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Consistent Visual Quality Control in Video Coding
Long Xu, Songnan Li, King Ngi Ngan, Fellow, IEEE, and Lin Ma

Abstract—Visual quality consistency is one of the most im-
portant issues in video quality assessment. When people view
a sequential video, they may have an unpleasant perceptual
experience if the video has an inconsistent visual quality even
though the average visual quality of the video is not compromised.
Thus, consistent visual quality control is mostly expected in
general video encoding with limited channel bandwidth and
buffer resources. However, there still has not been enough study
on such an issue. In this paper, a new objective visual quality
metric (VQM) is proposed first, which can easily be incorporated
into video coding for guiding video coding. Second, a VQM-based
window model is proposed to handle the tradeoff between visual
quality consistency and buffer constraint in video coding. Third,
a window-level rate control algorithm is developed to accomplish
visual quality control based on the above two proposals. Finally,
experimental results prove that consistent visual quality, high
rate-distortion efficiency, accurate bit control, and compliant
buffer constraint can be achieved by the proposed rate control
algorithm.

Index Terms—Consistent visual quality, video coding, video
quality assessment (VQA), window model, window-level rate
control.

I. Introduction

IN RECENT years, there has been increased interest in im-
age quality assessment (IQA) and video quality assessment

(VQA) that measure the perceptual visual qualities of images
and videos. Since humans are the ultimate receivers of the
visual signal, the most accurate way of assessing image/video
quality is to ask humans for their opinions of the quality of
an image or video, which is known as the subjective visual
quality assessment. Researchers need to perform their subjec-
tive experiments to validate the proposed objective/automatic
visual quality metrics (VQMs). The subjective scores are first
gathered from subjective experiments. Then, the correlation
between the subjective scores and objective values is analyzed
to evaluate whether the proposed objective metrics are good
at measuring the human perception of image/video quality.
The methods of measuring such a correlation include Pear-
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son’s correlation coefficient, Spearman’s rank order correlation
coefficient (SROCC), and outlier ratio (OR). According to
the recommendation of the International Telecommunication
Union (ITU) [1], [2], a number of viewers are asked to rate
the images or videos in the subjective experiments, and the
scores of the viewers are processed as the mean opinion score
(MOS) or the difference mean opinion score (DMOS). The
subjective experiment is actually fundamental to rank a pro-
posed objective metric. In [1] and [2], the comparative studies
of objective video quality metrics are carried out by Video
Quality Expert Group (VQEG). The subjective experiments
have been performed on a large number of test video sequences
by many laboratories and researchers. In [3] and [4], the
quality degradation of video streaming was investigated to
target at a good perceptual quality of multimedia services.
The publicly available databases of subjective scores and
test material were reported in [5]–[7] for quality degradation
of compression and error-prone channels. Most researchers
developed their objective metrics based on these available
subjective quality databases.

The objective quality metric aims at automatically pre-
dicting human perceptual behavior in evaluating image or
video quality. It is convenient and computationally efficient
in real-world applications. Traditionally, mean square error
(MSE)/peak signal-to-noise ratio (PSNR) were used to evalu-
ate image or video quality. Almost all image/video compres-
sion standards use MSE/PSNR to measure the objective quality
of the compressed signal. However, MSE/PSNR does not
correlate well with the human visual system (HVS) [8]. Thus,
a host of image/video quality metrics have been proposed in
the last decade.

These quality metrics can be generally categorized into
two classes [9]. One focused on psychologically modeling the
human perception of the visual signal. The signal was decom-
posed into multiple channels to simulate the tuning properties
of the HVS. Luminance masking, contrast sensitivity function,
and contrast masking models are typically used to obtain vis-
ibility thresholds for each channel. The state-of-the-art HVS-
model-based video metrics, such as moving pictures quality
metric [10], perceptual distortion metric [11], and the Sarnoff
just noticeable difference [12] vision model, filter the videos
using one band-pass and one low pass filter along the temporal
dimension. The digital video quality metric [13] and the scal-
able wavelet based video distortion index [14] utilize a single
low pass filter along the temporal dimension. In [15], a VQM
is developed based on the spatio-temporal distortions through
a temporal analysis of spatial perceptual distortion maps.

The other class of quality metrics is based on image struc-
tural similarity. There exist strong relations between pixels in
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nature images that show the obvious structural information
to the HVS. Since the HVS is highly adapted for extracting
structural information from a video scene, a measure of the
structural similarity can provide a good approximation to the
perceived image quality. Wang et al. [16], [17] proposed
an objective metric called structural similarity index (SSIM)
to rank the image quality, which was further extended into
multiple-scale SSIM (MS-SSIM) [18] to adapt to the variable
viewing conditions. In [19], a statistical model of human
motion perception [20], [21] was used to perceptually weigh
the spatial and temporal pooling processes. Moorthy et al.
[22] investigated video quality assessment for the scenario
of wireless video communication. In [23], a computationally
efficient motion compensated SSIM (MC-SSIM) along tem-
poral trajectory was proposed for video quality assessment.
In [9], the motion-based video integrity evaluation (MOVIE)
was proposed based on the fact that the middle temporal (MT)
visual area in the HVS is critical for human visual perception
[24]. The National Telecommunications and Information Ad-
ministration (NTIA) developed a general video quality metric
[25] for quantifying perceptual quality degradation of video
compression, which became the top performer in the VQEG
phase II video quality study [2]. Most recently, a good guide to
quality assessment was found in [26], where the state-of-the-
art quality assessment algorithms were analyzed intensively
and ranked in terms of correlation with subjective scores.

In IQA, the spatial distortions, e.g., block artifacts, blurring,
mosaic, ringing, etc., have been investigated. The temporal dis-
tortions include motion compensation mismatches, mosquito
effects, ghosting, smearing, temporal fluctuation of picture
quality, etc. Hence, VQA needs to study them additionally
for assessing video sequence quality. Yuen and Wu [27]
summarized the spatial and temporal distortions in hybrid
motion compensated (MC) and block-based discrete cosine
transform (DCT) coding standards. In video coding, the con-
sistent/smooth visual quality is essential to the integral quality
of a video sequence. First, temporal quality fluctuation is an
annoying experience to human visual perception. In addition,
the inconsistent visual quality of video frames would result
in many image distortions, including block artifacts, mosaic,
and so on in general real-time video communications, since
the channel bandwidth and buffer resources are limited. The
overuse of the bits quote at some frames will result in the
serious quality degradation of the other frames. The consistent
visual quality control under conventional constant bit rate
(CBR) encoding environment concerns the usual applications
of video coding. It has been studied previously in [28] and
[29]. He et al. [28] tried to provide the smooth quantization
under CBR encoding by introducing a low filtering mechanism
to smooth the quantization parameters (QPs) produced from
the traditional rate control algorithm. In [29], a sequential rate
control algorithm was proposed for real-time video coding.
However, the MSE that measured visual quality in both [28]
and [29] was widely criticized for not correlating well with the
perceived quality. In this paper, a new objective VQM is first
proposed. Both quantization and temporal motion information
are included to ensure the friendliness of the metric to video
coding application. Then, a window model and a window-level

rate control algorithm are developed based on the proposed
VQM.

