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Abstract— Modeling subjective opinions on visual quality is a
challenging problem, which closely relates to many factors of
the human perception. In this paper, the additive log-logistic
model (ALM) is proposed to formulate such a multidimensional
nonlinear problem. The log-logistic model has flexible monotonic
or nonmonotonic partial derivatives and thus is suitable to model
various uni-type impairments. The proposed ALM metric adds
the distortions due to each type of impairment in a log-logistic
transformed space of subjective opinions. The features can be
evaluated and selected by classic statistical inference, and the
model parameters can be easily estimated. Cross validations on
five Telecommunication Standardization Sector of International
Telecommunication Union (ITU-T) subjectively-rated databases
confirm that: 1) based on the same features, the ALM outper-
forms the support vector regression and the logistic model in
quality prediction and, 2) the resultant no-reference quality met-
ric based on impairment-relevant video parameters achieves
high correlation with a total of 27 216 subjective opinions on
1134 video clips, even compared with existing full-reference qual-
ity metrics based on pixel differences. The ALM metric wins the
model competition of the ITU-T Study Group 12 (where the vali-
dation databases are independent with the training databases)
and thus is being put forth into ITU-T Recommendation P.1202.2
for the consent of ITU-T.

Index Terms— Correlation and regression analysis, feature
evaluation, image quality assessment, multivariate statistics.

I. INTRODUCTION

MODELINGsubjective appraisal, such as opinion survey
and credit scoring, is a common problem in the field of

psychophysics, economics, education, cognitive science, and
artificial intelligence. Considering a set of entities conforming
to a predetermined population of interest, subjective appraisal
about the focused entity’s properties, often being rated from
“best” to “worst” with limited scales, is expected to be
modeled and thus predicted by a mathematical function with
respect to the entities’ features. In this study, we focus on the
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subjective quality of networked videos, which widely applies
to video coding, video service diagnosing and optimizing,
and multimedia service recommending [1]. Given the video
clips compressed by a standard source codec and impaired
by typical transmission errors, their perceived quality under
regular viewing environments is to be modeled by a function
about video features. A good model should match its
predicted quality scores with the ground truth of subjective
opinions.

Visual quality metrics are usually classified to the full-
reference, reduced-reference, and no-reference metrics
according to the availability of the reference (i.e., the original
unimpaired video), and to the packet-layer, bitstream-layer,
and pixel-layer metrics according to the accessible stage of
video data. No-reference metrics have the widest scope of
applications due to their possibilities to be used even when
the reference is not available or too expensive to process [2].

Feature selection and model selection are the basic issues
of modeling [3]. From the point of view of the features and
models selected, we may have a different perspective about
visual quality metrics. Modeling methodology for visual qual-
ity metric may be classified to (A) causal modeling, (B) regres-
sion, and (C) statistical learning. The features employed by the
state-of-the-art metrics often include: (a) difference between
the impaired video and the reference, (b) deviance from the
impaired video to the priori, (c) impairment-relevant config-
urations in the processing chain of video data, and (d) other
heuristic features of video.

To the researchers of (A) causal modeling, visual quality
models must account for visual perception regularities. They
attempted to model how the human visual system (HVS)
responses to visual stimuli, especially from the early stage
of visual perception. If the reference is available to the
HVS, they exploited features (a), like pixel difference, statistic
difference [4], etc. If the reference is absent, features (b)
are natural candidates, such as the continuity among neigh-
borhood pixels, the singularity across edges, the correlation
between spatial-frequency sub-bands, etc. [1], [2]. Features
(b) usually capture the artifacts like blockiness, blurriness,
jerkiness, etc. [1], [2]. In the causal models, the select features
were frequently inspired by visual-psychological experiments
(like a recent example [5]) or derived by theoretical model
(e.g., information-theoretical analysis [6]). The causal models
generally concentrate on the ordinal match between objective
predictions and subjective opinions. For numerical match,
it requires a monotonic map from objective predictions to
subjective opinions additionally. The inherent complexity of
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the HVS, unfortunately, makes such models far from true
causal models.

With access to an increasing number of subjective
image/video quality databases, visual quality metrics can be
learned from data, and thus the (B) regression and (C) statis-
tical learning methods become more popular in this field. An
additional monotonic map from objective predictions toward
subjective opinions is not indispensable any longer, since
it has been learned and contained in the statistical models.
Moreover, the features can not only be designed empirically
as in causal modeling, but also be evaluated and gauged by
statistical inference. The difference between (B) and (C) is:
in conventional regression the functional forms linking the
quality to the features are predetermined before the fitting
process, while in statistical learning the functional forms are
generally arrived inductively from data [3].

Besides features (a) and (b), some configurations in the
processing chain of video data [i.e., features (c)] were also
exploited in (B) regression [8]–[10] and (C) statistical learning
[11], [12] methods. For example, source configurations, like
QP (quantization parameter), can forecast visual quality after
compression, while channel configuration, e.g., packet loss
rate, can forecast visual quality with packet loss. The source
and channel configurations are the reasons of video impair-
ments, and yet do not deterministically impair a video block
or cause a distortion (for example, when the packet loss rate is
known as 1% we cannot tell exactly which block will be lost
and how bad the loss will be). Nevertheless, the configuration
variables highly correlate with visual quality of video stream.
They may be deemed as statistical descriptions of video. We
call the feature (c)-based models descriptive models because
visual quality is predicted according to statistical descriptions,
following Zhu’s conceptualization [13].

It is a step-wise roadmap of firstly modeling the qual-
ity attributes due to each type of impairments or artifacts
and then combining them to a total quality (e.g., [10],
[14]–[16]). However, for the video with hybrid impairments,
which presents diversified artifacts, it is still an open problem
how to combine multiple quality attributes to a composite
prediction, since various impairments or artifacts may affect
the perceived quality in different manners. Recent studies
[10], [14] use a product function to combine the quality
attributes in the subjective opinion space, this may work well
in practice but is based on little ground. Another relevant
method, multidimensional scaling (MDS), attempt to find an
embedding from the subjective opinion space to a quality-
attribute-relevant feature space such that distances were pre-
served [17]–[20]. MDS does not derive from raw data, but
from the distance between every two data points. A simple
distance metric (often Euclidean distance) in the attained
feature space is guaranteed to be isotonic with the distance in
the subjective opinion space. Thereby, how to combine quality
attributes has been defined by the distance formulation. Yet,
MDS is criticized as the attained feature spaces lack physical
meanings [2].

