textured, and the
four classes are very similar to each other in appearance. In
this experiment, recognition is done by matching all pairs
of model and test images (totally 4 × 20 = 80 pairs),
and counting the amount of matches. For comparison, image
matching is done by four different methods, namely “original,”
“filter,” “local” and “global.” “original” method just performs
descriptor matching of Affine Harris and Hessian features as
in Section III-C. “filter” will further employ the proposed geo-
metric filter to remove the outliers by “original.” “local” will
then apply the local propagation [5] based on the matches after
filtering, while “global” uses the proposed global propagation
instead of the local method.

The resulting ROC (receiver operating characteristic) curves
for the four classes are presented in Fig. 10, which depict
the detection rate versus false-positive rate while varying the
detection threshold, i.e. the number of matches. It can be
observed in Fig. 10 that the “global” method consistently
outperforms the other methods for all the four classes. In
comparison, the performance of “local” method is quite unsta-
ble. In Fig. 10(a), its ROC is even significantly lower than
“original” and “filter.” We believe the main reason is that the
local propagation generates a lot of false matches due to the
poor discriminative power of leaf textures.

In Table III, we give the overall recognition rate. A test
image is deemed to be successfully recognized if its matches
found in the corresponding model image is more than those
found in the other three model images. Results in Table III
suggests that the proposed mismatch filter and global match
propagation can help improve the recognition rate of the low-
texture leaves, while the local propagation cannot help in this
case.7

6Available at: http://www1.cs.columbia.edu/cvgc/efg/.
7Note that “local” is based on “filter” but its performance is worse.

Fig. 9. Test and model images for leaf recognition.

TABLE III

RECOGNITION RATE BY DIFFERENT MATCHING METHODS

Original Filter Local Global
0.60 0.75 0.65 0.85

C. Image Based Rendering

Lastly we extend the application to image based rendering.
We show that due to the good accuracy and coverage of the
features found by our method, a simple mesh modeling can
be used to reconstruct and render the object surfaces from
only two wide baseline images. Note that most existing auto-
mated 3D reconstruction approaches [2], [17], [21], [22] either
assume narrow baseline configuration or require multiple input
images (at least three).

Our feature-based modeling and rendering approach
involves several steps. First, a sparse set of feature correspon-
dences is generated by descriptor matching as in Section III-C.
Next, a quasi-dense set of matches is produced by performing
the proposed affine consistency filter and global match prop-
agation which are described in Section III and Section IV,
respectively. Note that in match propagation, epipolar con-
straint for rigid scene can be used to reduce the search space of
2D translation (tx , ty) to 1D disparity along the epipolar line.
Based on the quasi-dense matches, a 3D triangular mesh model
can then be constructed with the cameras fully calibrated. By
taking into account the fact that the sampling rate of new
features is still limited and the object surface may be very
complex, we employ the image consistent surface triangulation
[14] to find the best mesh surface in the sense that the
appearances of the meshes are most consistent between two
views. Finally, for each triangular mesh, we map the textures
of the two input views onto the novel view by homography,
and then blend the two warped textures for rendering.

The feature-based rendering approach is tested on real
image datasets where the images are captured from signifi-
cantly different viewpoints.

Girl (659 × 493): Fig. 11(a) and (b) show the two input
images where the object is weakly textured. The angular
spacing between the two views is more than 30 degree.
To help define the object of interest, we additionally provide
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Fig. 10. ROC curves by different matching methods. (a)–(d) ROC for classes A, B, C, and D.

(a) (b) (c) (d) (e) (f) (g)

Fig. 11. Rendering results of Girl sequence. (a) and (b) Two input images. (c) Image of ground truth. (d) Virtual image of (c) by the proposed method.
(e) Virtual image of (c) by local propagation. (f) Difference image between (c) and (d). (g) Difference image between (c) and (e).

a silhouette in the reference image as shown in Fig. 11(b).
And in match propagation new features are also sampled along
the silhouette to match the object boundary. The resulting look-
around sequence of the novel views generated by the proposed
method can be found at http://www.ee.cuhk.edu.hk/∼chcui/.
Despite the difficulties of only two input images, widely
separated views and weakly textured surfaces, the synthesized
views are with high fidelity and the look-around sequence
presents natural and smooth visual transition across views.
In Fig. 11(c), an additional view is captured by the camera and
used as the ground truth. Fig. 11(d) shows the virtual image
of the object synthesized by our method, which is observed
from the same viewpoint as in Fig. 11(c). The difference

between the virtual image and the ground truth image is shown
in Fig. 11(f), where the darker the image the smaller the
magnitude of the RGB difference vector.8 As we can see, the
only noticeable differences are due to some self-occlusions
that cannot be accurately modeled by the mesh facets. For
comparison, Fig. 11(e) shows the rendering result by using the
local propagation instead and Fig. 11(g) shows the difference
image of (e) and the ground truth (c). In Fig. 11 (e) and (g)
we can notice a few distortions around the girl’s face, arms
and fingers and the toy’s feet, while Fig. 11(d) is free of such
distortions.