The rest of this paper is organized as follows. In Section II,
a new objective VQM is proposed to assess compressed video
signals. In Section III, a window model is constructed based
on the proposed VQM. Section IV proposes a VQM-based
rate-distortion (R-D) model and a window-level rate control
algorithm for consistent visual quality control in video coding.
Section V shows the experimental results for evaluating the
efficiencies of the proposed VQM and rate control algorithm.
Finally, a brief conclusion is given in the last section.

II. Proposed VQM for Video Coding

VQA needs to further exploit temporal characteristic of
HVS compared with IQA. There are three major aspects to
explore temporal HVS characteristics in the literature. The
first one decomposes the video signal into multiple spatial-
temporal frequency channels and assigns a different weight
to each of them [9], [33]. The second one simulates the
visual masking that is another visual phenomenon critical for
video quality assessment. Considering the masking effect, the
visibility of video distortion not only concerns spatial activity
but also the temporal activity. The spatial masking effect was
investigated elaborately in the past research [9], [12]–[14].
However, the temporal masking effect has not been thoroughly
studied. The last one involves the high-level characteristics
of the HVS in the pooling process. The pooling process is
believed to be capable of simulating the late stage of the
visual pathway, where all visual information is spatially and
temporally integrated for quality evaluation of the entire image
or video [19], [33], [35].

To develop a VQM for evaluating visual quality of im-
age/video signal, guiding video encoding and cooperating with
other components of a video encoder, it needs to be easily
optimized to obtain a close-form analytic solution for a specific
video encoding task. In [31], to ensure the friendliness of
the quality metric to quantization, MSE is simply weighed to
simulate the HVS responses to the visual signals. In [32], the
quantization artifact and frame rate were introduced into the
visual quality assessment for scalable video coding. In [19],
the motion information content and the perceptual uncertainty
were analyzed for VQA. In [35], a VQM measuring temporal
variations of spatial visual distortions was developed based
on the spatio-temporal distortion evaluation, using both eye-
fixation-level and long-term temporal pooling.

In this paper, a new VQM is proposed based on pioneering
work in [19] and [31]. The motivations of the proposed metric
are first to utilize the available information of video encoding
without extra computations, second to be incorporated into rate
control component to monitor and guide video encoding timely
and dynamically. Referring to [31], the MSE was weighted to
simulate HVS response as

VQMm = 1 − km × MSEm (m = 0, 1, ..., M − 1) (1)

where km is a weighting factor for the mth MB, VQMm is
the visual quality level of the mth MB, and M is the number
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Fig. 1. Frame edges. (a), (c) Obtained by the temporal disparity between two
consecutive frames. (b), (d) Obtained by the disparity of two pixels within a
frame.

of MBs in a frame. Since the MSE change of low-detailed
videos contributes more visual quality change than that of
high-detailed videos, km serves as a weighting factor in (1).
In [31], k was computed by the spatial edge strength, so edge
detection was performed and the computational efficiency was
compromised. In this paper, the temporal disparity between
two consecutive frames is first computed. Second, two spatial
disparities I(x,y) – I(x – 2,y) and I(x,y) – I(x, y – 2) are
calculated along horizontal and vertical directions, respec-
tively, within a frame I(x,y). The sum of squares of the two
spatial disparity images produces a spatial disparity image.
The spatial and temporal disparity images are shown in Fig. 1
for Foreman and Football, respectively. Their combination
produces a tridimensional disparity, which is used to compute
the edge strength on MB basis as

km =
∑

(x,y)∈MB

|S(x, y)| + |T (x, y)| (2)

where S(x,y) and T (x,y) represent the spatial and temporal
disparity images, respectively. Equation (2) is computationally
efficient in comparison to [31].

In [19], a motion information content and perception un-
certainty were defined and used to assess video quality. A
spatio-temporal weighting function was defined as

w = (α log vr + β) − (log vg − γ log c + δ) (3)

where vr, vg are the relative and global motion, c represents
the stimulus contrast, and α, β, γ , and δ are the constant
model parameters. The first component of the right part of
(3) measures the motion information content, and the second
component represents the perception uncertainty. The model
indicates that an object with significant motion with respect
to the background would be a strong surprise to the visual
system. However, when the background motion is too large,
the HVS cannot identify the objects with the same accuracy

as in the statistic background. In this paper, a motion activity
term is defined as

wm = log

√∑
i,j vx(i, j)2 + vy(i, j)2

d(i, j)
(4)

to measure the motion information content, where wm is for
the mth MB, (vx, vy) is the motion vector of a 4×4 block
in an MB, and d(i, j) is the distance from current frame to
its reference. Compared to (3), only relative motion is con-
sidered in (4) for the purpose of little overhead computation.
Considering both (1) and (4), the local MSE is adapted by
both spatial and temporal factors to have a new VQM as

VQMm = wm × (1 − kmMSEm). (5)

The sum of VQMs over all MBs will come up with the frame
VQM as

VQMf =
M−1∑
m=0

wm × (1 − kmMSEm). (6)

Similarly, the VQM of entire sequence is the sum of VQMs
over all frames as

VQM =
L−1∑
f=0

(
M−1∑
m=0

wm × (1 − kmMSEm)

)
. (7)

In the practical usages of (5)–(7), wm, km, and MSEm are all
normalized accordingly.

III. Proposed VQM-Based Window Model

Rate control consists of two sequential steps: bit allocation
and QP decision. Considering buffer status in bit allocation,
the coded bitstream conforms to both the target bit rate and
buffer constraint. Rate control should guarantee a small gap
between the target bit rate and the actual coded bit rate, and
achieve good R-D performance. On the other hand, the picture
quality smoothness and buffer compliance also play key roles
in rate control. Generally, the consistent visual quality of
encoded frames can give viewers a temporally consistent,
and thus, comfortable visual experience. The consistent visual
quality can be obtained by two-pass or multi-pass encoding
[37], [38]. The compliant buffer constraint guarantees the
successful transmission and decoding of bitstream under the
given conditions of a video communication system. In video
streaming applications, violating buffer constraint may cause
annoying jitter.