The problem of quality-attributes combination is not explic-
itly addressed by (C) statistical learning either. Although
machine learning tools including the support vector regression

[15], [21] and the neural network [11], [22] present a general
way to exploit high dimensional features from all of (a)∼(d)
(e.g., metadata in bitstream [11], content measures [22], scene
statistics [15], mel-cepstrum [21], etc.), they seldom provide
explicit relationship about visual quality against features.

Some prior arts deemed quality assessment as a classifi-
cation problem: whether visual artifacts [23] or target signals
[24] can be accurately perceived or not. Statistical learning
methods (C) are preferred for such problem formulations.

Our study differs from the prior modeling methods in two
aspects. First, we aim at an explicit model (rather than a
black box) with not only good prediction accuracy but also
the plausibility in visual perception and the feasibility for
quality optimization. Second, the features of model can be
evaluated for selection and the modeling can thus be adaptive
to the emerging applications and data. For this purpose, we
keep the model simple (i.e., general linear) and complete
(i.e., covering the monotonic map), so the parameters can be
reliably estimated and the statistical significance of features
can be inferred.

In this paper, first, we aim at formulating a new functional
forms to better capture the relationship of visual quality against
the features extracted from videos; second, we proposes a
no-reference video quality metric considering both bitstream
and pixel layer information of videos with hybrid impairments.
We develop a step-wise regression framework with regularized
procedures of feature selection and parameter estimation,
for modeling subjective appraisal. That is, our methodology
belongs to (B) regression, and our metric uses features (c)
and (b). The proposed method is also expected to be applicable
to full-reference measurement.

The rest of the paper is organized as following. The additive
log-logistic model is derived in Section II, where the roadmap
of step-wise regression is sketched in Section II-A, uni-type
impairments are modeled in Section II-B, hybrid impairments
are involved in Section II-C, and then the objective function of
the modeling is formulated in Section II-D. Feature selection
and parameter estimation for the framework are presented in
Section III. The features in the proposed ALM metric are
described in Section IV. The experimental results are reported
in Section V, followed by the conclusion in Section VI.

II. MODEL SELECTION

A. Model Architecture

When a video suffers from hybrid types of impairments,
subjects usually assess its quality according to all types of
distortions in it. We introduce latent variables, {d}, to denote
the distortion due to each type of impairment, and the final
quality score comes from a combination of all the distortions.

The latent variables often are not measurable straightfor-
wardly. However, given a set of videos which suffer from
only one type of (i.e., uni-type) impairment, we can learn
the quality attribute as only one latent variable is activated
(i.e., taking a nonzero value). Thus, we can learn the quality
model by two steps.

In the first step, we determine the quality attribute function
for each uni-type impairment. In the second step, we optimize
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the total function on video samples with hybrid impairments,
under the constraints that the partial form of the total function
should match the attribute functions determined in the first
step. To some extent, the second step is similar with the
problem of recovering the joint probability distribution from
marginal distributions, or reconstructing a 3D structure from
2D projections. We select features in the first step while
estimate parameters in the second step.

Without loss of generality, supposing there are totally three
types of impairments, denoted by c, s, and f respectively.
The above process can be formulated as: in the first step,
we investigate the quality function fc (dc | ds = df = 0) for c,
fs (ds | dc = d f = 0) for s, and ff (df | dc = ds = 0) for f; in
the second step, we explore the total function f (dc, ds, df)
under the following constraints:

⎧
⎪⎨

⎪⎩

f (dc, ds, df |ds = df = 0 ) = fc

f (dc, ds, df |dc = d f = 0 ) = fs

f (dc, ds, df |dc = ds = 0 ) = ff .

(1)

In order to satisfy the equations above, we introduce a
transform g and assume:

g ( f (dc, ds, df)) = g ( fc (dc)) + g ( fs (ds)) + g ( ff (df)) (2)

that is

f (dc, ds, df) = g−1(g ( fc (dc))+g ( fs (ds))+g ( ff (df))). (3)

Note that we have fc (0) = fs (0) = ff (0) = qbest since
a video always achieves the best quality when no impairment
happens. Then, if g (qbest) = 0, Constraints (1) will be easily
satisfied. For example

f (dc, ds, df | ds = df = 0)

= g−1 (g ( fc (dc)) + g ( fs (0)) + g ( ff (0)))

= g−1 (g ( fc (dc)) + g (qbest) + g (qbest))

= g−1 (g ( fc (dc)))

= fc (dc) .

Assumption (2) is not strong, since we only require
g (qbest) = 0 till now. There are many choices for g, e.g.,
the logarithm function. Yet, if we need to keep f flexible in
fitting data and guarantee g easy to be solved, the design of
g should be closely dependent with the forms of fc, fs, and
ff . In the next subsections, we firstly present the log-logistic
regression [25] for fc, fs, and ff , and then we design g.

B. Log-Logistic Regression for Uni-Type Impairment

This subsection addresses how to measure the uni-type
impairment in the first step. We find that (univariate) log-
logistic functions with respect to the configurations of the
processing chain under consideration can measure uni-type
impairments with a fairly good accuracy. And if taking into
account the content features of videos, (multivariate) log-
logistic functions can do better. Here, we focus on the general
form of log-logistic models, and the select features will be
described in detail in Section IV.

A uni-type impairment can be roughly measured by a
univariate log-logistic model as

q = f (x; a, b)
def= 1

1+ axb
, (x ≥0, a >0; 0< q <1). (4)

where a and b are the model parameters. The unique indepen-
dent variable x may be the key-factor for impairment (such
as QP for compression, impaired block rate for slicing, or
freezing duration for freezing). It is easy to testify: a log-
logistic curve is monotonic, and parameter b controls the
existence and location (if existing) of the turning point of the
log-logistic curve. A log-logistic model can be transformed to
a logistic model as

flogistic = 1

1 + ea′+bx ′ , (x
′ = logx, a

′ = loga). (5)

It is true that logistic models are popular in statistical
regression and machine learning. One of their popular but not
necessary characteristics is to map a variable from (−∞,+∞)
to (0, 1) via a symmetric sigmoid curve. However, features are
often bounded or at least semibounded in real applications. For
example, QP normally ranges from 1 to 51 in the H.264 codec,
and the impaired block rate is always nonnegative. Thus, x
seldom takes a value on the whole range of (−∞,+∞), but
log x is more likely to suffice. And therefore, a log-logistic
function is often more suitable than the naïve logistic function.
With the extra logarithm transform of features, a log-logistic
curve can fit with a more flexible shape than a logistic curve.