8This measure is more sensitive than intensity difference.
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(a) (b) (c) (d)

Fig. 12. Rendering results of Cityhall sequence. (a) and (b) Two input images. (c) and (d) Two virtual views synthesized by the proposed method.

Cityhall (768 × 512): The original Cityhall sequence [18]
consists of seven images of size 1536 × 1024. In this
experiment, we choose only two of them as the input images
shown in Fig. 12(a) and (b), and downsize the images to one
fourth of the original size. Different from Girl, the Cityhall
scene is well textured but the two input images present strong
scale change and perspective deformation. This time the whole
image of Fig. 12(a) is defined as the object of interest. Our
method is then used to generate a video sequence that shows
the visual transition from the viewpoint of Fig. 12(a) to that of
Fig. 12(b). For the complete rendering sequence, please refer
to http://www.ee.cuhk.edu.hk/∼chcui/. In Fig. 12(c) and (d),
we gives two virtual views extracted from the sequence. It can
be observed that most of the annoying distortions come from
the occluded parts that inherently cannot be matched and well
modeled. For the remaining parts, the visual quality is quite
satisfactory. The texture details are well preserved and most
of them are free of artifacts.

To conclude, we have shown in this experiment that mod-
eling by a quasi-dense set of features found by our method
is sufficient to generate realistic synthetic views. The sparsity
of features can simplify the 3D representation and reduce the
data storage and memory cost. The capability of handling few
images with significant viewpoint change allows for flexible
camera layout and can reduce the cost and effort of multi-view
system setup.

D. Computational Complexity

The most time-consuming part of our method lies in the
match propagation. Despite the number of initial matches, the
convergence of match propagation generally takes 10 to 15
iterations throughout our experiments, and the curve shown
in Fig. 6(a) is typical for most of our test images. Note
that from Fig. 6(a) the number of unstable matches drops
quickly, which means that the computations keep decreasing
proportionally through iterations. It is reported that the local
method [4] typically takes 3 to 10 iterations for each match.
Let N be the number of matches to be refined and let us
approximate the curve in Fig. 6(a) by a straight line. Thus
the global method takes 5N to 7.5N evaluations of f (9)9

over the bounded 6D space, while the local method takes
3N to 10N evaluations of the similarity over the same space.
Since evaluating the similarity is much more expensive than
evaluating the affine consistency, the global and local methods
should have similar computational cost. This is verified by our

9A combined measure of similarity and affine consistency.

TABLE IV

RUNTIME (s) of Match Propagation

Method Mean Std Max Min
Global 298.6 86.3 611.9 150.0
Local 382.3 121.5 815.8 193.3

experiment. Table IV summarizes the runtime of computing
match propagation for the 80 image pairs in Section V-B. It is
implemented in non-optimized MATLAB code and measured
on a Core Duo T2400 1.83 GHz windows laptop. The result
turns out to be that the global match propagation is faster than
the local method [4] [5].

VI. CONCLUSION

Appearance-based matching is likely to fail for surfaces that
are poorly textured. In this paper, we emphasize the combi-
nation of local appearance and local geometry to solve this
problem. Traditional matching methods rely on appearance
descriptors only, thus may produce a lot of mismatches when
clutters and viewpoint changes become significant. To remove
these outliers, we propose an efficient geometric filter based on
the consistency of local affine geometry. The filter is demon-
strated to have excellent performance even when the images
contain extensive clutters and the objects undergo strong non-
rigid deformation. We then propose a global optimization
method to refine the remaining matches and to propagate more
matches that can densely cover the object surface. By imposing
the affine consistency of affinities in the global function, our
method can successfully regularize the weakly textured regions
and meanwhile respect the depth discontinuities. Experiments
in image matching show that the proposed global method
has close performance to the local method [5] for highly
textured surfaces, and is superior in dealing with the low-
texture surfaces. To demonstrate the applications, we apply
the proposed geometric filter and global propagation method
to object recognition and image based rendering. We show
that the proposed method can help improve the recognition
rate of non-rigid low-texture leaves, and is able to synthesize
high quality novel views from only two images with significant
viewpoint change.
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