In the traditional rate control algorithms, the anticipated
complexity and mean absolute distortion (MAD) of future
frames are used for bit allocation and QP calculation, respec-
tively [39], [40]. These methods work well for the low motion
object and similar scenes among the adjacent frames. However,
they may result in the significant picture quality fluctuation or
buffer violation when scene changes or high motion occurs.
Given encoding conditions, an inverse relationship between
picture quality change and buffer variation usually exists due
to the nonstationary input signal of video coding. Thus, a
tradeoff between them is worth studying in rate control.
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To tackle the problem mentioned above, a theoretical win-
dow model was proposed in [41], in which two bounds of
QP variation and frame bits variation were related to window
size. The window size means the number of frames in a
window. The picture quality smoothness was measured by QP
variation, and the buffer fullness was computed from the frame
bits output. The proposed window model tries to seek the
relationship among window size, QP variation, and buffer size
to get a good tradeoff between picture quality smoothness and
buffer constraint. To derive the theoretical model, the frame
bits variation is used instead of buffer constraint because there
is an inherent relation between frame bits variation and buffer
size given the channel bit rate. Actually, the buffer size is
computed from the accumulated bits of the output frame bits
minus the given channel bit rate per frame. Thus, the less the
variation of output frame bits, the less the buffer size is. In
this paper, the window model is updated by using buffer size
directly. In addition, the proposed VQM is imported into the
window model to measure visual quality smoothness instead
of using the QP variation. The proposed VQM is expected
to be better than QP for measuring visual quality smoothness
under both single scene and multiple scenes. Assume window
size is L, VQM bound is �VQ and buffer constraint is B, the
relation between L and �VQ is investigated using the law of
large numbers (LLN) [42], [43], where the number of samples
and error bound correspond to L and �VQ, respectively.

A. L − �VQ Model

Suppose that the bound of picture quality variation is
�VQ represented by a Gaussian random variable ξ(ω)(μξ =
0, σ2

ξ ). According to central limit theory [43], the average
of {ξk(ω)}(k = 1, 2, · · · , n) converges at a Gaussian random
variable, that is

P

(∣∣∣∣∣1

n

n∑
k=1

ξk − μξ

∣∣∣∣∣ < �VQ

)
=

1√
2π

∫ �VQ(

√
n/

σξ
)

−�VQ(

√
n/

σξ
)
e− t2

2 dt.

(8)
Let the right-hand size of (8) be equal to p, and the integral
limit of (8) be obtained by looking up the standardized normal
table [43]. Assume �VQ(

√
n
/
σξ

)=
√

α, replacing n by L, then
the L–�VQ model can be derived as

L = α
σ2

ξ

�V 2
Q

(9)

where L is the minimum window size that conforms to �VQ.
σ2

ξ is regarded as a constant, and merged into α in practical
usage.

B. L-B model

He et al. [47] proved that the encoder buffer of the proposed
rate control is subject to

|Be(n)| ≤ 1

2
�

M∑
j=1

aj · j (10)

where Be (n) represents the buffer occupancy for the nth
frame, � is such a constant that

∣∣log2 σ2(i)
∣∣ ≤ � holds true for

all frames, where σ2(i) is the residue variance of the ith frame
after intra or inter prediction. {αi s.t. αi > 0,

∑M
i=1 αi = 1}

is an M-tap averaging filter for smoothing the distortion
of frame encodings. Let Wmax = �

∑M
j=1 aj · j; we have

|Be(n)| ≤ 1
2Wmax. It can be regarded as the maximum encoder

buffer that is needed for video streaming usage of the rate
control of [28]. In particular, if an arithmetic averaging filter
is employed in (10), we have

Wmax =
L + 1

2
� (11)

which suggests that the larger the filter length (L) and variation
of scene activity (�), the larger encoder buffer is needed for
the video streaming. Obviously, the above filter length has the
same functionality as the window size of our proposal. The
parameter � is video content dependent, which is dynamically
updated during encoding.

According to (11), the buffer constraint is directly related to
the window size. There is no need to map buffer constraint to
bits fluctuation, as proposed in [41]. In addition, we need to
control the encoder buffer for the compliant buffer constraint,
so more discussions about the L–B model are given as follows.
Assume the encoder buffer occupancy of jth frame is Be(j),
which is dependent on the initial buffer status of the start of
the window, i.e., the (j – L)th frame. The frame encoding bits
{R(i)} and channel throughput {C(i)} as

Be(j) = Be(j − L) +
j−1∑

i=j−L

(R(i) − C(i)) . (12)

C(i) = min{RT , Be(i)} indicates that the channel throughput
is not always at its payload capability, i.e., the given target
bit rate RT , which is the result of CAT constraint on an
encoder buffer [44], [45]. R(i) is calculated theoretically by
the classical R-D model R = log2

σ
D

. Importing it into (12),
the buffer variation can be finally expressed by

Be(j) − Be(j − L)

≥ L ×

⎛
⎜⎝log2

(
j−1∏

i=j−L

σ(i)

) 1
L

− log2

⎛
⎝ 1

L

j−1∑
i=j−L

σ2(i)

⎞
⎠

1
2

⎞
⎟⎠ .

(13)
The left-hand side of (13) will approach 0 if σ(k) = σ(l) (k �=l),
which indicates that the buffer level will not increase.

From (12) and (13), we can conclude that the uniform frame
bits output would result in a small buffer increase because the
payload capability of the channel can be fully occupied at this
situation. In addition, the situation of uniform frame bits exists
if the characteristics of residual signals, such as variances, do
not have large differences.

C. Window Model

Obviously, the smallest possible visual quality fluctuation
under the given buffer constraint is preferred in video cod-
ing. However, small variations of visual quality and buffer
usage cannot be achieved concurrently due to a contradiction
between them. In this paper, the bounds of picture quality
variation and buffer constraint (�VQ and B) are assumed
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to be two encoding requirements. They are contradictory to
each other, i.e., the buffer occupancy will arise generally if a
small �VQ is required, and vice versa. According to (12), the
buffer occupancy is determined by the frame bits and channel
throughput. It can be adjusted by changing the encoding bits
of each frame.

We first get the minimum window size L from the L–�VQ

model (9). Then, if Wmax ≤ B, L from the L-�VQ model will
be the final solution; otherwise, L should be further regulated
to guarantee that the derived buffer Wmax from (11) is less
than B. Usually, nature videos are non-stationary, so the video
content varies significantly along time. Thus, the frame bits
output would fluctuate a lot if the smooth QPs are assigned to
a window. In such a situation, the larger L is, the larger B is,
and vice versa. Therefore, L should be decreased if Wmax>B.
Using B instead of Wmax in (11), then we can obtainB = L+1

2 �.
Integrating (9), a window model is proposed as

L =

⎧⎪⎨
⎪⎩

α

�V 2
Q

, if Wmax ≤ B

2 × β × B

�
− 1, else

(14)

where α and β are two parameters of the window model, and
they are adaptively updated for each window.