Considering that a uni-type impairment is not only con-
trolled by the key-factor but also affected by the visual content,
a log-logistic model can take into account multiple variables as

q
def= 1

1 + a·zb1 · xb0
, (x, z ≥ 0; a > 0). (6)

where a, b0, and b1 are the model parameters, and z is
thought of as the co-variate associated with the key-factor x .
For example, z may be a feature of content complexity and
play the role of masking effect; z helps to estimate the decay
(growth) trend of q with respect to x . Indeed, multiplication
is commonly used to simulate masking effect [7], probably
because human’s sensitivity to the distortion is thought of
being attenuated by masking effect. Both x and z are the
features, and we thus denote them by x = {x, z1, z2 · · · },
where more co-variates of course may be considered.

Like logistic models, log-logistic models belong to the
generalized linear model (GLM) [26]. With a link function,

g (q) = 1 − q

q
. (7)

Model (6) can be rewritten as:

logg (q) = b0x
′ + b1z

′ + loga, (x
′ = logx, z

′ = logz).

Every type of impairments in this study can be efficiently
fitted by a log-logistic model. The model parameters are
easily solved, and the features can be evaluated by statistical
inference as introduced in Section III.
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C. Additive Model for Multitype Impairment

Attribute functions fc, fs, and ff share the same form
as (6). It inspires us to introduce the transform g below for
the additive model (2)

g (q)
def=
(

1 − q

q

)1/β

(8)

where β is a positive real parameter. Then, the total function
(3) becomes

f (dc, ds, df) = 1

1 + (dc + ds + df)
β

where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dc = g ( fc) =
(

aczbc1
c xbc0

c

)1/β

ds = g ( fs) =
(

asz
bs1
s xbs0

s

)1/β

df = g ( ff ) =
(

af zbf1
f xbf0

f

)1/β
.

(9)

Framework (9) belongs to the generalized additive model
(GAM) [27], with a linked form

g ( f (dc, d s, df)) = dc + ds + d f .

So we call it an additive log-logistic model (ALM).
The transform g with parameter β determines a metric

space, where the distortions are addable. Such linear metric
space is not that explicit and can scarcely be obtained from a
fixed transform of the subjective opinion space. This is because
quality appraisal has dependency with context. Subjects cannot
assess an isolated entity without being demonstrated how the
“best” and the “worst” ones look like. To be specific, a video
tends to be assessed with a better MOS (mean opinion score)
if the quality of other videos look worse; the MOS difference
between a video pair tends to decrease if all the other videos
look much worse than the video pair and also if all the
other videos look much better. Therefore, equal distortions in
perception may not correspond to equal MOSs in different
context; equal distortion differences in perception may not
correspond to equal MOS differences; and the transform
between the subjective opinion space and the distortion space
may be not fixed if the context is not consistent. Parameter
β permits transform g to adapt to the data. If taking the total
distortion dc + ds + df as the independent variable, β controls
the log-logistic curve shape like b in (4).

D. Objective Formulation

After selecting the GLM for uni-type impairments and the
GAM for the multi-type impairments, we make an assumption
on the priori distribution of opinion scores, and then can
estimate parameters by the maximum likelihood method. In
this paper, we assume binomial rather than Gaussian as the
priori distribution of opinion scores, since:

1) The opinion scores are factually bounded.
2) The opinion scores on an individual sample show an

approximately symmetrical distribution when they rank
in the center (i.e., intermediate quality), but a skewed
distribution with a heavier tail towards the center than
towards the border when they rank in the border (i.e.,
the worst or best quality), as demonstrated in Fig. 1.
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Fig. 1. Fitting histogram of opinions by binomial distribution. The video
clips with equal MOS from the databases (see Section V-A) are regarded as
an identical sample. Their opinion scores (on five-point scale: 0 ∼ 4) show an
approximately symmetrical distribution for MOS = 2, but skewed distribu-
tions for MOS 0.83 and 3.17.

The similar non-Gaussianities were also reported in
psychological measurements [28], [29]. The skewed
distribution occurs due to the flooring and the ceiling
effects [30].

3) For the log-logistic regression, the assumption of
binomial distribution may simplify the likelihood [as
Eq. (13)] and thereby facilitate parameter estimation and
feature evaluation, compared with Gaussian distribution.

Let us consider the binomial probability function for an
opinion variable o, given by

Pr (o = s) =
(

S
s

)

qs (1 − q)S−s, (s = 0, 1, . . . , S) (10)

where the opinion variable o takes a value on (S + 1)-point
scale (S = 4 in this study). Distribution (10) has a mean of
qS, and q is thus the mean of the normalized scores. Then,
the total opinion O on identical video clip rated by a total of
M subjects conforms to:

Pr (O = s) =
(

M S
s

)

qs (1 − q)S−s

(s = 0, 1, . . . , M · S). (11)

Distribution (11) has a mean of qMS. We often pay attention
to the normalized mean opinion s/(MS), i.e., the normalized
MOS. f (xn) predicts not only the normalized MOS but also
parameter q indeed, and hence we use the same symbol q to
denote the parameter of binomial distribution and the visual
quality.

For a total of M observed opinions on the n-th video clip,
{omn}, their log likelihood as a function of qn is thus derived
as

L (qn; omn) =
M∑

m=1

[

omnlog

(
qn

1 − qn

)

+ Slog (1 − qn)

]

(12)

where qn will be predicted by f (xn), and the constant
function of omn not involving qn , namely

∑
log
(

S
omn

)
has

been omitted. In the rest of the paper, we always discuss the
normalized MOSs, that is MOSn = ∑m omn

/
(M S). The log

likelihood normalized by M S for all MOSs is

L (q, MOS)=
N∑

n=1

[

MOSn log

(
qn

1−qn

)

−log

(

1+ qn

1−qn

)]

. (13)
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TABLE I

KEY-FACTOR EVALUATION FOR UNI-TYPE IMPAIRMENT

95% CI of bi0
fc : (Q P |φ) −1.58 ± 0.39
fs : (E R |φ) 0.52 ± 0.16
ff : (F D |φ) 0.51 ± 0.23

TABLE II

CO-VARIATES EVALUATION FOR UNI-TYPE IMPAIRMENT

Pr
(χ2

1 >�Dev)
90% CI of bi1

fc : (log(CU + 1) | Q P) 0.0986 −0.553 ± 0.551
fs : (log(CU + 1) | E R) 0.0689 −0.326 ± 0.297
ff : (log(M H + 1) | F D) 0.2562 0.211 ± 0.306

The likelihood (13) and the link function (8) share the same
unit q/(1 − q). This is partly the reason why the logistic and
the log-logistic functions are natural to model the binomial-
distributed response variables. As discussed in Section III,
likelihood (13) will be frequently used for parameter estima-
tion and feature evaluation.

III. FEATURE EVALUATION AND PARAMETER ESTIMATION

A. Feature Evaluation

Before instantiation of the log-logistic models, the features
need be evaluated and selected for each uni-type impairment
respectively. Forward selection is adopted, that is, to initialize
a null feature set and add the best unselected features at each
stage until no further candidates satisfy the selection criteria.
A new feature is accepted when:

Criterion 1: It brings a significant performance gain in
goodness-of-fit.

Criterion 2: Its parameter b has a confidence interval not
overlapped with 0, since b = 0 implies the feature is omitted.

For Criterion 1, we use the reduction in likelihood to judge
the goodness-of-fit. Deviance is defined to be twice of the
difference between the maximal log likelihood and the log
likelihood attained under the fitted model [26]. The maximal
log likelihood (13) is attained at the perfectly fitted points
q̃ = MOS. Under any given model, H0, with fitted quality
scores q̂0, the deviance function, denoted as Dev, is

Dev
(
q̂0
) = 2l (q̃; MOS) − 2l

(
q̂0; MOS

)

= 2
N∑

n=1

[

MOSn log

(
MOSn

q̂0n

)

+ (1 − MOSn) log

(
1 − MOSn

1 − q̂0n

)]

. (14)

A lower deviance means a higher attained likelihood and thus
a better fitted model.

Let the “null” hypothesis H0 denote the model under test
and the “alternative” hypothesis H1 denote the extended model
containing an additional feature. The corresponding fitted
quality scores are denoted by q̂0 and q̂1 respectively. We judge
the gain in goodness-of-fit, by the reduction in deviance

�Dev = Dev
(
q̂0
)− Dev

(
q̂1
)

= 2
N∑

n=1

[

MOSnlog

(
q̂1n

q̂0n

)

+ (1 − MOSn) log

(
1 − q̂1n

1 − q̂0n

)]

. (15)

The reduction in deviance, denoted by �Dev, equals twice
of the increase from the log likelihood under the test model to
that under the fitted model with the addition of a new feature.
It is approximately distributed as χ2

1 , i.e., chi-square distribu-
tion with the degree of freedom being equal to the number of
the additional feature, i.e., 1. (p. 119 in [26]). The more reduc-
tion in deviance, the less probability of H1 has a statistically
indistinguishable performance as H0, and thus the stronger
evidence to support that there is a significant performance gain
in H1 over H0. The significance of the reduction in deviance
is often quantified in terms of the cumulative probability of
that a χ2

1 -distributed variable is greater than the reduction in
deviance, denoted by Pr(χ2

1 >�Dev) and reported in Table II,
Section IV-D.

For Criterion 2, we use the confidence interval (CI) of the
corresponding parameter bi j , as reported in Tables I and II
of Section IV-D. An adaptation of the central limit theorem
states that the sampling distribution of the estimated parameter
b̂ approximately conforms to a normal distribution [26]. The
α confidence interval of b̂ is calculated by

b̂ ± t(1−α/2) · I−1(b) (16)

where I (b) is the second partial derivative of the log-
likelihood with respect to b (p. 18 and p. 41 in [31]), t(1−α/2)

means the (1 − α/2) percentile of student’s t-distribution.

B. Parameter Estimation

After framework (9) is instantiated, the parameters are
estimated. This is posed as a regression problem based on
maximum likelihood:

max{ai ,bi, j },{βu }

U∑

u=1

Nu∑

n=1

L
(
qu,n; MOSu,n

)
. (17)

Referring to Eq. (13), the total likelihood is counted by the
outer summation over totally U independent databases and
the inner summation over totally Nu samples from the u-th
database. Although parameters {a, b} in framework (9) are
fixed across databases, we suggest adaptive βu for the u-th
database and fitting a new β for a coming dataset. During
training, adaptive β can balance the system deviation (e.g.,
the misaligned flooring and ceiling effects) due to the incon-
sistent configurations across databases (e.g., distortion range,
impairment combination, and error pattern), and hence {a, b}
can focus on characterizing the intrinsic process of quality
assessment (e.g., distortion pooling and combination).

The partial derivatives of the log-likelihood with respect to
each element from {a, b} and {βu} are available as

∂
∑

logL

∂ logai
=

U∑

u=1

Nu∑

n=1

(
qu,n − MOSu,n

)
βudi

∑
i di



ZHANG et al.: ALM FOR NETWORKED VIDEO QUALITY ASSESSMENT 1541

∂
∑

logL

∂bi0
=

U∑

u=1

Nu∑

n=1

(
qu,n − MOSu,n

)
βudi logxi

∑
i di

∂
∑

logL

∂bi1
=

U∑

u=1

Nu∑

n=1

(
qu,n − MOSu,n

)
βudi logzi

∑
i di

∂
∑

logL

∂βu
=

Nu∑

n=1

[(
qu,n − MOSu,n

)
log (�i di )

]
(18)

where i indexes the type of impairments, e.g., i∈ {c, s, f}; di

and qu,n can be computed by using the current estimations of
{a, b} and {βu} according to Eq. (9). Certainly, it is feasible
to estimate a single β value for all databases, by

∂
∑

logL

∂β
=

U∑

u=1

Nu∑

n=1

[(
qu,n − M OSu,n

)
log (�i di )

]

βu = β, (u = 1, 2, . . . , U). (19)

The Hessian matrix can be derived too. Note that we
solve the logarithmic ai , so as to guarantee them always
positive. Consequently, the problem may be tackled by the
conjugate-gradient method. The MATLAB code of the para-
meter estimation for additive log-logistic models is available
at: http://ivp.ee.cuhk.edu.hk/projects/demo/piqm/index.html.

Framework (9) belongs to the GAM. As pointed out in [27],
failure to converge is rarely a problem, unless the data are
sparse and MOS = 0 or MOS = 1 for certain video clips,
which can be avoided in the preprocessing.