IV. Proposed Window-level Rate Control

The proposed window model tells us that the best tradeoff
between visual quality smoothness and buffer constraint can
be achieved in theory. To get such a tradeoff in practice,
the window-level rate control algorithms should be provided
additionally. A window-level rate control utilizes any existing
R-D model such as linear R-D model to calculate QP. In
addition, it employs window model as the top level control
to decide window size. From [46], the R-D relation usually
was modeled as a LOG function

R = log2
σ

D
(15)

and the theoretical distortion model was given by

D =
Q2

12
. (16)

They were both based on the assumption of the Laplacian
distribution of DCT coefficients. σ represents the standard
deviation of input signal, which is replaced by MAD in
practice. Equation (15) was usually approximated by a linear
or quadratic R-D model [39], [40]. The linear R-D model is
written as

Q =
a × MAD

R
(17)

where a is a constant, Q represents QP, and R indicates bits
quote of a coding basis unit, e.g., an MB, a frame or a window.
MAD is derived from the pre-analysis as to be introduced
below.

A. Proposed VQM-Based R-D Model

To achieve window-level rate control, (17) is extended to
window level as

Qf =

a ×
L−1∑
j=f

MADj

T −
f−1∑
j=0

Rj

(18)

where Qf is the QP of the f th frame, and MADf and Rf are
the MAD and bits usage of the f th frame, respectively. T is
the total bits allocated to a window. Equation (18) can also
be used at MB level rate control. From (18), QP is computed
for each frame of the window. In addition, the remaining bits
quotes and MADs are updated after encoding a frame. Such
a method could provide a frame-level smooth visual quality
profile. In addition, the bits control is accurate because (18)
is implemented progressively. Furthermore, there is no bit
allocation operation in (18), which usually results in bad bits
usage and bad visual quality as in the traditional rate control.

The distortion D in (16) is measured by MSE in practice.
Theoretically, all coding basic units should have the same
MSE if a constant QP is employed according to (16). From
Section II, a new VQM is defined in (5) to measure the visual
quality. Importing (16) into (5) will generate a new theoretical
model as

VQMm = wm × (1 − kmQ2
m). (19)

Accompanied by (18), (19) can realize visual quality control.
First, (18) calculates a QP for the mth coding unit. Second,
(19) provides a visual quality map {pm} to all coding units
(MBs or frames). Then, the QP of each coding unit is revised
accordingly by {

Qm = Qm × pm

pm = wm × (1 − kmQ2
f )

(20)

where Qf is a frame-level QP if (20) is used at the MB level.
pm is actually adaptive to both video content and bit rate, so
it is more suitable for video compression. If (20) is used at
the frame level, all the parameters in (20) are transferred into
the corresponding forms at frame level. Then, we can come
up with a new form of (20) as⎧⎪⎨

⎪⎩
Qf = Q × Pf

Pf =
M−1∑
m=0

pm
(21)

which revises frame-level QPs in the sense of consistent visual
quality at frame level. Thus, (21) cooperated with (18) will
construct the proposed VQM-based R-D model. In addition,
the proposed R-D model can be used in both frame-level and
window-level rate controls.

B. Pre-Analysis

A pre-analysis process is introduced to provide MAD in-
formation in (18). In the pre-analysis, only 16×16 inter mode
motion estimation (ME) is used to all frames of a window for
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the computational efficiency. In addition, only one reference is
used in the ME stage of pre-analysis. After pre-analysis, edge
strength {km} and motion activity {wm} of all MBs can be
computed by using (2) and (4), respectively. In pre-analysis,
a constant QP is used to all frames.

A frame VQM profile can be obtained approximately after
pre-analysis according to (19). The frame QPs can be deter-
mined by employing (18) at the window level. Then, the QPs
from (18) are regulated to get a smooth VQM profile. The
pre-analysis has two functions. The one is to provide {MADj}
for QP calculation described in (18). The other is to produce
visual quality maps {pm} and {Pj}, which are used for visual
quality control as described in (20) and (21).

C. Remarks on the Calculation of Residual Signal Variance

In the proposed window model (14), � should be updated
adaptively along with the video content change. As defined in
[28], � is the maximum of all log2 σ2 (j), where σ2(j) is the
variances of the jth residual frame. In order to adapt to the
bit rate or video quality of video compression, the variance of
residual signal is computed on the quantized residual signal
instead of the original residual signal. The original residual
signal s(j) is given by

s(j) = x(j) − r(j − 1) (22)

where x(j) represents the original input signal, and r(j – 1)
represents its reference. Assume the quantized s(j) is ŝ(j). The
reconstructed jth frame can be written as

r(j) = r(j − 1) + ŝ(j). (23)

Thus, the quantized residual signal ŝ(j) is actually the differ-
ence between r(j) and r(j – 1), that is

ŝ(j) = r(j) − r(j − 1). (24)

Then, the variance of the quantized residual signal for each
MB is calculated by

σ2
MB(m) =

1

256
×

15∑
x=0

15∑
y=0

(r(j, x, y) − r(j − 1, x, y))2 (25)

where (x, y) represents the spatial coordination of a pixel in a
MB.

D. Proposed Window-Level Rate Control Algorithm

For using the R-D model (18), the window size is first de-
cided by (14) before encoding a window. The model parameter
α of (14) is updated after encoding a window by using the
actual VQM variation. For each time of calculating L, Wmax

in (11) is computed and compared to B. In the case of the
condition Wmax > B, L is regulated further according to the
lower equation of (14). In real-time video communications,
window size is dynamically updated along with the change of
video content. And the change of window size would provide
as smooth as possible visual quality for natural videos under
the limited buffer and bit rate resources. It should be pointed
out that the real-time concept is from the algorithm design
instead of computer implementation here. Generally, both live

TABLE I

Symbols Used in the Following

Symbol Description
r Bit rate
f Frame rate
L Window size
B,B(j) Buffer size, buffer fullness after encoding the jth frame
T Target bits for a window
α, β, � Window model parameters
a R-D model parameter
R (j) Encoded bits of the jth frame

σ2 (j) Variance of the jth residual frame and the mth MB

σ2 MB (m) respectively
{Pf }, {pm} Visual quality map at frame level and MB level
VQ(j) Objective visual quality of the jth frame
Qf , Qm QP of frame level and MB level for encoding
Q Predicted QP for preanalysis

TABLE II

Proposed Window-Level Rate Control Algorithm

Step 1: If the window is the first one, initializing window size L to the
GOP size, which is 16 in our setting; else, computing window
size L from the latest α and β according to (14);

Step 2: Getting the total bits of the current window T = (r/f ) × L;
Step 3: Predicting Q from the last coded window for pre-analysis; for

the first window, Q is initialized manually;
Step 4: Performing pre-analysis on only 16×16 inter prediction for P and

B frames and 16×16 intra prediction for I frames in the current
window;

Step 5: Computing MAD for each frame in the current window;
Step 6: Computing edge strength and motion activity terms according to

(2) and (4) for each MB, and computing visual quality map {Pf }
and {pm} according to (20) and (21);

Step 7: Computing a QP for the jth frame by (18);
Step 8: Computing a new QP Qf by using (21) at frame level as Qf =

Qf ×Pf for the purpose of smooth visual quality;
Step 9: Encoding the jth frame using Qf from Step 8; meanwhile, Qf

is revised by using (20) at MB level as Qm = Qf ×pm;
Step 10: After encoding a frame, computing VQ (j) and σ2(j) and updating

buffer B(j) for the jth frame as followings:
VQ(j) is calculated from (5)–(7);
σ2 (j) is the average of {σ2

MB(m)} over all MBs:
σ2(j) = 1

M

∑M−1
m=0 σ2

MB(m);
Buffer status is updated by B(j) = B(j-1) -( r/f ) + R(j), B(0) = 0
for the first frame of a window;

Step 11: If the last frame of current window is reached, go to Step 12;
else go to Step 7;

Step 12: Updating window parameters α and β of (14) as:

α = L × δV 2
Q and β = 0.5×(L+1)×�

B(L−1) , where δVQ =
L−1∑

j=0

(VQ(j) −

1

L

L−1∑

j=0

VQ(j))2 and � = max{σ2(j), j=0, . . . , L-1}

Step 13: If the sequence ends, terminates procedure; else go to Step 1.
W5148

video broadcasting and video streaming belong to real-time
video communication because of the buffer/delay constraint.

After deciding window size, the pre-analysis is performed
to provide the MADs {MADj} and visual quality maps {Pf }
and {pm} to (18), (20) and (21), respectively. The proposed
window-level rate control algorithm is summarized in Table II.
The symbols used in the proposed algorithm are listed in
Table I.
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Fig. 2. Frame VQM profiles for the window size of {1, 16, 32, 64, 128}. (a) Foreman. (b) Mobile.

Fig. 3. Instant buffer fullness for the window size of {1, 16, 32, 64, 128}. (a) Foreman. (b) Mobile.

V. Experimental Results and Discussions

We implemented the proposed algorithm on JM14.0 of
H.264/AVC reference software under the conditions: pro-
file/level: 100/40, reference frames: 2, EPZS search, search
range: 32 and 64 for CIF (352×288) and 720p (1280×720)
resolutions, respectively, RDO on and CABAC, IPPP encoding
structure. The following experiments will be arranged into
three parts: the first part validates the proposed window model,
the second part evaluates the proposed VQM, the third part
exhibits both the objective and subjective coding improvement
of the proposed window-level rate control algorithm.

A. Validation of Window Model

A large window size L would be computed from (14) if a
small visual quality variation �VQ is given for an encoding
application. A larger window size needs more buffers for
encoding according to (11). Thus, there is actually a tradeoff
between visual quality smoothness and buffer constraint. The
proposed window-level rate control algorithm is implemented
with a constant window size of {1, 16, 32, 64, 128} respec-
tively. It should be pointed out that the proposed window-level
rate control would be the traditional rate control if the window
size equals 1. The curves of VQMs and instant buffer fullness
versus frame no. for Foreman and Mobile are shown in Figs. 2
and 3. From Fig. 2, it can be observed that larger window sizes
can produce smoother frame VQM profile. Correspondingly,
larger buffer is needed for larger window size as shown in
Fig. 3. In Fig. 2, the VQM curve of WinSize = 16 is smoother
than that of WinSize = 1. Meanwhile, the corresponding buffer
curve of WinSize = 16 is below that of WinSize = 1.

For a CBR encoding given channel bandwidth and buffer
delay, a good rate control tries to seek a tradeoff between
visual quality smoothness and buffer constraint. Due to the
nonstationary property of the input video signal, the buffer
status varies along the video scene change. Thus, the buffer
control should adapt to the video content to make full use
of the given buffer resource. The experiments with adaptive
window size are performed on a CIF sequence Linker, consist-
ing of five standard CIF sequences Foreman, Football, Tennis,
News, and Silent in order, 1300 frames in total. A new window
size is computed from (14) after encoding a window. The
experimental conditions are as follows. L ranges from 16 to 80
and is initialized to 16, VQM variation bound �VQ = 0.1. The
experimental results are listed in Table III, where the column
labeled “Buffer delay” lists the given buffer constraints. From
Table III, we can see that the larger the buffer size is, the
more the large windows are applied, and accordingly the less
VQM variation is. The actual buffer of encoded bitstream
conforms to the given buffer constraint, and the visual quality
smoothness accords with the claim of window model. Given
1.0-s buffer delay, most of the windows select the largest
window size of 80, and corresponding VQM variation is the
least among all cases. While a large number of windows select
L = 16 given 0.4-s buffer delay.

B. Performance Evaluation of the Proposed VQM

The performance of a VQM can be evaluated by depicting
the relationship of the obtained VQM values and the provided
subjective ratings, specifically the MOS/DMOS value of
each distorted video. The MOS/DMOS value is obtained by
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Fig. 4. Scatter plots of the DMOS values versus model predictions on the LIVE video quality database. Each sample point represents one test video. (The
circle and “+” indicate the distorted video sequences under wireless network and IP network, respectively. The star indicates H.264 encoded video sequence,
while the triangle indicates the MPEG-2 compressed one.) First row from left to right: PSNR, SSIM, MSSIM, and VSNR; second row from left to right: VIF,
MOVIE, NTIA-VQM, and the proposed method.

TABLE III

VQM and Buffer Variations With the Adaptive Window Size (�VQ=0.1, 1000 kb/s) [VQM Variation Is

Measured by the Standard Deviation (STD) of Frame VQMs]

Buffer Delay (Seconds)
Percentage (%) of Each Window Size L

STD of VQM Average VQM Average Bit Rate
=16 [16,32] [32,48] [48,64] [64,80]

0.40 30.712 17.893 14.840 23.952 12.689 1.364 0.9496 1000.68
0.50 2.031 3.539 4.677 10.977 78.797 1.212 0.9486 999.07
0.60 1.322 4.682 0.000 14.185 79.908 1.124 0.9565 998.29
0.80 0.445 1.712 0.000 7.084 90.766 1.023 0.9597 1000.28
1.00 0.000 0.000 1.558 3.332 95.090 0.785 0.9665 1000.34

TABLE IV

Linear Correlation Coefficient

Algorithm Wireless IP H.264 MPEG-2 All Data
PSNR 0.677 0.478 0.589 0.409 0.569
SSIM 0.473 0.537 0.611 0.582 0.503
MSSIM 0.684 0.684 0.692 0.632 0.676
VSNR 0.680 0.737 0.614 0.507 0.688
VIF 0.593 0.636 0.649 0.673 0.577
NTIA-VQM 0.742 0.655 0.666 0.801 0.716
MOVIE 0.836 0.756 0.790 0.797 0.810
Proposed 0.762 0.736 0.709 0.556 0.741