Since β monotonically maps (dc + ds + df) into [0, 1] as
shown in Eq. (9), β does not affect the ordinal match between
predicted scores and subjective opinions (as evaluated by the
Spearman rank order correlation coefficient), and yet is still
helpful for the numerical match (as evaluated by the Pearson
linear correlation coefficient).

IV. FEATURE EXTRACTION AND SELECTION

Given the functional forms, modeling quality reduces to
finding appropriate features. We firstly describe the select fea-
tures and then briefly present the process of feature selection.

A networked video is encoded to a slice-by-slice bitstream
(by the H.264 codec), packetized into transport packets, and
transmitted usually through the UDP network. Visual quality
is generally degraded due to the compression loss and the
transmission errors.

A. Compression

Compared with transmission error, lossy compression often
causes more uniform artifacts. Clip-wise features are efficient
to measure uniform impairments. Clip-wise means that the
feature is averaged over the video clip spatial-temporally.
For example, clip-wise QPT is the average of all the MBs’
(macroblocks’) QPs in the video clip.

QP may well describe the quality of the compressed videos
which share the same content, but cannot balance the influence
of the content complexity on visual quality. Meanwhile, visual
distortions in a complex scene are more likely to be tolerated
by human eyes than those in a simple scene, known as texture

masking effect or contrast masking effect; hence we introduce
CU (Content Unpredictability) to quantify the content com-
plexity. For each MB (macroblock; with 16 × 16 pixels), its
CU is the variance of the residuals in the luminance channel as

CUr
def= 1

KMB

KMB∑

k=1

(

Ir,k− 1

KMB

KMB∑

k=1

Ir,k

)2

(20)

where Ir,k denotes the k-th pixel residual in the r -th
MB. KMB is the number of pixels of MB, i.e., 256.
Generally, a greater CU after intra prediction implies a higher
spatial complexity, while a greater CU after inter prediction
suggests a higher temporal complexity. In summary, clip-wise
CUT may quantify the overall spatial-temporal complexity of
the video clip. Visual distortions are more likely to be tolerated
in complex videos with greater CUT . We call it global masking
effect.

B. Slicing

To alleviate packet loss, a decoder may utilize error con-
cealment. The common techniques include a slicing mode
and a freezing mode [32]. In the slicing mode, a decoder
repairs the lost slice using the neighbor pixels which have been
reconstructed, so not every impaired block yields a visible
distortion. The visibility of local distortion is influenced by
the error concealment efficiency and the local masking effect.
A block can be well recovered when it is highly correlated
with its temporal or spatial neighborhoods; otherwise, error
concealment may yield visible borders around the recovered
blocks, named mosaic artifacts. Besides, content itself may
mask the artifacts to some extent. Therefore, it is necessary
to identify the MB-wise visible artifacts and pool them into a
clip-wise factor. We design the key-factor to slicing as

ERT
def=
∑

t

[(
∑

r

MAt,r EPt,r

1 + TXc2
t,r

)c1
]/

(T · R) (21)

where ER is the short form for Error Rate; ERT (visible
Error Rate) is calculated by the inner summation over MBs
(spatially); the outer summation is over pictures (temporally)
and the normalization by (T•R), where r indexes the MB in
a picture, t indexes the picture in a video clip, R is the total
number of MBs in a picture and T is the total number of
pictures in a video clip; c1 relates to the temporal pooling
strategy [33]; EP (Error Propagation flag) and MA (suspected
Mosaic Artifact) are MB-wise Boolean features, respectively
indicating whether the MB is propagated by packet loss or
not and whether the MB presents suspected mosaic artifacts
or not; TX (non-edge TeXture) quantifies the non-edge texture
of an MB.

Generally, a textural region can hide more artifacts than a
smooth region or edge one. We use bilateral filter to decom-
pose each picture into a structure and a texture components. TX
is quantified by the MB variance of the texture component and
meanwhile is thresholded to 0 where the structure component
presents any prominent edges.

Fig. 2 illustrates how to derive and merge TX, MA and EP
into ER. First, each picture [Fig. 2(a)] is decomposed to a
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(a)

(c)

(e)

(f)

(i)

(d)

(b)

(h)(g)

Fig. 2. Workflow of computing key-factor to slicing. (a) Impaired picture.
(b) Texture component. (c) Structure component. (d) Texture strength. (e) Edge
map. (f) Texture mask 1/(1 + TX). (g) Mosaic artifacts MA. (h) Error
propagation EP. (i) Visible error rate map ER.

structure [Fig. 2(c)] and a texture components [Fig. 2(b)] by
7 × 7 bilateral filter [34]. The filtered picture is deemed as
the structure while the difference between the original picture
and its structure is thought of as the texture. Second, an edge
map [Fig. 2(e)] is labeled where the Sobel filtering response
on the structure component is above an empirical threshold
of 150 for 8-bit depth. The vertical and the horizontal Sobel
filtering are performed respectively and the absolute values
of the two direction responses are summed. Before filtering,
the structure component is downsampled at 1:16 so as to link
an attained “pixel” to an MB (note that an MB is sized of
16 ×16 pixels). Third, texture strength [Fig. 2(d)] is calculated
from the MBs’ variance in the texture component [Fig. 2(b)],
then is thresholded to 0 for the edge region in the edge map
[Fig. 2(e)], and finally yields the texture mask [Fig. 2(f)] by
a log-logistic mapping.

MA [Fig. 2(g)] is regarded to be true when unsmooth vertical
gradients at the MB borders are detected as (22). The second-
order gradient sums for each vertically adjacent MB pair are

calculated. Thus, each MB corresponds to an upper and a
lower gradient sums. The smaller one is compared with a
threshold c3 and determines whether the mosaic artifact occurs
on the MB as (22). c3 is set as 240 in this work

MA
def=
{

1, if min
{∣
∣
∣∇2

upper

∣
∣
∣ ,
∣
∣∇2

lower

∣
∣
}

≥ c3

0, else.
(22)

EP [Fig. 2(h)] is true if the block is lost or the block
(directly or indirectly) uses lost blocks for prediction. EP is
parsed from the bitstream directly.

Lastly, 1/(1+TX) [Fig. 2(f)], MA [Fig. 2(g)], and EP
[Fig. 2(h)] are MB-wisely merged into ER [Fig. 2(i)] as (21),
where TX occurs in the denominator and is mapped to a
masking multiplier to MA and EP by a log-logistic function;
c2 together with TX simulates the texture masking effect. c2 is
set as 1 after a grid search optimization, and the log-logistic
mapping is decreasing, and thus texture masking is large in
edge and smooth regions while small in textural ones.