TABLE V

Spearman Rank Order Correlation Coefficient

Algorithm Wireless IP H.264 MPEG-2 All Data
PSNR 0.671 0.430 0.477 0.394 0.553
SSIM 0.539 0.474 0.659 0.569 0.533
MSSIM 0.729 0.645 0.734 0.681 0.735
VSNR 0.694 0.693 0.641 0.587 0.672
VIF 0.538 0.553 0.638 0.635 0.558
NTIA-VQM 0.722 0.638 0.648 0.787 0.703
MOVIE 0.810 0.715 0.766 0.773 0.789
Proposed 0.753 0.724 0.664 0.564 0.721

subjective viewing tests, where many observers participated
and provided their opinions on the visual quality of each
distorted video. Therefore, it can be regarded as the ground

Fig. 5. VQM comparisons between the proposed algorithm and benchmarks.
(a), (b) CIF sequences. (c), (d) 720p sequences. (a) News. (b) Silent. (c) Crew.
(d) Harbour.

truth for evaluating the metric performances. As suggested
by VQEG HDTV test [1] and that in [48], we follow their
evaluation procedure to evaluate the performance of the
proposed metric. Let xj represent the visual quality index
of the ith distorted image obtained from the corresponding
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Fig. 6. Visual quality maps used in the proposed algorithm. (a), (b)
CIF resolution. (e)–(g) SD (720×576) resolution. (h), (i) 720p resolution.
(a) Foreman. (b) Mother-daughter. (c) Bus. (d) Paris. (e) Flower. (f) Kayak.
(g) Basketball. (h) Crew. (i) Harbour.

VQA. The five parameter monotonic logistic function is
employed to map χj and Vj

Vj = β1 × (0.5 − 1/
1 + eβ2×(xj−β3)) + β4 × xj + β5. (26)

The corresponding five parameters {β1, β2, β3, β4, β5} are
determined by minimizing the sum of squared differences
between the mapped objecting score and the subjective
DMOS value. Generally, three statistical measurements, LCC,
SROCC, and RMSE, are employed to evaluate the perfor-
mance of a VQM. LCC measures the prediction accuracy.
SROCC provides an evaluation of the prediction monotonicity.
The RMSE is introduced for evaluating the error during the
fitting process. According to the definitions, larger values
of LCC and SROCC mean that the objective and subjective
scores correlate better, that is to say, a better performance
of the VQM. And the smaller RMSE values indicate smaller
errors between the two scores, therefore a better performance.

We evaluate the performance of the proposed metric on
the LIVE Video Quality Database [49], which contains 150
distorted videos for ten uncompressed high-quality reference
videos. There are 15 distorted videos for each reference video
with four different distortion types, specifically, MPEG2 com-
pression, H.264/AVC compression, simulated transmission of
H.264 compressed bitstreams through error-prone IP networks,
and through error-prone wireless networks. Each video in the

Fig. 7. Visual quality smoothness comparisons between traditional rate
control and the proposed rate control. (a) Frame VQM of Silent (CIF).
(b) Frame VQM of Tennis (CIF). (c) Frame VQM of Crew (720p).

LIVE Video Quality Database was assessed by 38 human
subjects, who scored the video quality on a continuous quality
scale. The subjective ratings obtained from the subjective
experiments, along with the reference and distorted videos,
are provided in the LIVE Video Quality Database.

The performance evaluation criteria, LCC, SROCC, and
RMSE, are computed for measuring the correlation between
the VQM values and subjective ratings. The computing results
show that 0.74, 0.72, and 7.375 are for LCC, SROCC, and
RMSE, respectively, which is better than PSRN, VSNR, VIF,
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TABLE VI

Coding Performance Comparisons Among All Testing Algorithms in Terms of Bit Control Error and PSNR Improvement

Target Traditional Rate Control He’s Rate Control Xie’s Rate Control Proposed Rate Control
Resolution Sequence bit rate Bit rate

PSNR
Error Bit rate

PSNR
Error Bit rate

PSNR
Error Bit rate

PSNR
Error

(kb/s) (kb/s) (%) (kbps) (%) (kbps) (%) (kbps) (%)
2000 2003.59 42.35 0.18 2010.93 42.14 0.55 2000.29 42.22 0.01 1997.88 42.32 −0.11

Foreman
1000 1002.31 39.46 0.23 1003.52 39.25 0.35 1001.83 39.24 0.18 1000.74 39.45 0.07
500 503.38 36.71 0.68 503.17 36.50 0.63 502.58 35.27 0.52 500.65 36.68 0.13
300 303.76 34.54 1.25 305.86 34.35 1.95 300.96 33.10 0.32 301.38 34.71 0.46
2000 2003.17 47.59 0.16 2005.47 46.80 0.27 2003.63 47.55 0.18 1998.70 48.20 −0.06

News
1000 1002.53 44.96 0.25 997.46 44.30 −0.25 1001.11 44.75 0.11 1000.57 45.03 0.06
500 502.37 41.90 0.47 502.04 41.60 0.41 501.18 41.65 0.24 500.26 42.01 0.05

CIF
300 301.84 39.29 0.61 302.27 39.19 0.76 300.60 39.15 0.20 301.13 39.54 0.38
2000 2004.06 45.33 0.20 2007.19 44.44 0.36 2001.77 45.26 0.09 2000.80 46.04 0.04

Silent
1000 1004.05 41.89 0.40 997.71 41.33 −0.23 1001.38 41.77 0.14 999.88 42.30 −0.01
500 502.13 38.59 0.43 498.29 38.20 −0.34 500.62 38.34 0.12 499.87 38.52 −0.03
300 301.91 36.22 0.64 301.58 36.14 0.53 301.41 36.08 0.47 300.83 36.07 0.28
2000 2001.86 41.85 0.09 1960.98 41.35 -1.95 2003.99 41.61 0.20 2000.46 42.30 0.02

Tennis
1000 1002.89 38.45 0.29 996.50 38.33 −0.35 1002.74 38.15 0.27 1001.82 38.79 0.18
500 502.50 35.19 0.50 501.06 35.10 0.21 500.10 34.88 0.02 501.59 35.48 0.32
300 302.07 32.82 0.69 298.34 32.86 −0.55 308.56 32.44 2.85 300.02 33.36 0.01

Average
39.82 +0.44 39.49 +0.15 39.47 +0.37 40.05 +0.11

0.44 0.61 0.37 0.14
10 000 10006.99 39.28 0.07 10025.51 39.19 0.26 10008.39 39.19 0.08 9992.78 39.39 −0.07

Night
8000 8006.98 38.55 0.09 7998.37 38.42 −0.02 7998.45 38.44 −0.02 7995.24 38.64 −0.06

5000 5007.72 37.04 0.15 5011.75 36.97 0.23 5002.33 36.98 0.05 4996.27 37.33 −0.07
2000 2005.02 33.52 0.25 2005.72 33.41 0.29 2002.43 33.49 0.12 2001.47 34.07 0.07

10 000 10010.21 41.61 0.10 9927.34 41.53 −0.73 10007.05 41.52 0.07 9997.48 41.51 −0.03

720p Crew
8000 8010.74 40.99 0.13 7970.62 41.07 −0.37 8009.60 40.96 0.12 7995.51 40.85 −0.06

5000 5008.12 39.85 0.16 4995.38 39.77 −0.09 5006.36 39.72 0.13 4997.43 39.82 −0.05
2000 2005.63 37.03 0.28 1999.71 36.88 −0.01 2006.25 36.75 0.31 1995.30 37.41 −0.24

10 000 10006.50 37.49 0.07 10020.98 37.52 0.21 10004.20 37.54 0.04 9997.64 37.52 −0.02

Harbour
8000 8005.90 36.52 0.07 8014.40 36.63 0.18 8005.49 36.65 0.07 7998.81 36.64 −0.01
5000 5005.88 34.75 0.12 5007.71 34.77 0.15 4997.14 34.70 −0.06 5000.22 34.83 0.00
2000 2004.24 31.27 0.21 2002.53 31.18 0.13 2001.35 31.19 0.07 1996.73 31.41 −0.16

Average
37.32 +0.14 37.28 +0.02 37.26 +0.08 37.45 −0.06

0.14 0.22 0.09 0.07

MSSIM, and SSIM metrics. This indicates that the proposed
VQM can better assess the visual quality than those metrics
that do not take into account the temporal information. We
also compare the proposed VQM with PSNR, SSIM [16],
[17], MSSIM [18], VSNR [51], VIF [52], NTIA-VQM [25],
and MOVIE [50]. As PSNR, SSIM, MSSIM, VSNR, and
VIF only provide frame-level quality scores, the final quality
index of the video sequence is generated by averaging their
outputs for all frames. The experimental results of LCC and
SROCC measurements are illustrated in Tables IV and V. The
RMSEs of PSNR, SSIM, MSSIM, VSNR, VIF, and NTIA-
VQM are 9.188, 8.267, 7.717, 9.777, 7.860, and 7.664, respec-
tively, which are all larger than ours. Regarding computational
complexity, for a 250-frame 768×432 sequence on a 3G-
Hz quad-core CPU with 6G RAM, the computing times of
PSNR, SSIM, MSSIM, VSNR, VIF, NTIA-VQM, MOVIE,
and the proposed metric are 4, 24, 60, 26, 636, 57, 6320, and
43 s, respectively. The proposed metric is superior to MSSIM,
VIF, NTIA-VQM, and MOVIE with respect to computing
time. In addition, the less computing time would be for the
proposed metric in video coding since the MSE of each MB
is available.

From Table IV, it can be observed that PSNR performs
poorly, because it is not related to the HVS perception. Also,
the VSNR performs badly, which can be attributed to two
reasons. The first reason is that VSNR analyzes the HVS
perception of the distortion in the wavelet domain. But the
MPEG-2 and H.264 compression schemes introduce the dis-
tortions during the quantization process in DCT domain. The
second one is that VSNR is an image quality metric designed
to capture the spatial distortions. For video quality assessment,
the temporal information is very important and needs to be
accounted for. This is also the reason why SSIM, MSSIM,
and VIF perform successfully in image quality evaluation, but
not so well on the video quality assessment. From Table IV, it
can be observed that the performances of these metrics are not
good enough, with SROCC values smaller than 0.6. The reason
is that the temporal information is not included. Our proposed
method outperforms PSNR, VSNR, SSIM, MSSIM, and VIF.
This means that the proposed metric can effectively depict the
perceptual quality of the distorted videos. The scatter plots of
different VQMs over the LIVE Video Quality Database are
illustrated in Fig. 4. It can be observed that for our proposed
method the sample points scatter more closely around the
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TABLE VII

Coding Performance Comparisons Among All Testing

Algorithms in Terms of Average VQM (The Real Bit Rate of

Each Item Is the Same as That Listed in Table VI)

Sequence
Target Traditional He’s Xie’s Proposed

Bit Rate Rate Control Rate Control Rate Control Control
2000 0.9817 0.9817 0.9817 0.9855

Foreman
1000 0.9643 0.9651 0.9656 0.9696
500 0.9386 0.9387 0.9392 0.9457
300 0.9125 0.9140 0.9145 0.9218

2000 0.9939 0.9941 0.9949 0.9972

News
1000 0.9856 0.9872 0.9869 0.9896
500 0.9734 0.9756 0.9756 0.9793
300 0.9645 0.9668 0.9671 0.9693

2000 0.9772 0.9827 0.9837 0.9901

Silent
1000 0.9504 0.9555 0.9551 0.9643
500 0.8889 0.8996 0.8996 0.9101
300 0.8462 0.8522 0.8577 0.8615

Average 0.9481 0.9511 0.9518 0.9570
10 000 0.9745 0.9743 0.9758 0.9807

Night
8000 0.9673 0.9667 0.9684 0.9736

5000 0.9525 0.9520 0.9527 0.9587
2000 0.9054 0.9042 0.9039 0.9094

10 000 0.9583 0.9584 0.9582 0.9625
Crew 8000 0.9523 0.9516 0.9516 0.9561

5000 0.9413 0.9402 0.9411 0.9453

fitted line. It means that the values predicted by the proposed
method correlate better with the subjective ratings, specifically
the DMOS values, demonstrating a better performance.

C. Objective and Subjective Coding Performance of the Pro-
posed Algorithm

The competition occuring between the proposed window-
level algorithm and three benchmark algorithms are the tradi-
tional one (JVT-H017r3) [40], Xie and Zeng’s [29] algorithm,
and He’s [28] algorithm. The experimental results show that
the proposed algorithm is better than the benchmarks in terms
of both the objective and subjective measurements.

The objective coding performance is measured by both
PSNR and the proposed VQM. The comparisons of PSNR,
VQM, and bit control accuracy are listed in Tables VI and VII,
where the proposed algorithm achieves a significant PSNR
and VQM improvement than the benchmarks. The PSNR
improvement of the proposed algorithm is up to 0.3 dB over
the benchmarks on CIF sequences. In addition, the proposed
algorithm is much better than the benchmarks in terms of bit
rate control accuracy. The maximum bit rate mismatches of
Xie’s and He’s algorithms are over 2% that is worse than that
of the proposed algorithm with maximum bit rate mismatch
of 0.32%, as shown in Table VI. The average bit control error
and the average PSNR are listed in the “Average” row of
Table VI, where the bottom number of bit control error is
the average of absolute bit control errors. Table VII lists the
VQM comparisons of the competitive algorithms, which are
also illustrated in Fig. 5. From Fig. 5, the significant VQM
improvement of the proposed algorithm over the benchmarks
can be observed. The VQM of the proposed algorithm is
about 1% more than that of the traditional one for all the

Fig. 8. Visual quality comparisons between the proposed algorithm and all
benchmarks. (a) At 5000 kb/s, Crew (720p). (b) At 500 kb/s, Silent (CIF).

test sequences. Such a percentage is actually more significant
than the percentage of 0.3-dB PSNR improvement over the 40-
dB base. In the experiments, the proposed algorithm employs
the visual quality map produced by (19) to improve the
visual quality of encoding, while all the benchmarks employ
a uniform visual quality map without distinguishing the con-
tribution of each block area to the human eye’s perception. As
an example, the VQM maps of the first P frames of some test
sequences are shown in Fig. 6. The VQM value is computed
from (20) for each MB. In Fig. 6, the brightness of each pixel
represents the VQM value of the corresponding MB.