C. Freezing

In the freezing mode, the decoder replaces the pictures
which have been impaired or propagated by packet losses
with their previous intact picture, until a decoded picture
without errors has been received. Therefore, each pause is
determined by the packet loss pattern and the picture types,
and can be parsed from the bitstream directly. There may be
several occurrences of pauses in a video clip. The total freezing
duration (FD) is then calculated as

FDT
def=
∑

τ
FDc4

τ

/
T (23)

where FDτ is the total number of pictures covered by the
τ -th pause and FDT is the total durations over all pauses
normalized by T (the number of pictures). In (23), c4 affects
the temporal pooling strategy [33] and is set as 0.9 after a grid
search optimization.

Each pause causes a content stagnation and then a content
skip (it differs from buffering without skip). If a scene itself
is still or nearly still, a factual freezing is often unnoticeable;
however, if a scene has homogenous (even very slow) motions,
it is easy for human eyes to identify. We introduce clip-wise
MHT to quantify the Motion Homogeneity:

MH P
def=
∑P

τ=1
max {PH τ , ZH τ }

/

P (24)

where PH quantifies the Panning Homogeneity while ZH
specifies the Zooming Homogeneity. MH P is the mean of
the maximums between PH and ZH, which is averaged over
the total of P pauses. For each pause, PH is defined as the
magnitude of the vector mean of motion field, while ZH is
defined as the mean of motion’s radial projections, as

PH τ
def= 1

R

√
√
√
√

(
∑

r≺τ

MV h,r

)2

+
(
∑

r≺τ

MV v,r

)2

ZH τ
def= 1

R

∣
∣
∣
∣
∣

∑

r≺τ

〈−−→MVr ,
�r
|�r | 〉
∣
∣
∣
∣
∣

(25)



ZHANG et al.: ALM FOR NETWORKED VIDEO QUALITY ASSESSMENT 1543

≈ 1

R

√
√
√
√

∣
∣
∣
∣
∣

∑

r≺τL

MV h,r −
∑

r≺τR

MV h,r

∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣

∑

r≺τT

MV h,r −
∑

r≺τB

MV h,r

∣
∣
∣
∣
∣

2

where the motion field is approximated by motion vectors−−→
MV ; r is the spatial index of

−−→
MV , in the picture which

just precedes the τ -th pause (denoted by r ≺ τ );
−−→
MV =

(MV h , MV v ) and �r = (rh, rv), both consisting of a hori-
zontal and a vertical components; (rhrv) is the coordinate of r
when the origin point is the center of picture; < •, • > denotes
the vector projection (i.e., dot product); R is the total number
of r in the picture. ZH is a little complicated to compute,
and hence we use a simpler method for approximation.
Firstly, we minus the sum of horizontal motion vectors in the
left half picture (denoted by r ≺ τL) by those in the right half
picture (r ≺ τR), and minus the sum of vertical motion vectors
in the top half picture (r ≺ τT) by those in the bottom half
picture (r ≺ τB). Then, the magnitude of the attained vector
is calculated and normalized by R.

PH is large when either a big object passes by the camera
or the camera is panning, tilting, booming or tracking some
objects. ZH is large when the camera is zooming or dollying.

D. Feature Selection

In this study, feature selection has involved a number of
attempts. Apart from the aforementioned QP, CU, ER, FD and
MH, the feature candidates included bit-rate, packet-loss-rate,
packet-loss-frequency, the interval from the impaired block to
the co-located one for each error concealment, the ratio of
intra- prediction among MBs, the average number of the MB
partitions for motion estimation, the mean of MVs, etc. For
each feature candidate x , we also try its variation h(x), where
transform h can adjust the range and distribution of x for
fitting and may take the forms such as:

1) Translation: x − xl or xh − x, where xl and xh are
the lower and the higher bounds of x respectively. For
example QP in H.264 video is no greater than 51 and
we find that 51−QP is more powerful than QP.

2) Logarithm: log(x − xl+1) or log(xh − x+1). The log-
arithm function may compact the maximum relative to
the minimum, and attenuate the fluctuation of x . For
example, we find that log(CU+1) is better than CU.

3) Exponential: ex . The model then turns to a log-logistic
model of f with respect to x .

The features for compression were selected by testing on
the compressed videos without packet loss; the features for
slicing corresponded to the videos with slight compression as
well as the slicing mode of error concealment; and so forth
for freezing.

We started from a null initial feature set. In the first round
of feature selection, QP, ER, and FD, were found the most
significant among the feature candidates for the uni-type of
impairment, and thus accepted as the key-factors; in the
second round, log(CU+1) and log(MH+1) were found more
significant than other candidates and thus accepted as the co-
variates; in the third round, the remaining features were found
not significant and thus rejected.

Tables I and II list the statistical inference results about
the select key-factors and co-variates, respectively. fi : (z | x)
means to add z to the attribute function fi , which has already
contained xi . The criteria which have been introduced in
Section III-A are reported, including the cumulative prob-
ability of that a χ2

1 -distributed variable is greater than the
reduction in deviance, and 90% confidence interval (CI) of
corresponding bi1. The statistical significance of a co-variate
is indicated by a lower Pr(χ2

1 >�Dev) or a narrower CI.
The influence of QP, ER, and FD is clear, since the 95%

CIs of bi0 are not overlapped with 0 in Table I. From Table II,
it mainly concludes that the influence of co-variates is limited
but in line with the well-known facts about subjective visual
quality assessment. Both CUs (of fs and ff ) satisfy that the
90% CIs are not overlapped with 0; while MH fails to satisfy.
Actually, 70% CI of MH is not overlapped with 0. Therefore,
we can only say that all the co-variates are weak features
from the view point of conventional regression. However,
CU corresponds to negative parameter b in both fc and fs.
It confirms that complex contents (with greater CU) exhibit
stronger masking effect and thus lead to higher distortion-
resilient characteristic. MV having a negative bf1 confirms that
contents with higher motion are more likely to expose the
freezing impairments. Hence, we still use these co-variates and
yet add no more co-variate. They do not to increase the risk of
overfitting, as testified by the cross validations in Section V-B.

Finally, the attribute functions are devised as

fc = 1

1 + ac
[
log (CU T + 1)

]bc1 (51 − QP T )
bc0

fs = 1

1 + as
[
log (CU T +1)

]bs1 ERbs0
T

ff = 1

1 + af
[
log (MH T +1)

]bf1 FDbf0
T

(26)

and framework (9) is instantiated as

f = 1

1 +
(

a ′
cz

b
′
c1

c x
b
′
c0

c + a ′
sz

b
′
s1

s x
b
′
s0

c + a
′
f z

b
′
f1

f x
b
′
f0

f

)β
(27)

where a
′
i = a1/β

i , b
′
i j = bi j

/
β (i ∈ {c, s, f} ; j = 0, 1).

In (27), key-factors xi are (51−QPT ), ERT , and FDT

while co-variates zi are log(CUT + 1), log(CUT + 1), and
log(MV T + 1), for compression (i = c), slicing (i = s), and
freezing (i = f), respectively.

V. EXPERIMENTAL RESULTS

A. Subjective Database

ITU-T SG 12 (Study Group 12 of Telecommunication
Standardization Sector of International Telecommunication
Union) recently built a set of subjectively-rated databases
for standardization of multimedia quality models. We choose
the databases which are specially designed for pure videos
(other than audio-videos) in IPTV (other than mobile TV)
scenario. Five databases meet our requirement, which contain
a total of 1134 impaired video clips. The five databases were
with separate source video selection, impairment generation,
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TABLE III

NUMBER OF VIDEOS IN ITU-T SG12 DATABASES

DB # 09 10 08 11 15
Resolution PAL 720 p 1080 p 1080 i 1080 p
Frame rate 25 50 30 30 25

Compression(c) 48 96 72 80 56
Slicing(s)+c 140 96 88 93 98

Freezing(f)+c 30 47 72 63 55
All 218 239 232 236 209

subjective quality assessment, and yet concerted requirements
for the configurations. These requirements were:

1) Each database used eight source videos (including four
common ones and four particular ones) as reference
videos. They were of high quality, with resolution of
576, 720, or 1080 line, at frame rate of 25, 30, or 50 fps.
The video contents were diversified along the spatial and
temporal complexity.

2) The impairments included H.264 compression, H.264
compression plus slicing (EC mode), and H.264 com-
pression plus freezing (EC mode). A predetermined
range of bitrates (BR) and packet loss rates (PLR)
gauged the level of compression loss and transmission
error respectively. For SD (standard definition, e.g.,
PAL) videos, BR may vary within 0.5 ∼ 9 Mbps
and PLR within 0.25 ∼ 2%. For HD (high definition)
videos, BR may vary within 1~30 Mbps and PLR within
0.02 ∼ 1.5%. About 30 impaired videos were generated
from each reference video.

3) Environments of subjective quality test accorded
with [35]. Subjective opinions were reported on five-
point discrete scale in a manner of ACR (absolute cate-
gory rating). Excluding outlier subjects, exactly 24 sub-
jects were required. For each video clip, the average
score, termed as MOS (mean opinion score), was taken
as the ground truth of the visual quality.

Referring to de facto configurations in real applications, the
requirements also defined the group-of-pictures size, presence
of hierarchical B mode, slice size, packetlization protocol, sim-
ulation model of transmission error, implementation of error
concealment, etc. Such requirements restricted the system
deviance across databases. The configurations of databases are
briefly outlined in Table III. Note that the freezing impairment
includes only the pausing with skipping but no buffering, i.e.
pausing without skipping.

B. Model Comparison

We compare the proposed ALM (27) with the logistic model
and the support vector regression, based on the same features.
It aims at justifying the functional form of the ALM.

The logistic model was suggested by [8], [9]. We find that
the inputs of {log (51 − Q PT ), ERT , FDT , log (CUT +1),
log (MHT +1)}are better than the raw features {QPT , ERT ,
FDT , CUT , MHT }.

Although other choices of machine learning techniques are
possible, in this paper, we compared with the SVR because it
is well established technique and recommended by previous
relevant studies [12], [15], [21]. We tried two SVR models.

Model SVR I has the input of all the raw features in the
ALM (27), including QPT , ERT , FDT , CUT , and MV T . Each
kind of features is linearly normalized into [0, 1]. Model
SVR II is based on the input of fc, fs, and ff , which are
calculated by (26), and share exactly the same parameters with
the ALM (27). No feature normalization is needed, since fc,
fs, and ff are already unbiasedly distributed within [0, 1].
We use the radial basis function (RBF) as the kernel of SVR,
which is of the form K (xv , x) = exp

{−γ ‖xv − x‖2} where
xv is the feature of a support vector, x is the feature of a test
sample and the positive parameter γ controls the radius. The
code is developed based on the ε-SVR mode of the MATLAB

library for support vector machine [36], where the positive
parameter ε controls the tube width to isolate support vectors
and the positive multiplier c controls the regularization term
of smoothing the SVR function. We find that SVR I performs
best at γ = 9, ε = 0.05, and c = 5 while SVR II does at
γ = 72, ε = 0.05, and c = 8.

Since the models need to be trained, we evaluate their
performance by the k-fold cross validation. The data was
split into k chunks, one chunk for test and the remaining
(k − 1) chunks for training. The experiment was tested with
each of the k chunks. The performance is evaluated by the
mean accuracy of the tests over all the chunks. The data
was carefully split in the following two ways. Since the data
came from five databases, in the first way four databases were
used for training and the remaining one database was for
test. Since there were eight source videos in each database,
in the second way data corresponding to every six source
videos was used for training and the remaining data from the
other two source videos was for test. The first splitting way
led to (5

1) = 5 cases and the second way yielded (8
2) = 28

cases, so the accuracy was averaged on a total of 33 cases.
Such meaningful splitting ways were suggested by [21]. The
first way investigate the influence of the difference between
databases, while the second way guarantees that the contents
in test were absent in training.

The accuracy is reported in terms of three popular criteria
namely: mean squared error (MSE), Pearson linear correlation
coefficient (PLCC) and Spearman’s rank order correlation
coefficient (SROCC), between MOSs and objective predic-
tions. For a perfect match between objective and subjective
ratings, MSE = 0 and PLCC = SROCC = 1. Better accuracy
is indicated by a lower MSE and a higher PLCC and SROCC.
Before computing on a test chunk, linear mapping between
objective outputs and MOSs was done for each database, to
balance the slightly different system deviation across the five
databases. For a fair comparison, we trained only one set of
parameters {a, b, β} for the ALM and applied them to all tests.