Referring to [28] and [29], the significant smooth visual
quality represented by PSNR or distortion profiles can be
obtained by Xie’s and He’s algorithms than the traditional one.
The frame VQM of the proposed algorithm is compared with
those of the benchmarks in Fig. 7. It can be observed that the
proposed algorithm achieves a much smoother frame VQM
profile than the traditional algorithm. Comparing the proposed
algorithm with [28] and [29], the proposed algorithm is much
better than the other two from the aspect of picture quality
smoothness, which can be observed from the frame VQM
curves drawn in Fig. 8. In Fig. 9, some pictures are shown
for comparing the subjective visual quality of proposed and
traditional algorithms. In [28], the large filter length is good at
smoothing visual quality, but may cause the significant bit con-
trol error. In [29], a more elaborate mechanism was provided
to handle the situations when the conventional bit allocation
and/or QP determination of rate control failed, which makes
the algorithm more complex. Comparing the computational
complexities of these algorithms, a slight overhead is needed
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Fig. 9. Subjective visual quality comparison is between the traditional rate control and the proposed one on Football at 300 kb/s. (a)–(e) Decoded from the
bitstreams of the traditional rate control algorithm. (f)–(j) Decoded from the bitstream of the constant QP encoding. (a), (f) 13th frame. (b), (g) 31th frame.
(c), (h) 109th frame. (d), (i) 218th frame. (e), (j) 220th frame.

Fig. 10. One frame from each of the four source videos in the study
(1080p represents 1920×1080 resolution, progressively scanned video).
(a) City (720p). (b) The Myth (720p). (c) RushField (1080p). (d) RedKayak
(1080p).

for the proposed algorithm because of a pre-analysis process
in the proposed algorithm. However, the achievement of the
proposed algorithm in visual quality control is significant.
From the statistics of encoding time, the time of pre-analysis is
about 4%–7% of the total encoding time as fast ME is enabled,
and less than 4% as full ME is enabled. The time complexity of
the proposed algorithm is only 1.8%–2.1% higher than that of
the traditional one. In addition, the computational complexity
could be further reduced by reusing the motion information of
pre-analysis. In practical, the pre-analysis can be implemented
separately from the other parts of a standard encoder, which
is efficient in the hardware accelerator of an encoder.

We conducted the subjective evaluation in the IVP Labora-
tory, Chinese University of Hong Kong, Shatin, Hong Kong
[54]. The evaluation was performed in a studio room with
lighting condition satisfying the lab environment requirement
of the ITU-R BT.500 standard [55]. The display monitor is
a 65-inch Panasonic plasma display (TH-65PF9WK) and the

viewing distance is three times (for 1920×1080 videos)/4.5
times (for 1280×720 videos) of the picture height. We used a
high-performance workstation stored and displayed all videos
in a format of raw TIF sequences. Eighteen observers partici-
pated in the subjective test. All of them are non-experts. Their
eyesight was either normal or had been corrected to be normal
with spectacles. Each observer assessed four source videos and
32 distorted videos. A single-stimulate method ACR [56] was
used where each video (including the reference) occurred once
in a random order, yet the two successive videos come from
different source videos so as to remove contextual and memory
effects in quality evaluation. Between the presentations of
two videos, a mid-gray video in 5 s was displaying, and
meanwhile, the evaluation was reported on the five-point scale:
5-excellent, 4-good, 3-fair, 2-poor, and 1-bad. At the beginning
of the test, three videos were arranged as the training videos
to stabilize the observers’ opinion. Subjective rating of the
compressed video was subtracted from that of the reference
video. The difference values were processed using the method
described in the BT.500 standard [55] to derive the difference
mean opinion score (DMOS) and the 95% confidence interval
for each compressed video. The β2 test suggested in [55] is
used to identify the subjects whose quality judgments deviate
from the distribution of the normal scores significantly. One
out of the 18 subjects is rejected, which means that most of
the subjective viewers achieved an agreement on the visual
qualities of the encoded video sequences.

We used four uncompressed, high quality source videos
of natural scenes, including a movie video “The Myth.” We
created four distorted videos from each source video, using
four different quantizations for the traditional rate control
algorithm and the proposed algorithm, respectively. The source
videos are a high definition YUV 4:2:0 format. Fig. 10 shows
one frame of each source video. All videos are 10 s long
with a frame rate of 25 frames. The subjective experiments
are performed to prove the better subjective visual quality
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Fig. 11. Subjective quality comparison between the proposed algorithm and
the traditional rate control algorithm.

of the proposed algorithm over the traditional one. The final
result is shown in Fig. 11. The horizontal axis indicates
the encoded video sequences in different bit-rates. The blue
histograms are the DMOS values of video sequences generated
by the proposed algorithm, while the red ones are the DMOS
values from the traditional algorithm in [40]. The magenta
error bar indicates the 95% confidence interval for each
encoded sequence. It means that there is a 95% chance that
the estimated mean value falls in the interval. The smaller
DMOS value indicates the better visual quality of the encoded
video sequence. It can be observed that the proposed method
outperforms the other one [40] on most of the test sequences
from Fig. 11, except for the 4 Mb/s of City and 8 Mb/s of
RushField. For the 4 Mbps of City, both methods generate high
quality videos. The DMOS values are around 0.3 that means
that the quality is nearly as good as the reference. In this case,
the subject viewers will have difficulties to judge the quality
of each video sequence. For the 8 Mb/s of RushField, the
difference of DMOS values is very small. For the other cases,
the perceptual qualities of the proposed method are better than
those of [40], which have clearly demonstrated the superiority
of our proposed algorithm for consistent visual quality control.

VI. Conclusions

In this paper, we first proposed a practical VQM for video
coding, taking into account both spatial and temporal activities
to simulate the visual masking effect. Second, a theoretical
window model to depict the relations among window size,
quality variation, and bits variation was constructed based on
the proposed VQM. Then, a VQM-based R-D model and a
window-level rate control algorithm were developed and veri-
fied for video coding. In the proposed rate control algorithm,
the tradeoff between visual quality consistency and buffer con-
straint was investigated. In addition, there was no bit allocation
at the frame level in the proposed algorithm. Conversely, in
the traditional algorithm, the visual quality fluctuation may
be caused by the bit allocation that assumed stationary input
video signal. Experimental results of video coding proved that
the proposed algorithms can provide smooth visual quality of
compressed videos with compliant buffer usages.
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