The accuracy is listed in Table IV. First, SVR II outperforms
SVR I. It confirms that the log-logistic models about fc, fs,
and ff are effective forms to organize the raw features. It is
also justified to introduce the latent variables dc, ds, and df .
Second, the proposed model significantly outperforms SVR II,
as the statistical significance is evaluated by the F-statistics
about the ratio of MSESVRII to MSEALM with the degree
of freedom 1134−11 (the cross validations used 1134 inde-
pendent samples and the ALM metric has 11 parameters).
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TABLE IV

AVERAGE ACCURACY OVER ALL DATABASES IN CROSS VALIDATIONS

Logistic SVR I SVR II ALM
MSE 0.0231 0.0198 0.0112 0.0083
PLCC 0.7979 0.8301 0.9071 0.9328
SROCC 0.8163 0.8375 0.8849 0.9217
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Fig. 3. Scatter plots of quality prediction in a cross validation (the train
samples marked by (red) points and the test samples marked by (blue) circles).

It confirms that the additive model (27) is more efficient to
combine multi-type impairments. Third, the logistic model is
worse than the ALM. It confirms that the advantage of the
ALM is partly attributed to the additive combination.

The scatter plots of objective predictions versus MOSs at
one case of the cross validations are shown in Fig. 3. In this
case, four databases (TR09, TR10, TR08, and TR11) were
used for training, and the remaining database (TR15) was for
testing. The test samples [marked by (blue) circles] obtained
the similar prediction accuracy as the training samples [marked
by (red) points] did. So, it seems that the resultant 4 models
trained over 4 databases do not overfit on the 5th database.

C. Metric Comparison

We compared the no-reference ALM metric (27) with the
full-reference metrics PSNR (peak signal noise ratio) and
VQM [37], so that it could be justified whether video features
were fully exploited in the ALM metric. PSNR is the most
popular metric due to its simplicity, while VQM was adopted
by the ANSI as a standard (ANSI T1.801.03-2003). Both met-
rics employ the pixel-layer information of videos. PSNR has
no parameters to be tuned; VQM has its parameters trained
during the previous study and we used its publicly-available
source code. For a fair comparison, the ALM metric was
trained on the other four databases and then tested on the target
database, similar with the cross validations in Section V-B.

In order to compare the metrics for different impairments,
the sub-datasets of compression, slicing plus compression,
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Fig. 4. SROCC of quality metrics on ITU databases.

TABLE V

PARAMETERS TRAINED IN EACH ITU DATABASE

βu bc0 bs0 bf0
TR09 0.440 −1.814 0.568 0.710
TR10 1.637 −1.868 0.764 1.297
TR08 0.357 −1.807 0.600 0.769
TR11 0.936 −1.609 0.641 0.915
TR15 0.887 −1.561 0.609 0.954
Variance 0.260 0.019 0.006 0.052

freezing plus compression, and the full dataset were tested
respectively. We used SROCC to evaluate the metric perfor-
mance. As shown in Fig. 4, the proposed metric outperforms
the other two metrics for nearly all the data sets, except
that it is inferior to VQM for the compression impairment
in Database TR15. When comparing with PSNR and VQM,
the ALM metric is more advantageous for the slicing and
freezing than for the compression impairment. This implies
that the proposed impaired block rate can better describe the
visible artifacts and the freezing duration can better measure
the annoyance due to visual pauses, compared with the video
difference measurement in PSNR and VQM.

D. System Deviance Across Databases

The valuation stage in the subjective quality rating is usually
dependent with the context of video clips. This can be testified
by the fluctuation of the parameter which was trained in
each database respectively, as adaptive {βu} is enabled in
parameter estimation. As shown in Table V, although the five
databases have shared concerted configurations, the tuned βu
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still varies a little bit more than bc0, bs0, and bf0 do, where
the fluctuation of the parameter is quantified by the variance
of the parameters tuned across databases. The different ranges
of video impairments may cause the misaligned ceiling and
flooring effects, and therefore βu varies to fit with the valuation
stage in each database. It implies that the additive space for
dc, ds, and df should be adaptive to the data and may not be
captured by a fixed transform of the subjective opinion space.

VI. CONCLUSION

The main results of this paper include the log-logistic
models (26) to predict each quality attribute of a video with
hybrid impairments and the proposed ALM (27) to predict the
composite quality. The key points of the proposed framework
include:

1) Since the binomial distribution is more appropriate for
describing subjective opinions than the Gaussian dis-
tribution, the maximum likelihood based on binomial
distribution is preferred as the goodness-of-fit criterion.
This makes Point 2 below natural.

2) A log-logistic model can capture the visual quality
attribute against the impairment-relevant feature. The
multivariate log-logistic model with additional consid-
eration of content features can improve the prediction
accuracy further, and features can be evaluated and
selected by means of statistical inference.

3) The ALM appropriately adds various quality attributes
in a space, which is log-logistically transformed from
the subjective opinion space. The devised quality metric
is capable of accurate prediction.

The ALM metric has won the model competition in ITU-T
Study Group 12 [38], where the validation databases were
unknown when the metrics were designed. Up to now, we are
drafting the standard recommendation P.1202.2 (containing the
pseudo codes of the ALM metric) for the consent of ITU in
near future.

How to combine multitype impairments (or artifacts) and
composite quality attributes into a compositive prediction
involves the middle or late stage of visual perception and
recognition. Solving the problem by a pure causal model is
still difficult, due to current lack of necessary knowledge
about the related process in the HVS. Resorting to statis-
tical learning methods is sometimes too general to exploit
the special relationship among data. The proposed ALM
provides an accurate functional description of the subjective
appraisal, in the study of networked-video quality assessment.
Based on the configurations in the processing chain and
the content features, it outperforms the logistic model and
the support vector regression model, and also enables a no-
reference quality measurement to achieve comparable accu-
racy as full-reference metrics do. Like most regression tools,
the ALM does not reveal the causal mechanisms underlying
the coactions of video features.

Nevertheless, the ALM offers a concise, computationally
tractable description of subjective visual quality. It relies on a
parsimonious set of features and parameters, and keeps the
parameters easy to be estimated. It allows us to measure
the distortions due to every uni-type impairment as well as

multi-type impairments, and clarify the relative contributions
of impairments in the addable metric space. More generally,
the model can be used to evaluate which feature is the most
significant to predict quality. We expect this framework to
extend to other subjective appraisal, and to have an important
role in gaining more insights for the composition and valuation
stage of perception and recognition.
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